
Vol.:(0123456789)

Abh. Math. Semin. Univ. Hambg. (2021) 91:257–285
https://doi.org/10.1007/s12188-021-00245-z

1 3

Two graded rings of Hermitian modular forms

Brandon Williams1

Received: 29 October 2020 / Published online: 12 August 2021 
© The Author(s) 2021

Abstract
We give generators and relations for the graded rings of Hermitian modular forms of 
degree two over the rings of integers in ℚ(

√

−7) and ℚ(
√

−11) . In both cases we prove 
that the subrings of symmetric modular forms are generated by Maass lifts. The computa-
tion uses a reduction process against Borcherds products which also leads to a dimension 
formula for the spaces of modular forms.

Mathematics Subject Classification  11F27 · 11F55

1  Introduction

Hermitian modular forms of degree n ∈ ℕ are modular forms that transform under an action 
of the split-unitary group SU(n, n;O) with entries in some order O in an imaginary-quad-
ratic number field. Through the natural embedding of SU(n, n;O) in Sp4n(ℤ) , the Shimura 
variety attached to SU(n, n;O) parameterizes certain principally polarized (2n)-dimensional 
abelian varieties, namely the abelian varieties A of Weil type, i.e. admitting multiplication 
by O in such a way that the eigenvalues of O acting on A occur in complex-conjugate pairs. 
(These were investigated by Weil in connection with the Hodge conjecture; see for example 
the discussion in [1], which also explains the connection to orthogonal Shimura varieties 
when n = 2 .) To study such objects it is helpful to have coordinates on the moduli space; in 
other words, generators for graded rings of Hermitian modular forms.

In Dern and Krieg [2, 3], began a program to compute these rings in degree n = 2 based 
on Borcherds’ [4] theory of orthogonal modular forms with Heegner divisors (and the 
exceptional isogeny from SU(2, 2) to SO(2, 4) ). In particular they give an explicit descrip-
tion of the modular fourfolds associated to SU(2, 2,O) where O is the maximal order 
in ℚ(

√

−3) , ℚ(
√

−1) and ℚ(
√

−2) . The contribution of this note is to carry out these 
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computations for the imaginary-quadratic fields of the smallest two remaining discrimi-
nants: ℚ(

√

−7) and ℚ(
√

−11).
The rough idea of [2, 3] is similar to the well-known computation of the ring of ellip-

tic modular forms, M∗(SL2(ℤ)) = ℂ[E4,E6] . The Riemann-Roch theorem (in the form of 
the “k/12 formula”) shows that every modular form of weight not divisible by 6 has a 
zero at the elliptic point � = e2�i∕3 , and that the Eisenstein series E4 and E6 have no zeros 
besides a simple zero at � and at i (and their conjugates under SL2(ℤ) ), respectively. 
Now every form in M∗(SL2(ℤ)) of weight not a multiple of 6 is divisible by E4 , and 
every form of weight 6k becomes divisible by E4 after subtracting some scalar multiple 
of Ek

6
 . The claim follows by induction on the weight, together with the fact that modular 

forms of weight k ≤ 0 are constant.
In the SU(2, 2) case the role of E4 above is played by a Borcherds product; the elliptic 

point � is replaced by the Heegner divisors; and the evaluation at � is replaced by the 
pullbacks, which send Hermitian modular forms to Siegel paramodular forms of degree 
two. With increasing dimension and level, the Heegner divisors which occur as divi-
sors of modular forms are more complicated and the pullback maps to Heegner divi-
sors are rarely surjective. To overcome these issues our basic argument is as follows. 
We construct Hermitian modular forms (Eisenstein series, theta lifts, pullbacks from 
O(2, 5) , theta series, etc; here, theta lifts and Borcherds products turn out to be suffi-
cient) and compute their pullbacks to paramodular forms. At the same time we use the 
geometry of the Hermitian modular fourfold (in particular the intersections of special 
divisors) to constrain the images of the pullback maps, with the goal of determining suf-
ficiently many images completely. There seems to be no reason in general to believe that 
this procedure will succeed, and as the discriminant of the underlying field increases 
it certainly becomes more difficult; however, when this computation does succeed it is 
straightforward to determine the complete ring structure.

This note is organized as follows. In Sect.  2 we review Hermitian and orthogonal 
modular forms, theta lifts and pullbacks. In Sect. 3 we recall the structure of the graded 
rings of paramodular forms of degree two and levels 1, 2, 3. In Sects. 4 and 5 we com-
pute the graded rings of Hermitian modular forms for the rings of integers of ℚ(

√

−7) 
and ℚ(

√

−11) by reducing against distinguished Borcherds products of weight 7 and 5, 
respectively. (The ideal of relations for ℚ(

√

−11) is complicated and left to an auxiliary 
file.) In Sect. 6 we compute the dimensions of spaces of Hermitian modular forms.

2 � Preliminaries

In this section we review some facts about Hermitian modular forms of degree two and 
the related orthogonal modular forms. For a more thorough introduction the book [5] 
and the dissertation [6] are useful references.

2.1 � Hermitian modular forms of degree two

Let �2 denote the Hermitian upper half-space of degree two: the set of complex (2 × 2)

-matrices � for which, after writing � = x + iy where x = x
T and y = y

T , the matrix y is 
positive-definite. The split-unitary group
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acts on �2 by Möbius transformations:

Fix an order O in an imaginary-quadratic number field K. A Hermitian modular form of 
weight k ∈ ℕ0 (and degree two) is a holomorphic function F ∶ �2 → ℂ which satisfies

Note that F extends holomorphically to the Baily-Borel boundary (i.e. Koecher’s princi-
ple) as this contains only components of dimension 1 and 0. Cusp forms of weight k are 
modular forms which tend to zero at each one-dimensional cusp: that is, modular forms f 
for which

2.2 � Orthogonal modular forms and Hermitian modular forms

Suppose Λ = (Λ,Q) is an �-dimensional positive-definite even lattice; that is, Λ is a free ℤ
-module of rank � and Q is a positive-definite quadratic form on Λ⊗ℝ taking integral values 
on Λ . One can define an upper half-space

This is acted upon by SO+(Λ⊕ II2,2) (the connected component of the identity) by Möbius 
transformations. To make this explicit it is helpful to fix a Gram matrix � for Q and realize 
SO+(Λ⊕ II2,2) as a subgroup of those matrices which preserve the block matrix 

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 1

0 0 0 1 0

0 0 � 0 0

0 1 0 0 0

1 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

∈ ℤ6×6 under conjugation. For such a matrix M and (�, z,w) ∈ ℍΛ , one can 

define M ⋅ (𝜏, z,w) = (𝜏, z̃, w̃) ∈ ℍΛ by

SU2,2(ℂ) =

�

M ∈ SL4(ℂ) ∶ MTJM = J
�

, J =

⎛

⎜

⎜

⎜

⎝

0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

⎞

⎟

⎟

⎟

⎠

M ⋅ � = (a� + b)(c� + d)−1, M =

(

a b

c d

)

∈ SU2,2(ℂ), � ∈ �2.

F(M ⋅ �) = det(c� + d)kF(�) for all M =

(

a b

c d

)

∈ SU2,2(O) and � ∈ �2.

lim
y→∞

(

f
|

|

|k
M
)

(iy) = 0 for all M ∈ SU2,2(K).

ℍΛ = {(𝜏, z,w) ∶ 𝜏,w ∈ ℍ, z ∈ Λ⊗ ℂ, Q(im(z)) < im(𝜏) ⋅ im(w)} ⊆ ℂ
𝓁+2.

