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Abstract
We identify the p-adic unit roots of the zeta function of a projective hypersurface over a 
finite field of characteristic p as the eigenvalues of a product of special values of a certain 
matrix of p-adic series. That matrix is a product F(�p)−1F(�) , where the entries in the 
matrix F(�) are A-hypergeometric series with integral coefficients and F(�) is independent 
of p.
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Mathematics Subject Classification  11G25 · 14D10 · 14F30 · 14G15

1  Introduction

Dwork [7] expressed the unit root of the zeta function of an ordinary elliptic curve in the 
Legendre family in characteristic  p in terms of the Gaussian hypergeometric function 
2F1(1∕2, 1∕2, 1, �) . There have since been a number of generalizations and extensions of 
that result: see [3, Sect. 1]. The point of the current paper is to prove such a result for pro-
jective hypersurfaces where the zeta function has multiple unit roots by using the matrix 
of A-hypergeometric series that appeared in [1]. We note that related results have recently 
been obtained for hypersurfaces in the torus by Beukers and Vlasenko [4, 5] using different 
methods.

Let {x�k}N
k=1

 be the set of all monomials of degree d in variables x0,… , xn (
so N =

(
d + n

n

))
 and let
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be a homogeneous polynomial of degree d over the finite field �q , q = pa , p a prime. Let 
X
𝜆
⊆ ℙn

𝔽q
 be the projective hypersurface defined by the vanishing of f

�
 and let Z(X

�
∕�q, t) 

be its zeta function. Define a rational function P
�
(t) by the equation

When X
�
 is smooth, P

�
(t) is the characteristic polynomial of Frobenius acting on middle-

dimensional primitive cohomology. In this case, P
�
(t) has degree

In the general case, we know only that P
�
(t) is a rational function.

We regard f
�
 as a polynomial with fixed exponents and variable coefficients, giving rise to 

a family of rational functions P
�
(t) . The p-adic unit (reciprocal) roots of P

�
(t) all occur in the 

numerator (Proposition 1.1) and for generic � it has the maximal possible number of p-adic 
unit (reciprocal) roots (by the generic invertibility of the Hasse-Witt matrix, see below). Our 
goal in this paper is to give a p-adic analytic formula for these unit roots in terms of A-hyper-
geometric series.

Write �k = (b0k,… , bnk) with 
∑n

i=0
bik = d . It will be convenient to define an augmenta-

tion of these vectors. For k = 1,… ,N , put

(where ℕ denotes the nonnegative integers). Let A = {�k}
N
k=1

 . Note that the vectors �k all lie 
on the hyperplane 

∑n

i=0
ui = dun+1 in ℝn+2 . Let

Note that {xu0
0
⋯ x

un
n ∣ u ∈ U} is the set of all monomials of degree d that are divisible by 

the product x0 ⋯ xn , so |U| =
(
d − 1

n

)
 . We assume throughout that d ≥ n + 1 , which 

implies U ≠ ∅ . (If d < n + 1 , then U is empty and none of the reciprocal roots of P
�
(t) is a 

p-adic unit. If one defines the determinant of an empty matrix to be 1, then Theorem 1.1 
below is trivially true in this case.)

We recall the definition of the Hasse-Witt matrix of f
�
 , a (|U| × |U|)-matrix with rows and 

columns indexed by U. Let �1,… ,�N be indeterminates and let H(�) =
[
Huv(�)

]
u,v∈U

 be the 
matrix of polynomials:

Since the last coordinate of each �k , u, and v equals 1, the condition on the summation 
implies 

∑N

k=1
�k = p − 1 . In particular, it follows that �k ≤ p − 1 for all k, so the coefficients 

of each Huv(�) lie in ℚ ∩ ℤp . Let H̄uv(𝛬) ∈ �p[𝛬] be the reduction mod p of Huv(�) and let 

(1.1)f
�
(x0,… , xn) =

N∑

k=1

�kx
�k ∈ �q[x0,… , xn]

P
�
(t) =

(
Z(X

�
∕𝔽q, t) (1 − t) (1 − qt)⋯ (1 − qn−1t)

)(−1)n
∈ 1 + tℤ [[t]].

d−1
(
(d − 1)n+1 + (−1)n+1(d − 1)

)
.

�k = (�k, 1) = (b0k, b1k,… , bnk, 1) ∈ ℕ
n+2

U =

{
u = (u0,… , un, 1) ∈ ℕ

n+2 ∣

n∑

i=0

ui = d and ui > 0 for i = 0,… , n

}
.

(1.2)
Huv(�) =

�

� ∈ ℕN

∑N

k=1
�k�k = pu − v

�
�1

1
⋯�

�N

N

�1!⋯ �N!
∈ ℚ[�1,… ,�N].
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H̄(𝛬) be the reduction mod p of H(�) . Then H̄(𝜆) is the Hasse-Witt matrix of f
�
 (relative to 

a certain basis: see Katz [8, Algorithm 2.3.7.14]).
Write P

�
(t) = Q

�
(t)∕R

�
(t) , where Q

�
(t),R

�
(t) ∈ 1 + ℤ[t] are relatively prime polyno-

mials. As a special case of [2, Theorem 1.4] we have the following result.

Proposition 1.1  For all � ∈ �N
q

 we have R
�
(t) ≡ 1 (mod q) and

Proposition 1.1 implies that all the unit roots of P
�
(t) occur in the numerator and that 

there are at most card(U) of them. The Hasse-Witt matrix is known to be generically 
invertible for a “sufficiently general” polynomial f

�
 (Koblitz [9], Miller [10, 11]). We 

recall the precise version of that fact that we need.

