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Abstract
We introduce a model for random chain complexes over a finite field. The randomness in 
our complex comes from choosing the entries in the matrices that represent the bound-
ary maps uniformly over �

q
 , conditioned on ensuring that the composition of consecutive 

boundary maps is the zero map. We then investigate the combinatorial and homological 
properties of this random chain complex.
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1  Introduction

There have been a variety of attempts to randomize topological constructions. Most 
famously, Erdös and Rényi introduced a model for random graphs [6]. This work spawned 
an entire industry of probabilistic models and tools used for understanding other random 
topological and algebraic phenomenon. These include various models for random simpli-
cial complexes, random networks, and many more [7, 13]. Further, this has led to beauti-
ful connections with statistical physics, for example through percolation theory [1, 3, 12]. 
Our ultimate goal is to understand higher dimensional topological constructions arising 
in algebraic topology from a random perspective. In this manuscript, we begin to address 
this goal with the much simpler objective of understanding an algebraic construction com-
monly associated with topological spaces, known as a chain complex.

Chain complexes are used to measure a variety of different algebraic, geoemtric, and 
topological properties Their usefulness lies in providing a pathway for homological algebra 
computations. They arise in a variety of contexts, including commutative algebra, algebraic 
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geometry, group cohomology, Hoschild homology, de Rham cohomology, and of course 
algebraic topology  [2, 4, 9–11]. Specifically, chain complexes measure the relationship 
between cycles and boundaries of a topological space. This relationship uncovers many 
topological properties of interest, and is precisely what homology reveals. Furthermore, 
the singular chain complex of a topological space provides a canonical method of associat-
ing a chain complex to a topological space.

Let R be a ring. A chain complex C∗ = (Cm, �m) with coefficients in R is a sequence of 
R-modules, denoted Cm , together with a sequence of linear transformations

such that �m−1�m = 0 for all m ∈ ℤ . The maps �m are called the boundary maps of the chain 
complex, and the equation �m−1�m = 0 is known as the boundary condition; see [5] for fur-
ther details.

The boundary condition �m−1�m = 0 forces im 𝛿m ⊆ ker 𝛿m−1 . The homology of a chain 
complex measures the deviation of this containment from equality:

When the chain complex arises by taking singular chains on a topological space, homology 
can be a very powerful tool in algebraic topology [10].

We work over the field with q-elements R = �
q
 and consider the chain complex whose 

R-modules are given by finite dimensional vector spaces, Cm = �
nm
q  , where each nm ∈ ℕ . 

After fixing the standard basis for �
q
 , the boundary maps can be regarded as nm−1 × nm 

matrices, which we denote by Am . Homology can then be understood in terms of dimension

where �m is known as the mth Betti number.

1.1 � Main Results

Let q be a prime number. We build a random chain complex inductively with coefficients 
in �

q
 as follows (see Definition 2 for a precise statement). Given a sequence of non-negative 

integers {nm} , where m ∈ ℤ , we iteratively construct random linear transformations

for all m. The transformations are subject to the constraint Am−1Am = 0 . That is, after fix-
ing the standard basis for � nm

q  and constructing Am−1 , it suffices to construct the random 
nm−1 × nm matrix Am that satisfies Am−1Am = 0 . We do so by choosing matrix entries i.i.d. 
from the uniform distribution on �

q
 , subject to the constraint that Am−1Am = 0 . We then 

say that the pair (� nm
q ,Am) is a random chain complex. We restrict our attention to bounded 

below chain complexes (see Remark 4).
Our first result is an explicit formula for the distribution of the Betti numbers.

Theorem A  Let �m be the m-th Betti number of a random chain complex (� nm
q ,Am) . Then

⋯
�m+1
����������������→ Cm

�m
���������→ Cm−1

�m−1
����������������→ ⋯

Hm(C∗;R) =
ker �m−1

im �m
.

�m ∶= dim
�
q

kerAm−1

imAm

,

Am ∶ �
nm
q

⟶ �
nm−1
q

,
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where Pm
k
(r) is given in Eq. (4).