M

⎛

⎜

⎜

⎜

⎜

⎝

Q(z) − 𝜏w

𝜏

z

w

1

⎞

⎟

⎟

⎟

⎟

⎠

= j(M;𝜏, z,w)

⎛

⎜

⎜

⎜

⎜

⎝

Q(z̃) − 𝜏w̃

𝜏

z̃

w̃

1

⎞

⎟

⎟

⎟

⎟

⎠

for some j(M;𝜏, z,w) ∈ ℂ
×.
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The orthogonal modular group ΓΛ is the discriminant kernel of Λ⊕ II2,2 ; that is, the 
subgroup of SO+(Λ⊕ II2,2) which acts trivially on Λ�∕Λ . An orthogonal modular form is 
then a holomorphic function f ∶ ℍΛ → ℂ which satisfies

for all M ∈ ΓΛ and (�, z,w) ∈ ℍΛ . (There is again a boundedness condition at cusps which 
is automatic by Koecher’s principle.)

Hermitian modular forms for SU2,2(OK) are more or less the same as orthogonal modu-
lar forms for the lattice of integers (Λ,Q) = (OK ,NK∕ℚ) of K. One way to see this is as fol-
lows. The complex space of antisymmetric (4 × 4)-matrices admits a nondegenerate quad-
ratic form pf (the Pfaffian, a square root of the determinant) which is preserved under the 
conjugation action M ⋅ X = MTXM by SL4(ℂ) ; explicitly,

The conjugation action identifies SL4(ℂ) with the spin group Spin(pf) = Spin6(ℂ) . The six-
dimensional real subspace

on which the Pfaffian has signature (4, 2) is preserved under conjugation by SU2,2(ℂ) , and 
this action realizes the isomorphism SU2,2(ℂ) ≅ Spin4,2(ℝ) . The lattice of OK-integral 
matrices (which is isometric to OK ⊕ II2,2 ) is preserved by SU2,2(OK) and we obtain an 
embedding of SU2,2(OK) in the discriminant kernel ΓOK

 . This isomorphism induces an 
identification between the homogeneous spaces �2 and ℍΛ and allows orthogonal modular 
forms to be interpreted as Hermitian modular forms of the same weight.

The Hermitian upper half-space admits a natural involution z ↦ zT . This yields a 
decomposition of the spaces of Hermitian modular forms into symmetric and skew-sym-
metric forms:

Definition 1  A Hermitian modular form F ∶ �2 → ℂ of weight k is (graded) symmetric if

and (graded) skew-symmetric if F(zT ) = −(−1)kF(z).

Note that many references (e.g. [2, 3]) use the notion of (skew)-symmetry without 
respect to the grading, i.e. without the factor (−1)k.

In the orthogonal interpretation, the map z ↦ zT is the reflection through a vector in 
Λ⊕ II2,2 of norm 1. This reflection also acts trivially on Λ�∕Λ (but has determinant −1 , 
so it does not lie in ΓOK

 according to our definition). Using this one can show that the 
Maass lifts (cf. 2.4) are always graded-symmetric, and that Borcherds products (cf. 2.4) are 
always either symmetric or skew-symmetric (see also Satz 5.4(2) of [6]).

f (M ⋅ (�, z,w)) = j(M;�, z,w)kf (�, z,w)

pf

⎛

⎜

⎜

⎜

⎝

0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

⎞

⎟

⎟

⎟

⎠

= af − be + cd.

V =

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎜

⎝

0 a b c

−a 0 d −b

−b −d 0 f

−c b −f 0

⎞

⎟

⎟

⎟

⎠

∶ a, c, d, f ∈ ℝ, b ∈ ℂ

⎫

⎪

⎬

⎪

⎭

F(zT ) = (−1)kF(z) for all z ∈ �2,
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The maximal discrete extension Γ∗
K
 of ΓK (as computed in [7]) also contains a copy of the 

class group Cl(OK) which is generally not contained in the discriminant kernel. We only con-
sider the fields K = ℚ(

√

−7),ℚ(
√

−11) of class number one so we will not discuss this point 
further; however, if one were to extend the arguments below to general number fields then 
most instances of the discrete extension ΓOK

 of ΓK below should probably be replaced by Γ∗
K
.

2.3 � Heegner divisors

On orthogonal Shimura varieties there is a natural construction of Heegner divisors. Sup-
pose Λ is an even lattice of signature (�, 2) . Given any dual lattice vector � ∈ Λ� of positive 
norm, consider the orthogonal complement �⟂ ∩ ℍΛ which has codimension one. The union 
of these orthogonal complements as � ranges through the (finitely many) primitive vectors � 
with Q(�) = D∕level(Λ) is ΓΛ-invariant and defines an analytic cycle HD on ΓΛ�ℍΛ . (If we 
do not take only primitive vectors then we obtain the divisors 

∑

f 2�D HD∕f 2 , which are also 
often called the Heegner divisors in the literature. For our purposes this definition is less 
convenient.)

The irreducible components HD,±� of HD correspond to pairs (±�) ∈ Λ�∕Λ with 
Q(�) = D∕level(Λ) + ℤ . In particular if disc(Λ) is prime then every HD is irreducible.

Each Heegner divisor is itself an orthogonal Shimura variety for a lattice of signature 
(� − 1, 2) . (For example, in the Hermitian modular form case the Heegner divisor HD may be 
identified with the paramodular threefold XK(D) of level D modulo Atkin-Lehner involutions.) 
Moreover the intersection of any two Heegner divisors is itself a Heegner divisor in this inter-
pretation. The intersection numbers can be computed in general by counting certain lattice 
embeddings up to equivalence. However it seems worthwhile to mention a trick which (in the 
cases we will need) makes this computation quite easy and which works in some generality.

A special case of Borcherds’ higher-dimensional Gross–Kohnen–Zagier theorem [8] shows 
that the Heegner divisors on ΓK��2 interpreted appropriately are coefficients of a modular 
form of weight 3. If K has prime discriminant dK < 0 , and we take intersection numbers with 
a fixed Heegner divisor of squarefree discriminant m ∈ ℕ and apply the Bruinier–Bundschuh 
isomorphism (see [9], or Remark 3 below) then this implies that there are weights �m(D) , 
D ∈ ℕ such that

where � is the quadratic Dirichlet character modulo dK , and where M+

3
(Γ0(−dK),�) 

is the subspace of weight three modular forms of level Γ0(−dK) whose Fourier expan-
sions at ∞ are supported on exponents which are quadratic residues. Moreover the sums 
∑

f 2�D �m(D∕f
2) themselves (for fixed m) are coefficients of a modular form of weight 5/2 

and level Γ0(4m) satisfying the Kohnen plus-condition and which has constant term −1 
(and for m = 1, 2, 3 this determines it uniquely); for example,

Φm(�) ∶= −1 +

∞
∑

D=1

�m(D)
∑

f 2|D

(Hm ⋅HD∕f 2 )q
D ∈ M+

3
(Γ0(−dK),�),
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where �(�) = 1 + 2q + 2q4 + 2q9 + ... is the usual theta function and where 
E2(�) = 1 − 24

∑∞

n=1
�1(n)q

n.
Unfortunately the spaces M+

3
(Γ0(−dK),�) are two-dimensional for dK ∈ {−7,−11} . 

However one can specify the correct modular forms more precisely by observing that the 
intersections in cohomology are themselves the Fourier coefficients of a vector-valued Jac-
obi form of index m∕|dK| and weight three (for a particular representation of the Jacobi 
group) and the intersection numbers are obtained by setting the elliptic variable of that 
Jacobi form to zero. (More precisely these Jacobi forms occur as Fourier–Jacobi coeffi-
cients of the Siegel modular form introduced by Kudla and Millson [10].) For m ≤ 3 the 
relevant space of Jacobi forms is always one-dimensional (for every dK ), spanned by the 
Eisenstein series (for which some computational aspects are discussed in [11]) so the gen-
erating series of intersection numbers is exactly what was called the Poincaré square series 
of index m∕|dK| in [11]. In this way we can compute the relevant intersection numbers 
without computing any intersections. We find:

(1) For K = ℚ(
√

−7),

and

(2) For K = ℚ(
√

−11),

and

It follows that for K = ℚ(
√

−7) , the intersection of H1 and H2 as a Heegner divisor of XK(1) 
is 2H1 and as a Heegner divisor of XK(2) is just H1 itself; and for K = ℚ(

√

−11) the inter-
section of H1 and H3 in XK(1) is 2H1 and in XK(2) is H1 . This means, for example, that if F is 
a Hermitian modular form for OK , K = ℚ(

√

−7) with a zero on H2 , then the pullbacks of 

− 1 +

∞
∑

D=1

∑

f 2|D

�1(D∕f
2)qD = −1 + 10q + 70q4 + 48q5 + 120q8 + 250q9

+ ... = 6
��(�)

2�i
− E2(4�)�(�),

− 1 +

∞
∑

D=1

∑

f 2|D

�2(D∕f
2)qD = −1 + 4q + 22q4 + 24q8

+ 100q9 + ... = 3
��(�)

2�i
− E2(8�)�(�),

− 1 +

∞
∑

D=1

∑

f 2|D

�3(D∕f
2)qD = −1 + 2q + 14q4 + 34q9

+ 24q12 + ... = 2
��(�)

2�i
− E2(12�)�(�),

Φ1(�) = −1 − 2q + 20q2 + 18q4 + 70q7 + 160q8 + 94q9 + ...