We suppose the �k to be ordered so that U = {�k}
M
k=1

 , M =

(
d − 1

n

)
 . We may then 

write the matrix H(�) as 
[
Hij(�)

]M
i,j=1

 , where

Consider the related matrix B(�) =
[
Bij(�)

]M
i,j=1

 of Laurent polynomials defined by

i.  e., B(�) = C(�p)−1H(�)C(�) , where C(�) is the diagonal matrix with entries 
�1,… ,�M . Since �p

a

k
= �k for �k ∈ �q , Proposition 1.1 has the following corollary.

Corollary 1.1  For all � ∈ (� ×
q
)M × �N−M

q
,

Put D (�) = detB(�) . By [1, Proposition 2.11] we have the following result.

Proposition 1.2  The Laurent polynomial D(�) has constant term 1.

Proposition  1.2 implies that neither D(�) nor D̄(𝛬) is the zero polynomial, so the 
matrix B̄(𝜆) is invertible for � in a Zariski open subset of (� ×

q
)M × �N−M

q
 , a nonempty set 

for q sufficiently large. It follows from Corollary 1.1 that for D̄(𝜆) ≠ 0 , P
�
(t) has M unit 

reciprocal roots. Let {�j(�)}Mj=1 be these roots and put

Our goal is to describe the polynomial �(�, t) in terms of the A-hypergeometric series intro-
duced in [1, Equation (3.3)].

We begin by defining a ring that contains the desired series. For each i = 1,… ,M , 
the Laurent polynomials Bij(�) have exponents lying in the set

Q
𝜆
(t) ≡ det

(
I − tH̄(𝜆p

a−1

) H̄(𝜆p
a−2

)⋯ H̄(𝜆)
)

(mod p).

(1.3)
Hij(�) =

�

� ∈ ℕN

∑N

k=1
�k�k = p�i − �j

�
�1

1
⋯�

�N

N

�1!⋯ �N!
∈ (ℚ ∩ ℤp)[�1,… ,�N].

(1.4)Bij(�) = �
−p

i
�jHij(�) ∈ (ℚ ∩ ℤp)[�1,… ,�i−1,�

−1
i
,�i+1,… ,�N],

Q
𝜆
(t) ≡ det

(
I − tB̄(𝜆p

a−1

) B̄(𝜆p
a−2

)⋯ B̄(𝜆)
)

(mod p).

�(�, t) =

M∏

j=1

(
1 − �j(�)t

)
.
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Let C ⊆ ℝN be the real cone generated by 
⋃M

i=1
Li . By [1, Proposition 2.9], the cone C  

does not contain a line, hence it has a vertex at the origin. Put E = C ∩ ℤN . Note that 
(l1,… , lN) ∈ E implies that 

∑N

k=1
lk�k = � and that 

∑N

k=1
lk = 0 since the last coordinate of 

each �k equals 1. Let ℂp be the completion of an algebraic closure of ℚp with absolute value 
| ⋅ | associated to the valuation ord , normalized by ord p = 1 and |p| = p−1 . Set

i. e., RE is the set of Laurent series over ℂp having exponents in E and bounded coefficients. 
Note that RE is a ring (since C  has a vertex at the origin) and that the entries of B(�) all lie 
in RE . By Proposition 1.2, the Laurent polynomial D(�) is an invertible element of RE , so 
B(�)−1 has entries in RE.

We define a matrix F(�) =
[
Fij(�)

]M
i,j=1

 with entries in RE . For i ≠ j , put

and for i = j put

The coefficients of these series are multinomial coefficients, hence lie in ℤ , so these series 
lie in RE . Note also that each Fii(�) has constant term 1, while the Fij(�) for i ≠ j have no 
constant term. It follows that detF(�) has constant term 1, hence detF(�) is an invertible 
element of RE . We may therefore define a matrix F(�) with entries in RE by the formula

The interpretation of the Fij(�) as A-hypergeometric series will be explained in Sect. 7 (see 
Equation (7.10)).

Put

Our main result is the following.

Li ∶=

{
l = (l1,… , lN) ∈ ℤ

N ∣

N∑

k=1

lk�k = �, li ≤ 0, and lk ≥ 0 for k ≠ i

}
.

RE =

{
�(�) =

∑

l=(l1,…,lN )∈E

cl�
l1
1
⋯�

lN
N
∣ cl ∈ ℂp and {|cl|}l∈E is bounded

}
,

Fij(𝛬) =
∑

(l1,… , lN) ∈ Li
lj > 0

(−1)−li−1
(−li − 1)!

(lj − 1)!

N∏

k = 1

k ≠ i, j

lk!

𝛬
l1
1
⋯𝛬

lN
N
,

Fii(�) =
∑

(l1,…,lN )∈Li

(−1)−li
(−li)!

N∏

k = 1

k ≠ i

lk!

�
l1
1
⋯�

lN
N
.

(1.5)F (�) = F(�p)−1F(�).

(1.6)
D ={(�1,… , �N) ∈ ℂ

N
p
∣ |�k| = 1 for k = 1,… ,M,

|�k| ≤ 1 for k = M + 1,… ,N, and |D(�)| = 1}.
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Theorem 1.1  The entries in the matrix F (�) are functions on D . Let � ∈ (� ×
q
)M × �N−M

q
 

and let 𝜆̂ ∈ ℚp(𝜁q−1)
N be its Teichmüller lifting. If D̄(𝜆) ≠ 0 , then 𝜆̂

pi ∈ D  for 
i = 0,… , a − 1 and

Remark 1  The first sentence of Theorem  1.1 will be made more precise in Sect.  2 (see 
Theorem 2.1). The assertion that 𝜆̂pi ∈ D  for all i if D̄(𝜆) ≠ 0 follows immediately from the 
fact that D̄(𝛬) has coefficients in �p.