As Theorem A gives a formula for computing the distribution of the Betti numbers, 
it also leads to formulas for other probabilistic properties of �m , such as its moments 
and variance.

Our second main result show that, asymptotically, the m-th Betti number of a ran-
dom chain complex concentrates in a single value. Set

to be the positive part of n. Define

Theorem B  For a random chain complex (� nm
q ,Am) with Bm defined as in Eq. (1),

Remark 1  As a special case of the above theorem, consider when {nm} is constant or 
increasing. In this case, Bm = 0 , and the homology is trivial in probability as q → ∞ (see 
Corollary 2).

1.2 � Related work

Others have considered different methods of applying randomness to chain complexes. 
In [8], Ginzburg and Pasechnik investigate a different notion of a random chain com-
plex than the one we have described above. Given a finite dimensional vector space V 
over �

q
 , they consider chain complexes of the form

for a randomly chosen linear operator D such that D2 = 0 . They choose the operator D uni-
formly over all such possible choices. In particular, our construction is distinct from theirs, 
since they use the same operator D at each stage of the complex. The first of their main 
results [8, Thm 2.1] states that the rank of homology concentrates in the lowest possible 
dimension as q → ∞ . In the special case when nm ≡ n is constant, we also obtain minimal 
rank homology (see Remark 1).

The second author has introduced and studied the properties of a random Bockstein 
operation [15]. In homological algebra, the Bockstein is a connecting homomorphism 
associated with a short exact sequence of abelian groups, which are then used as the 
coefficients in a chain complex. Given a random boundary operator of a chain com-
plex, the distribution of compatible random Bockstein operations is given in [15, Thm 
5.2].

ℙ[�m = b] =

nm∑

im=0

Pm
im
(im − b)

nm−1∑

im−1=0

Pm−1
im−1

(
nm − im

)
⋯

n1∑

i1=0

P1

i1

(
n2 − i2

)
P0

n0

(
n1 − i1

)
,

(n)+ = max(0, n),

(1)Bm = (−nm+1 + (nm − (nm−1 − (⋯ − (n1 − n0)+ ⋯)+)+)+)+.

ℙ[�m = Bm] → 1 as q → ∞.

⋯
D

⟶V
D

⟶V
D

⟶⋯ ,
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1.3 � Outline

The paper is organized as follows. In Sect. 2, we discuss preliminary results useful for 
the combinatorial aspects of our results. We give a precise definition of a model for a 
random chain complex in Sect. 3, as well as prove Theorem A. In Sect. 4, we complete 
the proof of Theorem B.

2 � Preliminaries

This section consists of lemmas that are necessary to prove our main results. The first 
four lemmas count the number of elements in various sets related to finite vector spaces 
over �q . Lemmas 1, 2, and 3 are well known, but the statements and proofs are provided 
here for the sake of completeness. An interested reader can also see  [14] for further 
details. The last lemma of this section, Lemma  5, gives the asymptotic behavior of a 
useful conditional probability and will be used several times in the remainder of the 
paper.

Lemma 1  The number of ordered, linearly independent k-tuples of vectors in � n
q
 is

Proof  Since first vector in the k-tuple may be any vector except for the zero vector, there 
are qn − 1 choices for the first vector. More generally, for 1 ≤ m ≤ k , the m-th vector in the 
k-tuple may be any vector that is not a linear combination of the previously chosen m − 1 
vectors. So there are qn − qm−1 choices for the m-th vector. 	�  ◻

Lemma 2  The number of k-dimensional subspaces of � n
q
 is

Proof  Let 
[
n

k

]

q

 denote the number of k-dimensional subspaces of � n
q
 and N(q,  k) be the 

number of ordered, linear independent k-tuples of vectors in � n
q
 . Then Lemma 1 gives

We may also find N(q,  k) another way: First choose a k-dimensional subspace and then 

choose the independent vectors in our k-tuple from the chosen subspace. There are 
[
n

k

]

q

 

k-dimensional subspaces of � n
q
 . There are qk − 1 choices for the first vector in the k-tuple, 

and more generally, for 1 ≤ m ≤ k , there are qk − qm−1 vectors for the m-th vector in the 
k-tuple. Thus

k−1∏

j=0

(
qn − qj

)
= (qn − 1)(qn − q)(qn − q2)⋯ (qn − qk−2)(qn − qk−1).