Φ2(�) = −1 + 4q + 2q2 + 48q4 + 28q7 + 142q8 + 148q9 + ...

Φ1(�) = −1 − 2q + 20q3 − 2q4 + 20q5 + 18q9 + 70q11 + ...

Φ3(�) = −1 + 2q + 0q3 + 14q4 + 16q5 + 82q9 + 26q11 + ...
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all orders to H1 are Siegel modular forms of degree two with at least a double zero along 
the diagonal.

2.4 � Lifts

To construct generators we make use of two lifts from elliptic modular forms: the Maass 
lift (or additive theta lift) and the Borcherds lift (or multiplicative theta lift). Both theta lifts 
most naturally take vector-valued modular forms which transform under a Weil representa-
tion as inputs.

Recall that if (Λ,Q) is an even-dimensional even lattice with dual Λ� then there is a rep-
resentation �∗ of SL2(ℤ) on ℂ[Λ�∕Λ] = span(�� ∶ � ∈ Λ�∕Λ) defined by

We consider holomorphic functions F ∶ ℍ → ℂ[Λ�∕Λ] which satisfy the functional 
equations

for all 
(

a b

c d

)

∈ SL2(ℤ) . These are called nearly-holomorphic modular forms if they have 

finite order at ∞ (in other words, F(x + iy) has at worst exponential growth as y → ∞ ), and 
are (holomorphic) modular forms or cusp forms if F(x + iy) is bounded or tends to zero in 

that limit, respectively. The functional equation under T =

(

1 1

0 1

)

 implies a Fourier expan-

sion of the form

where q = e2�i� and c(n, �) ∈ ℂ . Then F is a nearly-holomorphic modular form if and 
only if c(n, �) = 0 for all sufficiently small n; a holomorphic modular form if and only if 
c(n, �) = 0 for all n < 0 ; and a cusp form if and only if c(n, �) = 0 for all n ≤ 0.

Now suppose Λ is positive-definite and that k ≥ 1

2
dimΛ , k ∈ ℤ . The Maass lift takes a 

vector-valued modular form F(�) =
∑

� ,n c(n, �)q
n
�� of weight � = k −

1

2
dimΛ for �∗ to the 

orthogonal modular form

for Λ⊕ II2,2 , where Ek(�),Ek(w) denote the Eisenstein series of weight k for SL2(ℤ) . (If k 
is odd then c(0, 0) = 0 so there is no need to define Ek .) The Maass lift is additive and pre-
serves the subspace of cusp forms.

�∗
��

0 −1

1 0

��

�� =
e−�isig(Λ)∕4
√

�Λ�∕Λ�

�

�∈Λ�∕Λ

e2�i⟨�,�⟩�� , �∗
��

1 1

0 1

��

�� = e−2�iQ(�)�� .

F
(

a� + b

c� + d

)

= (c� + d)k�∗
((

a b

c d

))

F(�) =
∑

�∈Λ�∕Λ

∑

n∈ℤn−Q(�)

c(n, �)qn��

ΦF(�, z,w) = −
Bk

2k
c(0, 0)

�

Ek(�) + Ek(w) − 1
�

+

∞
�

a,b=1

�

� ∈ Λ�

� positive

Q(�) ≤ ab

∞
�

n=1

c(ab − Q(�), �)nk−1e2�in(a�+bw+⟨�,z⟩)
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The second lift we use is the Borcherds lift, which takes a nearly-holomorphic vector-
valued modular form F(�) =

∑

� ,n c(n, �)q
n
�� of weight − 1

2
dimΛ (where we again take Λ to 

be positive-definite) and yields a multivalued meromorphic orthogonal modular form (in 
general with character) which is locally represented as a convergent infinite product:

There is an analogy to the formal k = 0 case of the Maass lift; however, the set over which 
a, b, � is more complicated (depending on a Weyl chamber containing (�, z,w) ) and the 
Weyl vector (A, B, C) has no analogue in the additive lift. The most important aspect of the 
Borcherds lift for us is not the product expansion but the fact that the divisor of ΨF may be 
computed exactly: it is supported on Heegner divisors, and the order of ΨF on the rational 
quadratic divisor �⟂ (with Q(𝜆) < 0 ) is

(where c(r2Q(�), r�) = 0 if r� ∉ Λ� ). In particular ΨF is an orthogonal modular form if and 
only if these orders are nonnegative integers. In all cases the weight of F is c(0, 0)/2.

Remark 2  One can always compactify ΓΛ�ℍΛ by including finitely many zero-dimensional 
and one-dimensional cusps (corresponding to isotropic one-dimensional or two-dimen-
sional sublattices of Λ⊕ II2,2 up to equivalence). If K has class number one (or slightly 
more generally if the norm form on OK is alone in its genus) then our discriminant ker-
nel ΓOK

 admits only one equivalence class each of zero-dimensional and one-dimensional 
cusps and both are contained in the closure of every rational quadratic divisor. In particular 
any Borcherds product which is holomorphic is automatically a cusp form. (This is pecu-
liar to the lattices considered here; it is certainly not true in general.)

Remark 3  Let us say a few words about the input functions F. A general method to compute 
vector-valued modular forms for general lattices was given in [11] and [12] (the two refer-
ences corresponding to even and odd-weight theta lifts, respectively), and this is what was 
actually used in the computations below because the implementation was already available. 
Of course one can obtain all nearly-holomorphic modular forms by dividing true modular 
forms of an appropriate weight by a power of the discriminant Δ(�) = q

∏∞

n=1
(1 − qn)24 . 

However a few other formalisms apply to the particular lattices Λ = (OK ,NK∕ℚ) considered 
here: 

	 (i)	 Modular forms for the representation �∗ attached to a positive-definite lattice Λ are 
equivalent to Jacobi forms of lattice index which are scalar-valued functions �(�, z) 
in a “modular variable” � ∈ ℍ and an “elliptic variable” z ∈ Λ⊗ ℂ satisfying certain 
functional equations and growth conditions. The main advantage of Jacobi forms is 
that they can be multiplied: for example, in many cases it is possible to construct all 
Jacobi forms of a given weight and level by taking linear combinations of products 
of Jacobi theta functions at various arguments (i.e. theta blocks).

	 (ii)	 If Λ has odd prime discriminant p and k + (dimΛ)∕2 is even then Bruinier and 
Bundschuh show in [9] that vector-valued modular forms of weight k for �∗ can be 
identified with either a “plus-” or “minus-” subspace of Mk(Γ0(p),�p) (where �p is 
the nontrivial quadratic character mod p), i.e. the subspace of modular forms whose 

ΨF(�, z,w) = e2�i(A�+⟨B,z⟩+Cw)
�

a,b,�

(1 − e2�i(a�+bw+⟨�,z⟩))c(ab−Q(�),�).

ord(ΨF;𝜆
⟂) =

∑

r∈ℚ>0

c(r2Q(𝜆), r𝜆)
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Fourier coefficients are supported on quadratic residues modulo p, or quadratic non-
residues mod p and pℤ , respectively. The isomorphism simply identifies the form 
F(�) =

∑

� ,n c(n, �)q
n
�� with 

 This fails when k + (dimΛ)∕2 is odd (in which case c(n, �) = −c(n,−�) , so the 
resulting sum is always zero!). To obtain any results in the the same spirit, it seems 
necessary to consider instead the “twisted sums” 

 where � is an odd Dirichlet character mod p (and where an isomorphism 
Λ�∕Λ ≅ ℤ∕pℤ has been fixed). The result is a modular form of level Γ0(p

2) with 
character 𝜒 ⊗ 𝜒p . These maps were studied in [13]; they are injective and their 
images can be characterized in terms of the Atkin-Lehner involutions modulo p2.