Remark 2  The series Fij(�) are related to the Laurent polynomials Bij(�) by truncation (see 
[1, Proposition 3.8]). One can thus regard Theorem 1.1 as a refinement of Corollary 1.1, 
i. e., one may think of F(�) as a p-adic refinement of the Hasse-Witt matrix B(�).

2 � Rings of p‑adic series

This section has two purposes. We need a ring R large enough to contain all the series 
that will be encountered in the proof of Theorem 1.1 and we need to identify a subring 
R′

⊆ R whose elements define functions on D .
Consider the ℂp-vector space

of all Laurent series with bounded coefficients. We define a norm on � by setting

The ℂp-vector space � is complete in this norm and RE is a ℂp-subspace of � which is also 
complete.

We begin by defining a subring R′
E
 of the ring RE whose elements define functions on 

D  . Let LE denote the subring of RE consisting of the Laurent polynomials that lie in RE . 
Since D(�) is an invertible element of RE , we may define a subring of RE

The definitions of RE and D show that the elements of LE,D(�) are functions on D . We 
define R′

E
 to be the completion of LE,D(�) under the norm on � . Clearly R′

E
 is a subring of 

RE . The next two lemmas will show that the elements of R′
E
 define functions on D.

Lemma 2.1  For h (�) ∈ LE and k ∈ ℕ , one has

Proof  Write

𝜌(𝜆, t) = det
(
I − tF(𝜆̂p

a−1

)F(𝜆̂p
a−2

)⋯F(𝜆̂)
)
.

𝔹 ∶=

{
�(�) =

∑

l∈ℤN

cl�
l ∣ {|cl|}l∈ℤN is bounded

}

|�(�)| = sup
l∈ℤN

|cl|.

LE,D(�) ∶=

{
h(�)

D(�)k
∣ h(�) ∈ LE and k ∈ ℕ

}
.

||||
h(�)

D(�)k

||||
= |h(�)|.
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Since D (�) has constant term 1 and p-integral coefficients, it follows that d
�
= 1 and the dl 

are p-integral. Write

where ei ∈ E for i = 1,… , r . The coefficient of �l in the quotient h(�)∕D(�) k is

with the understanding that dl−ei = 0 if l − ei ∉ E . Since the dl−ei are p-integral

which implies that |h(�)∕D(�)k| ≤ |h(�)|.
We must have |h(�)| = |hi| for some i. To fix ideas, suppose that

and

Since the cone C  has a vertex at the origin, we can choose a vector v ∈ ℝN such that the 
inner product v ∙ w is ≥ 0 for all w ∈ C  and v ∙ w = 0 only if w = � . For some i ∈ {1,… , s} , 
the inner product v ∙ ei is minimal. To fix ideas, suppose that

From (2.1), the coefficient of �e1 in h(�)∕D(�)k is (using d
�
= 1)

For i = 2,… , s we have by (2.4) that v ∙ (e1 − ei) ≤ 0 . But e1 − ei ≠ � , so e1 − ei ∉ E . This 
implies de1−ei = 0 , so (2.5) simplifies to

Equations (2.2) and (2.3) now imply that

hence |h(�)∕D(�)k| ≥ |h(�)| . 	�  ◻

D(�)−k =
∑

l∈E

dl�
l.

h(�) =

r∑

i=1

hi�
ei

(2.1)
r∑

i=1

hidl−ei ,

||||

r∑

i=1

hidl−ei

||||
≤ sup

i=1,…,r

|hi|,

(2.2)|h(�)| = |hi| for i = 1,… , s

(2.3)|h(𝛬)| > |hi| for i = s + 1,… , r.

(2.4)v ∙ e1 ≤ v ∙ ei for i = 2,… , s.

(2.5)h1 +

r∑

i=2

hide1−ei .

h1 +

r∑

i=s+1

hide1−ei .

||||
h1 +

r∑

i=s+1

hide1−ei

||||
= |h(�)|,
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It follows from the definition of E that if (l1,… , lN) ∈ E , then li ≥ 0 for 
i = M + 1,… ,N . This implies that if h(�) ∈ LE and � ∈ D  , then

Lemma 2.2  Let hk(�) ∈ LE for k ≥ 1 . We suppose the sequence {hk(�)∕D(�)k}∞k=1 con-
verges to �(�) ∈ R�

E
 . Then for all � ∈ D  , the sequence {hk(�)∕D(�)k}∞k=1 converges in ℂp.

Proof  For k < k′ we have

where the second line follows from the requirement that |D(�)| = 1 for � ∈ D  , the third line 
holds by (2.6), and the fourth line holds by Lemma 2.1.

Since the sequence {hk(�)∕D(�)k}∞k=1 converges, it is a Cauchy sequence. This inequal-
ity shows that the sequence {hk(�)∕D (�)k}∞

k=1
 is also a Cauchy sequence, which must con-

verge because ℂp is complete. 	�  ◻

It is easy to see that the limit of the sequence {hk(�)∕D(�)k}∞k=1 is independent of the 
choice of sequence {hk(�)∕D(�)k}∞k=1 converging to �(�) . We may therefore define

Using this definition, the elements of R′
E
 become functions on D . Note that the proof of 

Lemma 2.2 shows that, as functions on D , the sequence {hk∕Dk}∞
k=1

 converges uniformly 
to �.

We shall need the following fact later.