[
n

k

]

q

=

k−1∏

j=0

qn − qj

qk − qj
.

(2)N(q, k) =

k−1∏

j=0

qn − qj.
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Equations (2) and (3) give the desired result. 	�  ◻

The number 
[
n

k

]

q

 defined above is known as the q-binomial coefficient  [14]. Lem-

mas 1 and 2 combine to count the number of matrices of a given rank.

Lemma 3  The number of m × n matrices of rank r with entries in �q is given by

Proof  Let W be a fixed r-dimensional subspace of � n
q
 . The number of matrices whose col-

umn space is W is given by the number of r × n matrices with rank r. This number is given 

by Lemma 1. The number of r-dimensional subspaces of � n
q
 is 
[
m

r

]

q

 , as stated in Lemma 2. 

The product of these is the number of m × n rank r matrices. 	�  ◻

Definition 1  Let nm be a sequence of natural numbers. Let Am be a sequence of random 
(nm) × (nm−1) matrices whose entries are chosen i.i.d. uniformly from �q . Let r be a non-
negative integer. Define

Remark 2  Several comments are in order. First, the conditional probability of Definition 1 
requires that Am+1 depend on Am . Thus, one can regard the sequence of random matrices as 
being constructed iteratively, with A0 constructed first, followed by A1 , and so on. Second, 
for impossible cases like r > k or k < 0 , we have Pm

k
(r) = 0 . Finally, since at every itera-

tion we have a finite probability space, all of the probabilities involved are strictly positive. 
Thus we need not concern ourselves with conditioning on events of probability 0.

Lemma 4  With Am defined as in Definition 1, we have that

Proof  Let k = nul(Am) . The linear transformation Am+1 maps � nm+1
q  into a k-dimensional 

subspace of � nm
q  . By changing basis, Am+1 can be represented by an k × nm+1 matrix. There 

are qknm+1 total k × nm+1 matrices over �
q
 , and by Lemma 3, there are

such matrices of rank r. 	�  ◻

(3)N(q, k) =

[
n

k

]

q

k−1∏

j=0

qk − qj.

r−1∏

j=0

(qm − qj)(qn − qj)

qr − qj
.

Pm
k
(r) ∶= ℙ

[
rank (Am+1) = r |AmAm+1 = 0, nul(Am) = k

]
.

(4)Pm
k
(r) = q−knm+1

r−1∏

j=0

(qnm+1 − qj)(qk − qj)

qr − qj
.

r−1∏

j=0

(qnm+1 − qj)(qk − qj)

qr − qj
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Remark 3  We adopt the convention that the empty product is 1. With this, Lemma 4 
implies that Pm

0
(0) = 1.

Lemma 5  Fix m and k. Then

Proof  Suppose min(k, nm+1) = k . Then

Suppose min(k, nm+1) = nm+1 . Then

In either of the above cases, Pm
k
(r) → 1 as q → ∞ . On the other hand, if r ≠ min(k, nm+1) , 

then Pm
k
(r) → 0 since each Pm

k
(r) represents a probability by Definition 1. 	�  ◻

3 � The homology of a random chain complex

Definition 2  Let q be a prime number and {nm} be a sequence of non-negative integers 
indexed by m ∈ ℤ . Consider the sequence {Am} of nm−1 × nm random matrices constructed 
iteratively as follows: Let the entries of A0 be chosen i.i.d. according to the uniform distri-
bution on �

q
 . For m > 0 let the entries of Am be chosen i.i.d subject to the condition that 

Am−1Am = 0 . The pair (� nm
q ,Am) is then said to be a random chain complex over the field 

�
q
.