2.5 � Pullbacks

Let � ∈ OK have norm � = NK∕ℚ� , and consider the embedding of the Siegel upper half-
space into �2:

For any paramodular matrix

we find U�MU−1
�

∈ SU2,2(OK) and

so � descends to an embedding of K(�)�ℍ2 into ΓK��2 (and more specifically into the 
Heegner divisor of discriminant � ). In particular if F ∶ �2 → ℂ is a Hermitian modular 
form then f ∶= F◦� is a paramodular form of the same weight, i.e.

The preprint [14] gives expressions in the higher Taylor coefficients about a rational quad-
ratic divisor which yield “higher pullbacks” PNF , N ∈ ℕ0 . If F is a Hermitian modular 
form of weight k then its pullback PH

�

N
F along the embedding above is a paramodular form 

of level K(�) and weight k + N and a cusp form if N > 0 . The higher pullbacks of theta 
lifts are themselves theta lifts and are particularly simple to compute. One computational 
aspect of the higher pullbacks worth mentioning is that a form F vanishes to some order h 
along the rational quadratic divisor if and only if its pullbacks PNF , N < h are identically 
zero, and this can be checked rigorously using Sturm bounds (or their generalizations) for 
the lower-dimensional group under which PNF transforms.

∑

� ,n

c(n, �)qpn ∈ Mk(Γ0(p),�p).

∑

� ,n

c(n, �)�(�)qpn,

� ∶ ℍ2 ⟶ �2, �

((

� z

z w

))

=

(

� �z

�z 𝓁w

)

= U� ⋅

(

� z

z w

)

, U� ∶= diag(1, �, 1, �∕𝓁).

M ∈ K(�) ∶= {M ∈ Sp4(ℚ) ∶ �−1
�
M�

�
∈ ℤ

4×4}, �
�
∶= diag(1, 1, 1,�),

�(M ⋅ �) = (U�MU−1
�
) ⋅ �(�), � ∈ ℍ2,

f (M ⋅ �) = (c� + d)kf (�) for all M =

(

a b

c d

)

∈ K(𝓁) and � ∈ ℍ2.
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An important case is the N th pullback of a modular form F to a Heegner divisor along 
which it has order exactly N. The result in this case is the well-known quasi-pullback and 
we denote it QF . The quasi-pullback is multiplicative i.e. Q(FG) = QF ⋅ QG for all Hermi-
tian modular forms F, G.

3 � Paramodular forms of levels one, two and three

The pullbacks of Hermitian modular forms to certain Heegner divisors have interpretations 
as paramodular forms (as in Sect. 2.5 above). Structure results for graded rings of para-
modular forms are known for a few values of N. We will rely on the previously known gen-
erators for the graded rings of paramodular levels 1,2 and 3. The first of these is now clas-
sical and was derived by Igusa [15]; the second was computed in [16] by Ibukiyama and 
Onodera; and the third was computed by Dern [17]. For convenience we express the gen-
erators as Gritsenko lifts or Borcherds products. (Igusa and Ibukiyama–Onodera expressed 
them in terms of thetanulls.)

Proposition 4 

	 (i)	 There are cusp forms �10,�12,�35 of weights 10, 12, 35 such that M∗(K(1)) is gener-
ated by the Eisenstein series E4,E6 and by �10,�12,�35.

	 (ii)	 There are graded-symmetric cusp forms �8,�10,�11,�12 of weights 8, 10, 11, 12 
and an antisymmetric non-cusp form f12 such that M∗(K(2)) is generated by the 
Eisenstein series E4,E6 and by �8,�10,�11,�12, f12.

	 (iii)	 There are graded-symmetric cusp forms �6,�8,�9,�10,�11,�12 of weights 
6, 8, 9, 10, 11, 12 and an antisymmetric non-cusp form f12 such that M∗(K(3)) is 
generated by the Eisenstein series E4,E6 and by �6,�8,�9,�10,�11,�12, f12.

For later use, we fix the following concrete generators. Let E4,E6 denote the modular 
Eisenstein series; Ek,m the Jacobi Eisenstein series of weight k and index m; and E′

k,m
 its 

derivative with respect to z. The inputs into the Gritsenko and Borcherds lifts are expressed 
as Jacobi forms following Remark 3 above. 

	 (i)	 �10 and �12 are the Gritsenko lifts of the Jacobi cusp forms 

 respectively, and �35 is the Borcherds lift of 11E
2
4
E4,1+7E6E6,1

18Δ
.

	 (ii)	 �8,�10,�11,�12 are the Gritsenko lifts of the Jacobi cusp forms 

 respectively, and f12 is the Borcherds lift of 
3E2

4
E4,2+4E4E

2
4,1
+5E6E6,2

12Δ
.

	 (iii)	 �6,�8,�9,�10,�11,�12 are the Gritsenko lifts of the Jacobi cusp forms 

�10,1(�, z) =
E4,1E6 − E4E6,1

144
and �12,1(�, z) =

E2
4
E4,1 − E6E6,1

144

�8,2 =
E4E4,2 − E2

4,1

12
, �10,2 =

E4,2E6 − E4,1E6,1

12
,

�11,2 =
E4,1E

�
6,1

− E4,1E
�
6,1

288�i
, �12,2 =

E2
4
E4,2 − E6E6,2

24
,
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 respectively, and f12 is the Borcherds lift of 
2E4E4,1E4,2+5E

3
4,1
+5E6,1E6,2

12Δ
. (Note that these 

are not quite the generators used by Dern; the choices used here simplify the ideal 
of relations somewhat.)

Remark 5  For later use we will need to understand the ideals of symmetric (under the 
Fricke involution � ↦ −

1

N
�−1 ) paramodular forms of level N ∈ {1, 2, 3} which vanish 

along the diagonal. The pullback of a paramodular form to the diagonal is a modular form 
for the group SL2(ℤ) × SL2(ℤ) or in other words a linear combination of expressions of the 
form (f1 ⊗ f2)(𝜏1, 𝜏2) = f1(𝜏1)f2(𝜏2) , where f1, f2 are elliptic modular forms of level one of 
the same weight; and if the paramodular form is symmetric then the pullback is symmet-
ric under swapping (�1, �2) ↦ (�2, �1) . The graded ring of symmetric modular forms under 
SL2(ℤ) × SL2(ℤ) is the weighted polynomial ring

where E4,E6,Δ are defined as usual. Therefore: 

	 (i)	 In level N = 1 , the pullbacks of E4,E6,�12 to the diagonal are the algebraically 
independent modular forms E4 ⊗ E4 , E6 ⊗ E6 , Δ⊗ Δ , so every even-weight form 
which vanishes on the diagonal is a multiple of �10 (which has a double zero). The 
odd-weight form �35 has a simple zero on the diagonal.

	 (ii)	 In level N = 2 , the pullbacks of E4,E6,�12 to the diagonal are algebraically inde-
pendent, so the ideal of even-weight symmetric forms which vanish on the diagonal 
is generated by �8 (which has a fourth-order zero there) and �10 (which has a double 
zero). Moreover �2

10
 is itself a multiple of �8 , so the ideal of even-weight modular 

forms which vanish to order at least three along the diagonal is principal, generated 
by �8 . The odd-weight form �11 has a simple zero along the diagonal.