Lemma 2.3  If �(�) ∈ R�
E
 and � ∈ D  , then |�(�)| ≤ |�(�)|.

Proof  It follows from Lemma 2.1, Equation (2.6), and the fact that |D(�)| = 1 for � ∈ D  
that

for h (�) ∈ LE , k ∈ ℕ , and � ∈ D  . If we choose a sequence {hk(�)∕D (�)k}∞
k=1

 , with the 
hk(�) in LE , converging to �(�) ∈ R�

E
 , then for k sufficiently large we have

(2.6)|h (�)| ≤ |h (�)|.

||||
hk(�)

Dk(�)
−

hk� (�)

Dk� (�)

||||
=
||||
hk(�)D(�)

k�−k − hk� (�)

Dk� (�)

||||
= |hk(�)D(�)k

�−k − hk� (�)|
≤ |hk(�)D(�)k

�−k − hk� (�)|

=
||||
hk(�)D(�)

k�−k − hk� (�)

Dk� (�)

||||

=
||||
hk(�)

Dk(�)
−

hk� (�)

Dk� (�)

||||
,

�(�) = lim
k→∞

hk(�)

Dk(�)
.

(2.7)
||||
h(�)

D(�)k

||||
≤
||||
h(�)

D(�)k

||||
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and for � ∈ D  we have by the definition of �(�)

The assertion of the lemma now follows from (2.7). 	�  ◻

The following result is our more precise version of Theorem 1.1.

Theorem  2.1  The entries in the matrix F(�) lie in R′
E
 . Let � ∈ (� ×

q
)M × �N−M

q
 and let 

𝜆̂ ∈ ℚp(𝜁q−1)
N be its Teichmüller lifting. If D̄(𝜆) ≠ 0 , then 𝜆̂pi ∈ D  for i = 0,… , a − 1 and

Most of this paper is devoted to proving the first sentence of Theorem  2.1. The 
remaining assertion will then follow by an application of Dwork’s p-adic cohomology 
theory.

Unfortunately the rings RE and R′
E
 are not large enough to contain all the relevant series 

we shall encounter and therefore need to be enlarged. Let R̃ = RE[𝛬
±1

1
,… ,𝛬±1

N
] and let

It is clear from the definition of D that the elements of R̃′ are functions on D . We define R 
(resp. R′ ) to be the completion of R̃ (resp. R̃′ ) under the norm on � . Note that the elements 
of R′ define functions on D . It follows from Lemma 2.3 that

Remark  One can show using the argument of Dwork [6, Lemma 1.2] that for �(�) ∈ R�

Let M ⊆ ℤn+2 be the abelian group generated by A. We define an M -grading on R and R′ . 
Every �(�) ∈ R can be written as a series �(�) =

∑
l∈ℤN cl�

l . We say that �(�) has degree 
u ∈ M  if 

∑N

k=1
lk�k = u for all l ∈ ℤN for which cl ≠ 0 . We denote by Ru the ℂp-subspace 

of R consisting of all elements of degree u. Each Ru is complete in the norm and is a mod-
ule over R

�
 , which is a ring. Identical remarks apply to the induced grading on R′.

3 � p‑adic estimates

In this section we recall some estimates from [3, Sect.  3] to be applied later. Let 
AH(t) = exp(

∑∞

i=0
tp

i

∕pi) be the Artin-Hasse series, a power series in t with p-integral 
coefficients, let �0 be a zero of the series 

∑∞

i=0
tp

i

∕pi having ord �0 = 1∕(p − 1) , and set

|�(�)| =
||||
hk(�)

D(�)k

||||

|�(�)| =
||||
hk(�)

D(�)k

||||
.

𝜌(𝜆, t) = det
(
I − tF(𝜆̂p

a−1

)F(𝜆̂p
a−2

)⋯F(𝜆̂)
)
.

R̃� = R�

E
[𝛬±1

1
,… ,𝛬±1

M
,𝛬M+1,… ,𝛬N].

(2.8)|�(�)| ≤ |�(�)| for �(�) ∈ R� and � ∈ D.

sup
�∈D

|�(�)| = |�(�)|.
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We then have

We define 𝜃̂(t) =
∏∞

j=0
𝜃(tp

j

) , which gives 𝜃(t) = 𝜃̂(t)∕𝜃̂(tp) . If we set

then

If we write 𝜃̂(t) =
∑∞

i=0
𝜃̂i(𝛾0t)

i∕i! , then by [3, Equation (3.8)] we have

We shall also need the series

Note that 𝜃̂(t) = exp(𝛾0t)𝜃̂1(t) . By [3, Equation (3.10)]

Define the series 𝜃̂1(𝛬, x) by the formula

Put ℕA = {
∑N

j=1
lj�j ∣ lj ∈ ℕ} . Expanding the product (3.7) according to powers of x we get

where

We have similar results for the reciprocal power series

�(t) = AH(�0t) =

∞∑

i=0

�it
i.

(3.1)ord �i ≥
i

p − 1
.

(3.2)�j =

j∑

i=0

�
pi

0

pi
,

(3.3)𝜃̂(t) = exp

( ∞∑

j=0

𝛾jt
pj
)

=

∞∏

j=0

exp(𝛾jt
pj ).

(3.4)ord 𝜃̂i ≥ 0.

(3.5)𝜃̂1(t) ∶=

∞∏

j=1

exp(𝛾jt
pj ) =∶

∞∑

i=0

𝜃̂1,i

i!
(𝛾0t)

i.

(3.6)ord 𝜃̂1,i ≥
i(p − 1)

p
.

(3.7)𝜃̂1(𝛬, x) =

N∏

k=1

𝜃̂1(𝛬kx
�k ).