Remark 4  We are interested in bounded from below chain complexes, so we set Am = 0 for 
all m < 0 for the remainder of the manuscript.

We wish to investigate the probabilistic properties of the homology of a random 
chain complex. We are primarily interested in the distribution of the Betti numbers 
�m = nulAm − rankAm+1.

lim
q→∞

Pm
k
(r) =

{
1 if r = min(k, nm+1),

0 else.

Pm
k
(k) =q−knm+1

k−1∏

j=0

(qnm+1 − qj)(qk − qj)

qk − qj

=q−knm+1
k−1∏

j=0

(qnm+1 − qj)

=

k−1∏

j=0

(1 − qj−nm+1 ).

Pm
k
(nm+1) =q

−knm+1

nm+1−1∏

j=0

(qnm+1 − qj)(qk − qj)

qnm+1 − qj

=

nm+1−1∏

j=0

(1 − qj−k).
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Remark 5  If {Am} is the sequence of maps from a random chain complex, Definition  1 
immediately gives

Theorem 1  Let (� nm
q ,Am) be a random chain complex and A0 ∶ �

n0
q → 0 . Then

Proof  The proof is by induction on m. For the base case m = 1 , we have

The first equality follows by the Law of Total Probability, and the second equality follows 
because A0 is the zero map.

For the inductive step, suppose that

As in the base case, we have

The desired result now follows by the induction hypothesis. 	�  ◻

Theorem A now follows from Theorem 1 and Lemma 5 in a straightforward manner. We 
give an explicit proof for completeness.

Proof(Proof of Theorem A)  By the law of total probability, we have

Pm
k
(r) = ℙ

[
�m = k − r | nul(Am) = k

]
.

ℙ
[
rank (Am) = nm − k

]

=

nm−1∑

im−1=0

Pm−1
im−1

(
nm − k

) nm−2∑

im−2=0

Pm−2
im−2

(
nm−1 − im−1

)
⋯

n1∑

i1=0

P1

i1

(
n2 − i2

)
P0

n0

(
n1 − i1

)
.

ℙ
[
rank (A1) = n1 − k

]
=

n0∑

i0=0

ℙ
[
rank (A1) = n1 − k | nul(A0) = i0

]
ℙ
[
nul(A0) = i0

]

=ℙ
[
rank (A1) = n1 − k | nul(A0) = n0

]

=P0

n0
(n1 − k).

ℙ
[
rank (Am−1) = nm−1 − im−1

]

=

nm−2∑

im−2=0

Pm−2
im−2

(
nm−1 − im−1

) nm−3∑

im−3=0

Pm−3
im−3

(
nm−2 − im−2

)
⋯

n1∑

i1=0

P1

i1

(
n2 − i2

)
P0

n0

(
n1 − i1

)
.

ℙ
[
rank (Am) = nm − k

]

=

nm−1∑

im−1=0

ℙ
[
rank (Am) = nm − k | nul(Am−1) = im−1

]
ℙ
[
nul(Am−1) = im−1

]

=

nm−1∑

im−1=0

Pm−1
im−1

(nm − k)ℙ
[
rank (Am−1) = nm−1 − im−1

]
.
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By Theorem 1,

as desired. 	�  ◻

4 � Proof of theorem B

In this section, we analyze Theorem A under the limit q → ∞.

Proposition 1  Let Im ∶= {0, 1,… , nm} and let I(j) ∶= I1 ×⋯ × Ij . Then for every natural 
number j, there exists exactly one �∗ = (i∗

1
,… , i∗

j
) in I(j) such that

as q → ∞ . In particular, set i∗
0
= n0 . Then for � in {1, 2,… , j} , we have i∗

�
= (n

�
− i∗

�−1
)+.

Proof  The proof is by induction on j.
Base step ( j = 1 ). By Lemma  5, we have P0

n0
(n1 − i∗

1
) → 1 as q → ∞ if and only if 

n1 − i∗
1
= min(n0, n1) . That is, i∗

1
= (n1 − no)+ = (n1 − i∗

0
)+.