	 (iii)	 In level N = 3 , the pullbacks of E4,E6,�12 to the diagonal are algebraically independ-
ent, so the ideal of even-weight symmetric forms which vanish on the diagonal is 
generated by �6,�8,�10 (which have zeros of order 6, 4, 2 respectively). These forms 
satisfy �2

8
= �6�10 and �2

10
= �8�12 , so the ideals of (even-weight, symmetric) forms 

which vanish to order at least 3 or at least 5 are ⟨�6,�8⟩ and ⟨�6⟩ , respectively. The 
odd-weight forms �9 and �11 have order 3 and 1 along the diagonal, respectively, 
and satisfy the relations 

 and �3
11

 and �10�11 (and therefore all odd-weight symmetric forms with at least a 
triple zero on the diagonal) are multiples of �9.

�6,3 =
�10,1�8,2

Δ
, �8,3 =

E4E4,3 − E4,1E4,2

2
, �9,3 =

�10,1�11,2

Δ
,

�10,3 =
�10,2�12,1

Δ
, �11,3 =

�11,2�12,1

Δ
, �12,3 =

E4E4,1E4,2 + E2
4
E4,3

2
− E6,1E6,2,

M∗(SL2(ℤ) × SL2(ℤ)) = ℂ[E4 ⊗ E4,E6 ⊗ E6,Δ⊗ Δ]

�6�11 = �8�9, �8�11 = �9�10,
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4 � Hermitian modular forms for ℚ(
√

−7)

In this section we compute the graded ring of Hermitian modular forms for the maximal order 
in K = ℚ(

√

−7) by studying the pullbacks to Heegner divisors of discriminant 1 and 2 and 
applying the structure theorems of Igusa and Ibukiyama-Onodera. We first consider graded-
symmetric forms and reduce against a distinguished Borcherds product b7 (which is also a 
Maass lift) whose divisor is

We will express all graded-symmetric forms in terms of Maass lifts 
E4, E6, b7,m8,m9,m

(1)

10
,m

(2)

10
,m11,m12 in weights 4,  6,  7,  8,  9,  10,  10,  11,  12 which are 

described in more detail on the next page. The Maass lifts of weight 4, 6, 7, 8, 9 are essen-
tially unique, and the Maass lifts of weight 10 are chosen such that m(1)

10
 vanishes on H1 and 

m
(2)

10
 vanishes on H2 . By contrast m11 could have been chosen almost arbitrarily (so long as 

it is not a multiple of E4b7 , which is also a Maass lift), and similarly for m12.
In Table 1 we describe the even-weight Maass lifts used as generators. For each Maass lift 

of weight k we give its input form (in the convention of Bruinier-Bundschuh; this is a modular 
form of weight k − 1 and level Γ0(7) for the quadratic character) and its first pullbacks to the 
Heegner divisors of discriminant 1 and 2. (The pullbacks of odd order to H1 are always zero 
and therefore omitted.)

The input functions into the Maass lift in odd weight are given in Table 2 as twisted sums 
as in [13]. Here, � may be any odd Dirichlet character mod 7; the input form is then a modular 
form of level Γ0(49) and character 𝜒 ⊗ 𝜒7 where �7 is the quadratic character. The Borcherds 
product b7 happens to lie in the Maass Spezialschar and is listed in Table 2.

The Borcherds products below (Table 3) can be shown to exist by a Serre duality argument 
as in [8].

Lemma 6  Let F be a symmetric Hermitian modular form. There is a polynomial P such 
that

vanishes along the Heegner divisor H2.

Proof  This amounts to verifying that the pullbacks of E4, E6,m8,m
(1)

10
,m11,m12 generate the 

ring of symmetric paramodular forms of level 2, and is clear in view of Ibukiyama–Onode-
ra’s structure result and Tables 1 and 2 below. 	�  ◻

Theorem 1  The graded ring of symmetric Hermitian modular forms for OK is generated by 
Maass lifts

in weight 4, 6, 7, 8, 9, 10, 10, 11, 12. The ideal of relations is generated by

div b7 = 3H1 +H2.

F − P(E4, E6,m8,m
(1)

10
,m11,m12)

E4, E6, b7,m8,m9,m
(1)

10
,m

(2)

10
,m11,m12
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Proof  We use induction on the weight. As usual any modular form of negative or zero 
weight is constant.

Using the previous lemma we may assume that F has a zero along H2 . Since H2 has a 
double intersection with H1 along its diagonal H1 it follows that the pullbacks of F to H1 of 
all orders have (at least) a double zero along the diagonal; in particular, they are multiples 
of the Igusa discriminant �10 (Table 3).

Since the pullbacks of E4, E6,m
(2)

10
,m12 to H1 generate the graded ring of even-weight 

Siegel modular forms, and m(2)

10
 vanishes along H2 but pulls back to the Igusa form �10 on 

H1 , it follows that we can subtract some expression of the form

away from F to obtain a form whose pullbacks to both H1 and H2 are zero. Similarly, we 
can subtract some expression of the form

away from F to ensure that the zero along H1 has multiplicity at least two.
Now assume that F has exactly a double zero along H1 (in particular, it must have even 

weight) and a zero along H2 . Suppose first that F has exactly a simple zero along H2 . Then 
its first pullback PH2

1
F has odd weight and at least a double zero along the diagonal in XK(2) 

and is therefore contained in the ideal generated by �8�11 and �10�11 . The products m8m
(2)

10
 

and m(1)

10
m

(2)

10
 have (up to a constant multiple) exactly these first pullbacks, so subtracting 

away some expression of the form

with polynomials P1,P2 leaves us with a modular form with at least double zeros along 
both H1 and H2 . The double zero along H2 forces the second pullback to H1 to have at least 
a fourth-order zero along the diagonal and therefore to be a multiple of �2

10
 . Since m2

9
 has 

m8m9 = b7(m
(1)

10
+ 12m

(2)

10
);

m2
9
+ 12b7m11 = E4b

2
7
+ 36m8m

(2)

10
;

m9m
(1)

10
= b7(E4m8 + 12m12);

E6b
2
7
+ 18m

(1)

10
m

(2)

10
= E4b7m9 + 6m9m11;

m
(1)

10
(m

(1)

10
+ 12m

(2)

10
) = m8(E4m8 + 12m12);

E4b7m
(1)

10
+ 6E4b7m

(2)

10
+ 72m

(2)

10
m11 = E6b7m8 + 6m9m12;

3E4m8m
(1)

10
+ 6E4b7m11 + E6b7m9 + 72m2

11
= E

2
4
b2
7
+ 3E6m

2
8
+ 18m

(1)

10
m12.

m
(2)

10
P(E4, E6,m

(2)

10
,m12)

m9P(E4, E6,m
(2)

10
,m12)

m8m
(2)

10
P1(E4, E6,m8,m

(1)

10
,m11,m12) + m

(1)

10
m

(2)

10
P2(E4, E6,m8,m

(1)

10
,m11,m12)

Table 3   Borcherds products Name Weight Divisor Graded-
symmet-
ric?

b
7

7 3H
1
+H

2
yes

b
28

28 7H
1
+H

7
no
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exactly this second pullback to H1 (up to a constant multiple) and a double zero along H2 , 
we may subtract away some expression of the form

from F to obtain a form with a third-order zero along H1 and which continues to have a 
double zero on H2.

Finally, any modular form F with a triple zero along H1 and a zero along H2 is divisible 
by b7 (by Koecher’s principle), with the quotient F

b7
 having strictly lower weight. By induc-

tion, F∕b7 and therefore F is a polynomial expression in the generators in the claim.
The relations were computed by working directly with Fourier expansions. Here the 

main difficulties are determining how many Fourier coefficients must be computed to show 
that a modular form is identically zero, and determining how many relations are needed 
to generate the full ideal. To verify the correctness of these computations in both cases it 
is enough to know the dimensions of spaces of Hermitian modular forms, and these are 
derived in Sect. 6 below. 	�  ◻

Proposition 7  There are holomorphic skew-symmetric forms h30, h31, h32, h33, h34, h35 , 
which are obtained from b28 and the Maass lifts constructed above by inverting b7 , such 
that every Hermitian modular form for OK is a polynomial in

Proof  As a skew-symmetric form, F has a forced zero on the Heegner divisor H7 . If F 
has even weight, the point will be to subtract away skew-symmetric forms from F to pro-
duce something with at least a seventh-order zero on the surface H1 , which will therefore 
be divisible by b28 . By contrast if F has odd weight then it seems to be more effective to 
reduce first against the product b7 . 