(3.8)𝜃̂1(𝛬, x) =
∑

u=(u0,…,un+1)∈ℕA

𝜃̂1,u(𝛬)𝛾
un+1
0

xu,

(3.9)
𝜃̂1,u(𝛬) =

�

k1,… , kN ∈ ℕ∑N

j=1
kj�j = u

� N�

j=1

𝜃̂1,kj

kj!

�
𝛬

k1
1
⋯𝛬

kN
N
.



234	 A. Adolphson, S. Sperber 

1 3

If we write

then the coefficients satisfy

We also have

which we again expand in powers of x as

with

We also define

Expanding the right-hand side in powers of x, we have

where

and

so �u(�) is homogeneous of degree u. The equation 
∑N

k=1
�k�k = u has only finitely many 

solutions � ∈ ℕN , so �u(�) is a polynomial in the �k . Equations (3.1) and (3.18) show that

𝜃̂1(t)
−1 =

∞∏

j=1

exp(−𝛾jt
pj ).

(3.10)𝜃̂1(t)
−1 =

∞∑

i=0

𝜃̂
�
1,i

i!
(𝛾0t)

i,

(3.11)ord 𝜃̂�
1,i

≥
i(p − 1)

p
.

(3.12)𝜃̂1(𝛬, x)
−1 =

N∏

k=1

𝜃̂1(𝛬kx
�k )−1,

(3.13)𝜃̂1(𝛬, x)
−1 =

∑

u=(u0,…,un+1)∈ℕA

𝜃̂
�

1,u
(𝛬)𝛾

un+1
0

xu

(3.14)
𝜃̂
�

1,u
(𝛬) =

�

k1,… , kN ∈ ℕ∑N

j=1
kj�j = u

� N�

j=1

𝜃̂
�
1,kj

kj!

�
𝛬

k1
1
⋯𝛬

kN
N
.

(3.15)�(�, x) =

N∏

k=1

�(�kx
�k ).

(3.16)�(�, x) =
∑

u∈ℕA

�u(�)x
u,

(3.17)�u(�) =
∑

�∈ℕN

�
(u)
�
�

�

(3.18)�
(u)
�

=

�∏N

k=1
�
�k

if
∑N

k=1
�k�k = u,

0 if
∑N

k=1
�k�k ≠ u,
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4 � The Dwork‑Frobenius operator

We define the spaces S and S′ and Dwork’s Frobenius operator on those spaces.
Note that the abelian group M  generated by A lies in the hyperplane 

∑n

i=0
ui = dun+1 

in ℝn+2 . Set M− = M ∩ (ℤ
<0)

n+2 . We denote by �− the truncation operator on formal 
Laurent series in variables x0,… , xn+1 that preserves only those terms having all expo-
nents negative:

We use the same notation for formal Laurent series in a single variable t:

It is straightforward to check that if �1 and �2 are two series for which the product �1�2 is 
defined and if no monomial in �2 has a negative exponent, then

Define S to be the ℂp-vector space of formal series

Let S′ be defined analogously with the condition “ �u(�) ∈ Ru ” being replaced by 
“ �u(�) ∈ R�

u
 ”. Define a norm on S by setting

Both S and S′ are complete under this norm.
Let

We show that the product �(�, x)�(�p, xp) is well-defined as a formal series in x. We have 
formally

where

(3.19)ordp �
(u)
�

≥

∑N

j=1
�j

p − 1
=

un+1

p − 1
.

𝛿−

( ∑

k∈ℤn+2

ckx
k

)
=

∑

k∈(ℤ
<0)

n+2

ckx
k.

�−

( ∞∑

k=−∞

ckt
k

)
=

−1∑

k=−∞

ckt
k.

(4.1)�−

(
�−(�1)�2

)
= �−(�1�2).

S =

{
�(�, x) =

∑

u∈M−

�u(�)�
un+1
0

xu ∣ �u(�) ∈ Ru and {|�u|}u is bounded

}
.

|�(�, x)| = sup
u∈M−

{|�u|}.

�(�, x) =
∑

�∈M−

�
�
(�)�

�n+1

0
x� ∈ S.

�(�, x)�(�p, xp) =
∑

�∈M

�
�
(�)x�,
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Since �u(�) is a polynomial, the product �u(�)��(�p) is a well-defined element of R
�
 . It fol-

lows from (3.17), (3.19), and the equality u + p� = � that the coefficients of ��n+1
0

�u(�) all 
have p-ordinal at least 

(
�n+1∕(p − 1)

)
− �n+1 . Since |�

�
(�)| is bounded independently of � 

and there are only finitely many terms on the right-hand side of (4.2) with a given value of 
�n+1 , the series (4.2) converges to an element of R

�
 (because −�n+1 → ∞ as � → ∞ ). This 

estimate also shows that if �(�, x) ∈ S� , then �
�
(�) ∈ R�

�
.

Define for �(�, x) ∈ S

For � ∈ M− , put �
�
(�) = �

−�n+1

0
�
�
(�) , so that

with (by (4.2))

Proposition 4.1  The map �∗ is an endomorphism of S and of S′ , and for �(�, x) ∈ S we have

Proof  By (4.3), the proposition will follow from the estimate

Using (4.4), we see that this estimate will follow in turn from the estimate

for all u ∈ ℕA , � ∈ M− , with u + p� = � . From (3.17) and (3.19) we see that all coeffi-
cients of �−�n+1+�n+1

0
�u(�) have p-ordinal greater than or equal to

Since u + p� = � , this expression simplifies to −�n+1 , so

and −�n+1 ≥ 1 since � ∈ M− . 	�  ◻

(4.2)
�
�
(�) =

∑

u ∈ ℕA, � ∈ M−

u + p� = �

�
�n+1

0
�u(�)��(�

p).