Inductive step. Assume there exists exactly one (i∗
1
,… , i∗

j−1
) in I(j−1) , with 

i
�
= (n

�
− i∗

�−1
)+ for � in {1, 2,… , j − 1} , such that

as q → ∞ . By Lemma 5, Pj−1

i∗
j−1

(nj − i∗
j
) → 1 as q → ∞ if and only if nj − i∗

j
= min(i∗

j−1
, nj) . 

That is, i∗
j
= (nj − i∗

j−1
)+ . For � = (i∗

1
,… , i∗

j−1
, i∗
j
) in I(j) , we have

as q → ∞ , as desired. 	�  ◻

ℙ[�m = b] = ℙ[ rank (Am+1) = nul(Am) − b]

=

nm∑

k=0

ℙ[ rank (Am+1) = k − b | nul(Am) = k]ℙ[nul(Am) = k]

=

nm∑

k=0

Pm
k
(k − b)ℙ[nm − rank (Am) = k]

=

nm∑

k=0

Pm
k
(k − b)ℙ[ rank (Am) = nm − k].

nm∑

k=0

Pm
k
(k − b)ℙ[ rank (Am) = nm − k]

=

nm∑

k=0

Pm
k
(k − b)

nm−1∑

im−1=0

Pm−1
im−1

(
nm − k

)
⋯

n1∑

i1=0

P1

i1

(
n2 − i2

)
P0

n0

(
n1 − i1

)
,

P
j−1

i∗
j−1

(nj − i∗
j
)⋯P1

i∗
1

(n2 − i∗
2
)P0

n0
(n1 − i∗

1
) → 1,

P
j−2

i∗
j−2

(nj−1 − i∗
j−1

)⋯P1

i∗
1

(n2 − i∗
2
)P0

n0
(n1 − i∗

1
) → 1,

P
j−1

i∗
j−1

(nj − i∗
j
)P

j−2

i∗
j−2

(nj−1 − i∗
j−1

)⋯P1

i∗
1

(n2 − i∗
2
)P0

n0
(n1 − i∗

1
) → 1
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Proof(Proof of Theorem B)  By Theorem A, it is sufficient to show

as q → ∞ for a single sequence �∗ = (i∗
0
,… , i∗

m
) and a single value of b. After choosing �∗ as 

in Proposition 1, the value of b is easily determined from Lemma 5 to be

	�  ◻

Proposition 1 and Theorem B have a number of immediate consequences.

Corollary 1  Let (� nm
q ,Am) be a random chain complex. Then

as q → ∞.

Proof  Using Lemma 5, this follows by a similar argument to the Proof of Theorem B. 	
� ◻

Corollary 2  If {nm} is a monotone increasing sequence, then

Proof  By direct inspection, we have

and hence Bm = 0 . 	�  ◻

Corollary 3  The t-th moments of the random variable �m satisfy

Acknowledgements   The first author would like to thank Peter Bubenik for helpful discussions.
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Pm
i∗
m

(i∗
m
− b)Pm−1

i∗
m−1

(
nm − i∗

m

)
⋯P1

i∗
1

(
n2 − i∗

2

)
P0

n0

(
n1 − i∗

1

)
→ 1

b = i∗
m
−min(i∗

m
, nm+1)

= (−nm+1 + i∗
m
)+

= (−nm+1 + (nm − i∗
m−1

)+)+

= (−nm+1 + (nm − (nm−1 − (⋯ (n1 − n0)+ ⋯)+)+)+)+

= Bm.

ℙ[ rank (Am) = nm − (nm − (nm−1 − (⋯ − (n1 − n0)+ ⋯)+)+)+] → 1

lim
q→∞

ℙ[�m = 0] = 1.

(nm − (nm−1 − (⋯ (n1 − n0)+ ⋯)+)+)+ ≤ nm,

lim
q→∞

�
[
� t
m

]
= Bt

m
.
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