	 (i)	 Suppose F has even weight, so its order along H1 is odd and its quasi-pullback to H1 
takes the form 

 for some polynomial P. The quotients h30 ∶= b28
m9

b7
, h32 ∶= b28

m2
9

b2
7

, h34 ∶= b28
m3

9

b3
7

 
are holomorphic and skew-symmetric, with zeros along H1 of order 5, 3, 1 respec-
tively, and in all cases their quasi-pullback to H1 is a constant multiple of �35 . By 
subtracting from F expressions of the form 

 we are able to force the first, third and fifth order pullbacks of F to H1 to vanish. 
But then F is divisible by b28 with symmetric quotient, so we apply the previous 
proposition.

	 (ii)	 Suppose F has odd weight (and therefore even order along H1 ). Then we will find 
expressions to subtract away from F to force divisibility by b7 . (The reduction against 
b28 as in the even-weight case seems impossible, as there are no skew-symmetric 
modular forms of weight 29 and therefore no way to handle sixth-order zeros on H1 .) 
We will first force F to have at least a fourth-order zero along H1 . The quotients 

m2
9
P(E4, E6,m

(2)

10
,m12)

E4, E6, b7,m8,m9,m
(1)

10
,m

(2)

10
,m11,m12, b28, h30, h31, h32, h33, h34, h35.

QF = �35P(�4,�6,�10,�12)

{h30, h32, h34} ⋅ P(E4, E6,m
(2)

10
,m12),
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 are holomorphic and skew-symmetric, with zeros along H1 of orders 2 and 0, 
respectively, and their quasi-pullbacks to H1 are again constant multiples of �35 . By 
subtracting from F expressions of the form 

 we can ensure that the 0th and 2nd pullbacks of F to H1 vanish, so ordH1
(F) ≥ 4.

		    Now the pullback of F to H2 is skew-symmetric, has odd weight, and vanishes on 
the diagonal to order at least four, so it is therefore a multiple of the weight 31 form 
�8�11f12 : i.e. 

 for some polynomial P. But the form 

 is holomorphic and skew-symmetric, with a fourth-order zero on H1 , and it 
restricts to (a multiple of) �8�11f12 on H2 . Therefore, some expression of the form 

 has a zero on H2 and continues to have at least a fourth-order zero on H1 . The result 
will be divisible by b7 with the quotient having even weight and therefore being cov-
ered by case (i). 	�  ◻

5 � Hermitian modular forms for ℚ(
√

−11)

In this section we reduce the computation of the graded ring of Hermitian modular forms 
of degree two for the maximal order in ℚ(

√

−11) to the results of Igusa and Dern on para-
modular forms. The argument is very nearly the same as the previous section. We first deal 
with symmetric Hermitian modular forms (of all weights) by reduction against the distin-
guished Borcherds product b5 with divisor

The Maass lifts we take as generators are described in more detail in the tables on the next 
page.

Lemma 8  Let F be a symmetric Hermitian modular form. There is a polynomial P such 
that

vanishes along the Heegner divisor H3.

h33 ∶=
b28m

(2)

10
m9

b2
7

, h35 ∶=
b28m

(2)

10
m2

9

b3
7

{h33, h35} ⋅ P(E4, E6,m
(2)

10
,m12),

F
|

|

|H2

= �8�11f12P(E4,E6,�8,�10,�12)

h31 ∶=
b28m

(2)

10

b7

F − h31P(E4, E6,m8,m
(1)

10
,m12)

div b5 = 5H1 +H3.

F − P(E4, E6,m6,m8, b9,m
(1)

10
,m11,m12)
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Proof  We only need to check that the pullbacks of E4, E6,m6,m8, b9,m
(1)

10
,m11,m12 to H3 

generate the graded ring of paramodular forms of level 3. This is clear from Tables 4 and 
5 below after comparing the pullbacks with the generators found by Dern as described in 
Sect. 3. 	�  ◻

Theorem 2  The graded ring of symmetric Hermitian modular forms for OK is generated by 
Maass lifts

in weights 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 12.

The ideal of relations is considerably more complicated than the analogous ideal for 
K = ℚ(

√

−7) so it is left to an auxiliary file for convenience.

Proof  We use induction on the weight. Any modular form of nonpositive weight is 
constant.

Let F be any symmetric Hermitian modular form. Using the previous lemma we assume 
that F has a zero along H3 . Then the pullbacks of F to H1 of all orders have at least a dou-
ble zero along the diagonal and are therefore multiples of �10.

The pullbacks of E4, E6,m
(2)

10
,m12 to H1 generate the ring of even-weight Siegel modu-

lar forms of degree two. Moreover, the forms m(2)

10
,m9, b8,m7 vanish along H3 and their 

quasi-pullbacks to H1 are scalar multiples of �10 . By successively subtracting away from F 
expressions of the form

with appropriately chosen polynomials P, we may set the zeroth, first, second and third 
order pullbacks to H1 equal to zero while maintaining a zero on the divisor H3.

Therefore, we may assume that F has at least a fourth-order zero on H1 and a zero on 
H3 . Suppose F has exactly a fourth-order zero on H1 . (In particular, F has even weight.) 
Then the quasi-pullback QF of F to H3 is an odd-weight paramodular form of level 3 with 
at least a fourth-order zero on the diagonal, so QF is a multiple of �9 and QF∕�9 is con-
tained in the ideal ⟨�6,�8,�10⟩ of symmetric paramodular forms of even weight with a 
zero on the diagonal. Then we can write

for some even-weight symmetric paramodular forms P1,P2,P3 . Since m6b8 , m8b8 and 
m

(1)

10
b8 have fourth-order zeros on H1 and are zero on H3 with respective quasi-pullbacks 

�6�9 , �8�9 and (−1∕6E4�6 + �10∕6)�9 , we can take any symmetric forms P̃1, P̃2, P̃3 
whose pullbacks to H3 are P1,P2,P3 (some polynomials in E4, E6,m6,m8, b9,m

(1)

10
,m11,m12 

will do) and subtract away

from F to obtain an even-weight form with (at least) a fourth-order zero on H1 and (at 
least) a double zero on H3.

E4, b5, E6,m6,m7, b8,m8, b9,m9,m
(1)

10
,m

(2)

10
,m11,m12

{m
(2)

10
,m9, b8,m7} ⋅ P(E4, E6,m

(2)

10
,m12)

QF = �6�9P1 + �8�9P2 +

(

−
1

6
E4�6 +

1

6
�10

)

�9P3

b8 ⋅
(

m6P̃1 + m8P̃2 + m
(1)

10
P̃3

)
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As in the previous section, the input forms into the Maass lift in Tables  4 and 5 are 
expressed as component sums using the convention of [9] and [13]. The Borcherds prod-
ucts b5, b8, b9 (Table 6) satisfy the Maass condition so they are listed both as Maass lifts 
and Borcherds products.

Suppose still that F has order exactly four on H1 . Then the quasi-pullback of F to H1 is a 
Siegel modular form of even weight with at least an fourth-order zero on the diagonal (due 
to the double zero of F on H3 ) and is therefore a multiple of �2

10
 . Since b2

8
 has a fourth-

order zero on H1 with quasi-pullback (up to scalar multiple) �2
10

 , and it also has a double 
zero along H3 , we may subtract away some expression of the form b2

8
P(E4, E6,m

(2)

10
,m12) 

from F to obtain a modular form which vanishes to at least order 5 along H1 and which has 
at least a double zero on H3.