�
∗
(
�(�, x)

)
= �−

(
�(�, x)�(�p, xp)

)

=
∑

�∈M−

�
�
(�)x�.

(4.3)�
∗
(
�(�, x)

)
=

∑

�∈M−

�
�
(�)�

�n+1

0
x�

(4.4)
�
�
(�) =

∑

u ∈ ℕA, � ∈ M−

u + p� = �

�
−�n+1+�n+1

0
�u(�)��(�

p).

(4.5)|�∗
(
�(�, x)

)
| ≤ |p�(�, x)|.

|�
�
(�)| ≤ |p�(�, x)| for all � ∈ M−.

|�−�n+1+�n+1
0

�u(�)| ≤ |p|

−�n+1 + �n+1 + un+1

p − 1
.

(4.6)|�−�n+1+�n+1
0

�u(�)| ≤ |p|−�n+1
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Note that the equality −�n+1 = 1 occurs for only M points � ∈ M− , namely, 
� = −�1,… ,−�M . The following corollary is then an immediate consequence of the proof 
of Proposition 4.1.

Corollary 4.1  If �
�
(�) = 0 for � = −�1,… ,−�M , then |�∗(�(�, x))| ≤ |p2�(�, x)|.

5 � A technical lemma

The action of �∗ is extended to SM componentwise: if

then

Let �(�, x) be as in (5.1) with

Since �(i)−�j (�) ∈ R−�j
 , the matrix

has entries in R
�
 . If �(�, x) ∈ (S�)M , then �

(
�(�, x)

)
 has entries in R′

�
 . The map 

�(�, x) ↦ �(�(�, x)) is a ℂp-linear map from SM to the ℂp-vector space of (M ×M)-matri-
ces with entries in R

�
 . Note that if Y(�) is an (M ×M)-matrix with entries in R

�
 , then

where we regard �(�, x) as a column vector for the purpose of matrix multiplication. In 
particular, if �

(
�(�, x)

)
 is an invertible matrix, then

We extend the norm on S to SM and the norm on R to MatM(R) , the (M ×M)-matrices with 
entries in R. For �(�, x) as in (5.1), we define

and for Y(�) =
(
Yij(�)

)M
i,j=1

 with Yij(�) ∈ R we define

Note that the matrix �
(
�(�, x)

)
 has an inverse with entries in R

�
 if and only if 

det�
(
�(�, x)

)
 is an invertible element of R

�
 . Likewise, if �(�, x) ∈ (S�)M , this matrix has 

an inverse with entries in R′

�
 if and only if its determinant is an invertible element of R′

�
 . 

The main result of this section is the following assertion.

(5.1)�(�, x) = (�(1)(�, x),… , �(M)(�, x)) ∈ SM ,

(5.2)�
∗
(
�(�, x)

)
=
(
�
∗
(
�
(1)(�, x)

)
,… , �∗

(
�
(M)(�, x)

))
.

(5.3)�
(i)(�, x) =

∑

�∈M−

�
(i)
�
(�)�

�n+1

0
x� .

�
(
�(�, x)

)
∶=

(
�j�

(i)
−�j

(�)
)M
i,j=1

(5.4)�
(
Y(�)�(�, x)

)
= Y(�)�

(
�(�, x)

)
,

(5.5)�

(
�
(
�(�, x)

)−1
�(�, x)

)
= I.

|�(�, x)| = max{|�(i)(�, x)|}M
i=1

|Y(�)| = max{|Yij(�)|}Mi,j=1.



238	 A. Adolphson, S. Sperber 

1 3

Lemma 5.1  Let �(�, x) ∈ SM with �
(
�(�, x)

)
 invertible, ||�

(
�(�, x)

)|| = |�(�, x)| , and 
|| det�

(
�(�, x)

)|| = |�(�, x)|M . Then �
(
�
∗(�(�, x))

)
 is invertible,

and

Remark  To prove Lemma 5.1, it suffices to show that �
(
�
∗(�(�, x))

)
 is invertible and that 

(5.7) holds: from Proposition 4.1 we get

If any of these inequalities were strict, the usual formula for the determinant of a matrix in 
terms of its entries would imply that

Similar reasoning applies to the inverse of �
(
�
∗(�(�, x))

)
 . By (5.7) we have

The usual formula for the inverse of a matrix in terms of its cofactors implies that

But if this inequality were strict it would lead to a contradiction of (5.8), so we have the 
following corollary.

Corollary 5.1  Under the hypotheses of Lemma 5.1,

The proof of Lemma 5.1 will require several steps. We first consider a matrix constructed 
from �(�, x) (Equation (3.16)):

From (3.17) and (3.18) we have explicit formulas for these matrix entries:

Furthermore, since the last coordinate of p�i − �j equals p − 1 , each �k in this summation is 
≤ p − 1 , so from their definition �

�k
= �

�k

0
∕�k! . Since 

∑N

k=1
�k = p − 1 , we have

(5.6)||�
(
�
∗(�(�, x))

)|| = ||�
∗
(
�(�, x)

)|| = |p�(�, x)|,

(5.7)|| det�
(
�
∗(�(�, x))

)|| = |p�(�, x)|M .

||�
(
�
∗(�(�, x))

)|| ≤ ||�
∗
(
�(�, x)

)|| ≤ |p�(�, x)|.

|| det�
(
𝛼
∗(𝜉(𝛬, x))

)|| < |p𝜉(𝛬, x)|M .