Now if F has order at least 5 along H1 and a zero on H3 , then the quotient F∕b5 is holo-
morphic (by Koecher’s principle) and has lower weight, so F∕b5 and therefore F is a poly-
nomial expression in the generators in the claim. 	�  ◻

Proposition 9  The graded ring of Hermitian modular forms of degree 2 for ℚ(
√

−11) is 
generated by the symmetric generators of Theorem 10 and the holomorphic quotients

and

Proof  In the even-weight case our goal is to reduce against the skew-symmetric Borcherds 
product b24 with divisor

To show that the pullbacks to H1 of odd orders 1 ≤ N ≤ 9 are surjective it is enough to 
find skew-symmetric modular forms of weights 35 − N with exactly an N th order zero on 
H1 (whose N th pullback must then be a multiple of �35 ), since we have already produced 
preimages of the even-weight Siegel modular forms. It is easy to see that the quotients 
h24+2N = b24(m7∕b5)

N are holomorphic and have order 11 − 2N on H1.
We will reduce odd-weight skew-symmetric forms F to even-weight skew-symmetric 

forms by reducing against b5 . (The reduction against b24 as in the previous paragraph fails 
as there are no skew-symmetric modular forms of weight 25.) First we force at least a fifth-
order zero on H1 using the holomorphic forms

which have a zero of order 8 − 2N on H1 and whose quasi-pullbacks must be scalar multi-
ples of �35 . Therefore by subtracting away expressions of the form

we may assume that F has at least a sixth-order zero on H5.

h24+2N =
b24m

N
7

bN
5

, 0 ≤ N ≤ 5

h24+2N+3 =
b24b8m

N
7

bN+1
5

, 0 ≤ N ≤ 4.

div b24 = 11H1 +H11.

h24+2N+3 =
b24b8m

N
7

bN+1
5

, 2 ≤ N ≤ 4,

{h31, h33, h35} ⋅ P(E4, E6,m
(2)

10
,m12)
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Now the pullback of F to H3 is an skew-symmetric modular form of odd weight with at 
least a sixth-order zero on the diagonal and is therefore contined in the ideal generated by 
�6�9f12 and �8�9f12 . Up to scalar multiple these are exactly the pullbacks of h27 =

b24b8

b5
 and 

h29 =
b24b8m7

b2
5

 to H3 . Since h27 and h29 both vanish to order at least 5 on H1 , we subtract 
away some expression

from F to obtain a form (again called F) whose divisor contains 5H1 +H3 and which is 
therefore divisible by b5 . The quotient F∕b5 is skew-symmetric of even weight so the previ-
ous case applies. 	�  ◻

6 � Dimension formulas

The task of computing ideals of relations is much easier if dimension formulas for the 
spaces of modular forms are available (for one thing, such formulas make it clear when 
enough relations have been found to generate the ideal). In principle the dimensions can 
always be calculated via a trace formula or Riemann-Roch theorem; however this is a 
rather lengthy computation which does not seem to appear explicitly in the literature. In 
this section we observe that those dimensions can be read off almost immediately from the 
method of proof in Sects. 4 and 5 above.

Recall that the Hilbert series of a finitely generated graded ℂ-algebra M =
⨁∞

k=0
Mk is

6.1 � Dimension formulas for K = ℚ(
√

−7)

We will express the Hilbert series of dimensions of Hermitian modular forms for 
ΓK = SU2,2(OK) in terms of the Hilbert series for Sp4(ℤ) and the symmetric paramodular 
group K(2)+ = ⟨K(2),V2⟩ of level 2. Recall that the latter series are

and

corresponding to the ring decompositions

and

h27P1(E4, E6,m
(2)

10
,m12) + h29P2(E4, E6,m

(2)

10
,m12)

HilbM =

∞
∑

k=0

(dimMk)t
k ∈ ℤ[|t|].

∞
∑

k=0

dimMk(Sp4(ℤ))t
k =

1 + t35

(1 − t4)(1 − t6)(1 − t10)(1 − t12)

∞
∑

k=0

dimM
sym

k
(K(2))tk =

(1 + t10)(1 + t11)

(1 − t4)(1 − t6)(1 − t8)(1 − t12)

M∗(Sp4(ℤ)) = ℂ[E4,E6,𝜓10,𝜓12]⊕𝜓35ℂ[E4,E6,𝜓10,𝜓12]
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We first consider (graded-) symmetric even weight Hermitian modular forms. Write

Although we reduce against the product b7 whose zero on the Heegner divisor H2 is sim-
ple, the proof of Theorem 7 suggests that we consider both the zeroth and first order pull-
backs there; so altogether we take the tuple of pullbacks

Then we obtain the exact sequences

and

from which we obtain the Hilbert series

and

By reducing odd-weight symmetric forms against b7 we obtain the exact sequences

and

and therefore

These equations resolve to

M
sym

2∗
(K(2)) = ℂ[E4,E6,𝜙8,𝜙12]⊕𝜙10ℂ[E4,E6,𝜙8,𝜙12],

Msym
∗

(K(2)) = M
sym

2∗
(K(2))⊕𝜙11M

sym

2∗−11
(K(2)).

Heven(t) =
∑

k even

dimM
sym

k
(ΓK)t

k, Hodd(t) =
∑

k odd

dimM
sym

k
(ΓK)t

k.

P =(P
H1

0
,P

H1

2
,P

H2

0
,P

H2

1
) ∶ M

sym

2∗
(ΓK) ⟶ M2∗

(Sp4(ℤ))⊕ S2∗+2(Sp4(ℤ))⊕M
sym

2∗
(K(2))⊕ S

sym

2∗+1
(K(2)).

0 ⟶ ker
(

P
H2

0
∶ M

sym

2∗−7
(ΓK) → M

sym

2∗−7
(K(2))

)

×b7
⟶M

sym

2∗
(ΓK)

P
⟶imP ⟶ 0

0 ⟶ 𝜓2
10
⋅

(

M2∗−20(Sp4(ℤ))⊕M2∗−18(Sp4(ℤ))
)

⟶ imP ⟶ M
sym

2∗
(K(2))⊕M

sym

2∗+1
(K(2)) ⟶ 0,

Hilb imP =
t18 + t20

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
+

(1 + t10)2

(1 − t4)(1 − t6)(1 − t8)(1 − t12)

Heven(t) = Hilb imP + t7
(

Hodd(t) −
(1 + t10)t11

(1 − t4)(1 − t6)(1 − t8)(1 − t12)

)

= t7Hodd(t) +
1 + t10 − t26 − t28 − t30 + t38

(1 − t4)(1 − t6)(1 − t8)(1 − t10)(1 − t12)
.

0 ⟶ M
sym

2∗−6
(ΓK)

×b7
⟶M

sym

2∗+1
(ΓK)

P=(P
H1
1

,P
H2
0

)

⟶ imP ⟶ 0

0 ⟶ �10 ⋅M2∗−9(Sp4(ℤ)) ⟶ imP ⟶ M
sym

2∗+1
(K(2)) ⟶ 0

Hodd(t) = t7Heven(t) +
t9

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
+

(1 + t10)t11

(1 − t4)(1 − t6)(1 − t8)(1 − t12)
.
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Now we compute dimensions of spaces of (graded) skew-symmetric modular forms. For 
even-weight forms the first, third and fifth order pullbacks to H1 yield an exact sequence

and we obtain the generating series

As for odd-weight skew-symmetric forms, we use the exact sequences

and

to obtain

reducing the computation to the previous paragraph. Altogether we find

where

The table below (Table 7) lists dimensions for the full space of Hermitian modular forms; 
the subspace of graded-symmetric Hermitian modular forms; and the subspace of Maass 
lifts.

HilbMsym
∗

(ΓK ) = Heven(t) + Hodd(t)

=
1 + t4 + t8 + t9 + t10 + t11 + t12 + t13 + t14 + t15 + t16 + t18 + t19 + t20 + t22 + t23 + t24 + t27 − t30 − t34

(1 − t6)(1 − t7)(1 − t8)(1 − t10)(1 − t12)
.