(5.8)|| det�
(
�
∗(�(�, x))

)−1|| = |p�(�, x)|−M .

||�
(
�
∗(�(�, x))

)−1|| ≤
1

|p�(�, x)|
.

||�
(
�
∗(�(�, x))

)−1|| =
1

|p�(�, x)|
.

�
�
(�) =

(
�p�i−�j

(�)
)M
i,j=1

.

�p�i−�j
(�) =

�

� ∈ ℕN

∑N

k=1
�k�k = p�i − �j

� N�

k=1

�
�k

�
�

� .
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Thus

where H(�) is given in Equation (1.3), and

where B(�) is given in Equation (1.4). It now follows from the discussion in Sect. 1 that 
C(�)−p�

�
(�)C(�) is an invertible element of R′

�
 . Furthermore, we have

And since |D(�)| = 1 (since D(�) has constant term 1 and integral coefficients) we get

With �(�, x) as in (5.1), we rewrite (5.2) as

where (see (4.3) and (4.4))

with

We then have

If � ≠ −�1,… ,−�M , then �n+1 ≤ −2 , so by (5.14) we may write

We write �
(
�
∗(�(�, x))

)
= �(1)(�) +�(2)(�) , where

�p�i−�j
(�) =

�

� ∈ ℕN

∑N

k=1
�k�k = p�i − �j

�
p−1

0
�

�

�1!⋯ �N!
.

(5.9)�
�
(�) = �

p−1

0
H(�),

(5.10)C(�)−p�
�
(�)C(�) = �

p−1

0
B(�),

(5.11)detC(�)−p�
�
(�)C(�) = �

(p−1)M

0
D(�).

(5.12)| detC(�)−p�
�
(�)C(�)| = |pM|.

�
∗
(
�(�, x)

)
=
(
�
(1)(�, x),… , �(M)(�, x)

)
,

(5.13)�
(i)(�, x) =

∑

�∈M−

�
(i)
�
(�)�

�n+1

0
x�

(5.14)
�
(i)
�
(�) =

∑

u ∈ ℕA, � ∈ M−

u + p� = �

�
−�n+1+�n+1

0
�u(�)�

(i)
�
(�p).

(5.15)�
(
�
∗(�(�, x))

)
=
(
�j�

(i)
−�j

(�)
)M
i,j=1

.

(5.16)

�
(i)
−�j

(�) =

M∑

k=1

�p�k−�j
(�)�(i)

−�k
(�p) +

∑

u ∈ ℕA, � ∈ M−

u + p� = −�j
�n+1 ≤ −2

�
−�n+1+�n+1

0
�u(�)�

(i)
�
(�p).
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and

It follows from (5.17), (5.18), and a short calculation that

Proof of Lemma 5.1  For notational convenience set

so that (5.19) can be rewritten as

From (5.10) we get

and from (5.11)

Applying our hypotheses gives

and

And since the equality in (5.22) would fail if the inequality in (5.21) were strict, we must 
have

The matrix �̃(�) is invertible by (5.10) and our hypotheses, and (5.22) implies

Arguing as in the derivation of Corollary 5.1 from (5.8) then gives

(5.17)�
(1)

ij
(�) = �j

M∑

k=1

�p�k−�j
(�)�(i)

−�k
(�p)

(5.18)

𝕄
(2)

ij
(�) = �j

∑

u ∈ ℕA, � ∈ M−

u + p� = −�j
�n+1 ≤ −2

�
−�n+1+�n+1

0
�u(�)�

(i)
�
(�p).

(5.19)�
(
�
∗(�(�, x))

)
= �

(
�(�p, x)

)
C(�)−p�

�
(�)C(�) +�

(2)(�).

�̃(�) = �
(
�(�p, x)

)
C(�)−p�

�
(�)C(�)

(5.20)�
(
�
∗(�(�, x))

)
= �̃(�) +�

(2)(�).

|�̃(�)| ≤ |p�(�(�p, x))| = |p�(�(�, x))|

| det �̃(�)| = |pM det�(�(�p, x))| = |pM det�(�(�, x))|.

(5.21)|�̃(�)| ≤ |p�(�, x)|

(5.22)| det �̃(�)| = |p�(�, x)|M .

(5.23)|�̃(�)| = |p�(�, x)|.

(5.24)| det �̃(�)−1| = |p�(�, x)|−M .

(5.25)|�̃(�)−1| = 1

|p�(�, x)|
.
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Rewrite (5.20) as

Estimate (4.6) implies that

so by (5.25)

It follows from (5.28) that I + �̃(�)−1�(2)(�) is invertible, so by (5.26) the invertibility of 
�̃(�) implies the invertibility of �

(
�
∗(�(�, x))

)
 . Estimate (5.28) implies that

so (5.7) follows from (5.26) and (5.22). 	�  ◻

6 � Contraction mapping

We use the Dwork-Frobenius operator to construct a contraction mapping on a subset of 
SM . Finding the fixed point of this contraction mapping will be the crucial step in proving 
the first assertion of Theorem 2.1.

Put

and put T � = T ∩ (S�)M . Note that T and T ′ are closed in the topology on SM . Elements of T 
satisfy the hypotheses of Lemma 5.1. By that result, if �(�, x) ∈ T  , then �(�∗(�(�, x))) is 
invertible, so we may define

where we regard �∗(�(�, x)) on the right-hand side as a column vector for the purpose of 
matrix multiplication. By Equation (5.5) we have

Equation (4.5) and Corollary 5.1 imply that |�(�(�, x))| ≤ 1 , so in fact

by (6.1). Equations (6.1) and (6.2) show that 𝜙(T) ⊆ T  and 𝜙(T �) ⊆ T �.