0 ⟶ M
sym

2∗−28
(ΓK)

×b28
⟶Mskew

2∗
(ΓK)

(P1,P3,P5)

⟶ S2∗+1(Sp4(ℤ))⊕ S2∗+3(Sp4(ℤ))⊕ S2∗+5(Sp4(ℤ)) ⟶ 0

∞
∑

k=0

dimMskew
2k

(ΓK)t
2k =

t30 + t32 + t34

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
+ t28

∞
∑

k=0

dimM
sym

2k
(ΓK)t

2k.

0 ⟶ Mskew
2∗−6

(ΓK)
×b7
⟶Mskew

2∗+1
(ΓK)

P=(P
H1
0

,P
H1
2

,P
H2
0

)

⟶ imP ⟶ 0

0 ⟶ 𝜙8𝜙11f12M
sym

2∗−30
(K(2)) ⟶ imP ⟶ M2∗+1(Sp4(ℤ))⊕M2∗+3(Sp4(ℤ)) ⟶ 0

∞
∑

k=0

dimMskew
2k+1

(ΓK)t
2k+1 =

t33 + t35

(1 − t4)(1 − t6)(1 − t10)(1 − t12)

+
t31(1 + t10)

(1 − t4)(1 − t6)(1 − t8)(1 − t12)

+ t7
∞
∑

k=0

dimMskew
2k

(ΓK)t
2k,

∞
∑

k=0

dimMk(ΓK)t
k =

P(t)

(1 − t4)(1 − t6)(1 − t7)(1 − t10)(1 − t12)

P(t) = 1 + t8 + t9 + t10 + t11 + t16 + t18 + t19 + t24

+ t27 + 2t32 + t33 + t34 + 2t35 − t42 + t43.
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6.2 � Dimension formulas for K = ℚ(
√

−11)

The procedure we use to compute Hilbert series of Hermitian modular forms for the field 
ℚ(

√

−11) is mostly the same as the previous subsection. Here we need the corresponding 
series for symmetric paramodular forms of level three:

(This can be derived from Corollary 5.6 of [17] or computed directly. We remark that the 
series presented in [17] do not agree with this because the definition of “symmetric” there 
is not graded-symmetric.)

Again write

Let P = (P
H1

0
,P

H1

2
,P

H1

4
,P

H3

0
,P

H3

1
) denote the tuple of pullbacks

Reducing graded-symmetric even-weight forms against b5 yields the exact sequences

from which we obtain

and

Similarly, the reduction of odd-weight symmetric forms against b5 through the tuple of 
pullbacks P = (P

H1

1
,P

H1

3
,P

H3

0
) yields the exact sequences

∞
∑

k=0

dimM
sym

k
(K(3))tk =

1 + t8 + t9 + t10 + t11 + t19

(1 − t4)(1 − t6)2(1 − t12)
.

Heven(t) =
∑

k even

dimM
sym

k
(ΓK)t

k, Hodd(t) =
∑

k odd

dimM
sym

k
(ΓK)t

k.

P ∶ M
sym

2∗
(ΓK) → M2∗(Sp4(ℤ))⊕ S2∗+2(Sp4(ℤ))⊕ S2∗+4(Sp4(ℤ))⊕M

sym

2∗
(K(3))⊕ S

sym

2∗+1
(K(3)).

0 → ker
(

P
H3

0
∶ M

sym

2∗−5
(ΓK) → M

sym

2∗−5
(K(3))

)

×b5
⟶M

sym

2∗
(ΓK)

P
⟶imP → 0,

0 → 𝜓2
10
⋅

(

⨁

k∈{0,2,4}

M2∗−20+2k(Sp4(ℤ))
)

⟶ imP ⟶ M
sym

2∗
(K(3))⊕M

sym

2∗+1
(K(3)) ⟶ 0,

Hilb imP =
t16 + t18 + t20

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
+

1 + 2t8 + 2t10 + t18

(1 − t4)(1 − t6)2(1 − t12)

Heven(t) = Hilb imP + t5
(

Hodd(t) −
t9 + t11 + t19

(1 − t4)(1 − t6)2(1 − t12)

)

= t5Hodd(t) +
1 + 2t8 + t10 − t14 − t20 − t22 − t24 − t28 + t34

(1 − t4)(1 − t6)2(1 − t10)(1 − t12)
.



282	 B. Williams 

1 3

and

so

Altogether we find

For skew-symmetric modular forms we argue as in the previous subsection and find

and

0 ⟶ M
sym

2∗−4
(ΓK)

×b5
⟶M

sym

2∗+1
(ΓK)

P
⟶imP ⟶ 0

0 ⟶ 𝜓10 ⋅

(

M2∗−9(Sp4(ℤ))⊕M2∗−7(Sp4(ℤ))
)

⟶ imP ⟶ M
sym

2∗+1
(K(3)) ⟶ 0,

Hodd(t) =
t7 + t9

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
+

t9 + t11 + t19

(1 − t4)(1 − t6)2(1 − t12)
+ t5Heven(t).

HilbMsym

∗
(ΓK) = Heven(t) + Hodd(t)

=
1 + t5 + t7 + 2t8 + 2t9 + 2t10 + t11 + t12 + t13 + t14 + t15 + t16 + t17 + t18 + t19 + t23 − t29

(1 − t4)(1 − t6)2(1 − t10)(1 − t12)
.

∞
∑

k=0

dimMskew
2k

(ΓK)t
2k =

t26 + t28 + t30 + t32 + t34

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
+ t24

∞
∑

k=0

dimM
sym

2k
(ΓK)t

2k

Table 6   Borcherds products Name Weight Divisor Graded-
symmet-
ric?

b
5

5 5H
1
+H

3
yes

b
8

8 2H
1
+H

3
+H

4
yes

b
9

9 H
1
+H

5
yes

b
24

24 11H
1
+H

11
no

Table 7   Dimensions for ℚ(
√

−7)

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
dimMk(ΓK ) 0 0 0 1 0 1 1 2 1 3 2 4 2 5 4 8 5 10 8 13
dimM

sym

k
(ΓK ) 0 0 0 1 0 1 1 2 1 3 2 4 2 5 4 8 5 10 8 13

dimMaassk(ΓK ) 0 0 0 1 0 1 1 2 1 3 2 3 2 4 3 5 3 5 4 6
k 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
dimMk(ΓK ) 10 17 14 22 17 26 23 35 28 42 37 52 44 63 57 76 66 90 84 109
dimM

sym

k
(ΓK ) 10 17 14 22 17 26 23 34 28 41 36 50 43 60 54 72 63 84 78 101

dimMaassk(ΓK ) 4 7 5 7 5 8 6 9 6 9 7 10 7 11 8 11 8 12 9 13
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Ta
bl

e 
8  

D
im

en
si
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s f
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 ℚ
(√

−
1
1
)

k
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
d
im

M
k
(Γ

K
)

0
0

0
1

1
2

1
3

3
5

4
8

6
10

10
15

14
21

19
28

d
im

M
sy
m

k
(Γ

K
)

0
0

0
1

1
2

1
3

3
5

4
8

6
10

10
15

14
21

19
28

d
im

M
a
a
s
s
k
(Γ

K
)

0
0

0
1

1
2

1
3

3
4

3
5

4
6

5
7

6
8

6
9

k
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
d
im

M
k
(Γ

K
)

27
36

35
49

45
60

60
77

76
98

94
12

0
12

0
14

7
14

7
18

1
17

7
21

6
21

9
26

0
d
im

M
sy
m

k
(Γ

K
)

27
36

35
48

45
59

59
75

74
94

91
11

4
11

4
13

8
13

8
16

8
16

5
19

8
20

0
23

6
d
im

M
a
a
s
s
k
(Γ

K
)

8
10

8
11

9
12

10
13

11
14

11
15

13
16

13
17

14
18

15
19
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and altogether

where

The table below (Table 8) lists dimensions for the full space of Hermitian modular forms; 
the subspace of graded-symmetric Hermitian modular forms; and the subspace of Maass 
lifts.
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