Proposition 6.1  The operator � is a contraction mapping on T. More precisely, if 
�
(1)(�, x), �(2)(�, x) ∈ T  , then

(5.26)�
(
�
∗(�(�, x))

)
= �̃(�)

(
I + �̃(�)−1�(2)(�)

)
.

(5.27)|�(2)(�)| ≤ |p2�(�, x)|,

(5.28)|�̃(�)−1�(2)(�)| ≤ |p|.

(5.29)|| det
(
I + �̃(�)−1�(2)(�)

)|| = 1,

T = {�(�, x) ∈ SM ∣ �(�(�, x)) = I and |�(�, x)| = 1}

�
(
�(�, x)

)
∶= �(�∗(�(�, x)))−1�∗

(
�(�, x)

)
,

(6.1)�
(
�(�(�, x))

)
= I.

(6.2)|�(�(�, x))| = 1

||�
(
�
(1)(�, x)

)
− �

(
�
(2)(�, x)

)|| ≤ |p| ⋅ |�(1)(�, x) − �
(2)(�, x)|.
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Proof  For notational convenience we sometimes write �(i)(�, x) = �
∗(�(i)(�, x)) for i = 1, 2 . 

Then

The difference �(1)(�, x) − �
(2)(�, x) satisfies the hypothesis of Corollary 4.1, so

By Corollary 5.1 we have

so

By Proposition 4.1 we have

and by (6.4) we have

so

The assertion of the proposition now follows from (6.3), (6.6), and (6.7). 	�  ◻

By a well-known theorem, the contraction mapping � has a unique fixed point, and 
since � is stable on T ′ that fixed point lies in T ′ . In the next section we discuss certain 
hypergeometric series and their p-adic relatives. These p-adic relatives will be used to 
describe explicitly this fixed point.

7 � A‑hypergeometric series

The entries of the matrix F(�) are A-hypergeometric in nature. The purpose of this section 
is to recall their construction and to introduce some related series that satisfy better p-adic 
estimates.

(6.3)

�
(
�
(1)(�, x)

)
− �

(
�
(2)(�, x))

= �
(
�
(1)(�, x)

)−1
�
(1)(�, x) −�

(
�
(2)(�, x)

)−1
�
(2)(�, x)

= �
(
�
(1)(�, x)

)−1
(
�
(1)(�, x) − �

(2)(�, x)

)

−�
(
�
(1)(�, x)

)−1
(
�
(
�
(1)(�, x) − �

(2)(�, x)
))

�
(
�
(2)(�, x)

)−1
�
(2)(�, x).

(6.4)||�
∗
(
�
(1)(�, x) − �

(2)(�, x)
)|| ≤ |p2| ⋅ |�(1)(�, x) − �

(2)(�, x)|.

(6.5)|�
(
�
∗(�(1)(�, x))

)−1| = |�
(
�
∗(�(2)(�, x))

)−1| = 1∕|p|,

(6.6)
||||
�
(
�
(1)(�, x)

)−1
(
�
(1)(�, x) − �

(2)(�, x)

)||||
≤ |p| ⋅ |�(1)(�, x) − �

(2)(�, x)|.

||�
∗
(
�
(2)(�, x)

)|| ≤ |p|,

||�
(
�
∗
(
�
(1)(�, x) − �

(2)(�, x)
))|| ≤ |p2| ⋅ |�(1)(�, x) − �

(2)(�, x)|,

(6.7)

||||
�
(
�
(1)(�, x)

)−1
(
�
(
�
(1)(�, x) − �

(2)(�, x)
))

�
(
�
(2)(�, x)

)−1
�
(2)(�, x)

||||
≤ |p| ⋅ |�(1)(�, x) − �

(2)(�, x)|.
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Let L ⊆ ℤN be the lattice of relations on the set A:

For each l = (l1,… , lN) ∈ L , we define a partial differential operator □l in variables {�j}
N
j=1

 
by

For � = (�0, �1,… , �n+1) ∈ ℂn+2 , the corresponding Euler (or homogeneity) operators are 
defined by

for i = 0,… , n + 1 . The A-hypergeometric system with parameter � consists of Equations 
(7.1) for l ∈ L and (7.2) for i = 0, 1,… , n + 1.

Consider the formal series

Let i ∈ {1,… ,M} . The A-hypergeometric series of interest arise as the coefficients of 
�
un+1
0

xu in the expression

For u ∈ M− , let F(i)
u
(�) be the coefficient of �un+1

0
xu in (7.3) and write

If we set

then from (7.3)

It follows from the definition of q(t) that for i = 1,… ,M

L =

{
l = (l1,… , lN) ∈ ℤ

N ∣

N∑

j=1

lj�j = �

}
.

(7.1)□l =
∏

lj>0

(
𝜕

𝜕𝛬j

)lj

−
∏

lj<0

(
𝜕

𝜕𝛬j

)−lj

.

(7.2)Zi =

N∑

j=1

aij�j

�

��j

− �i

q(t) =

∞∑

l=0

(−1)ll!t−l−1.

(7.3)
F(i)(�, x) ∶= �−

(
q(�0�ix

�i )

N∏

k = 1

k ≠ i

exp(�0�kx
�k )

)
.

(7.4)F(i)(�, x) =
∑

u∈M−

F(i)
u
(�)�

un+1
0

xu.

Li,u =

{
l = (l1,… , lN) ∈ ℤ

N ∣

N∑

k=1

lk�k = u, li ≤ 0, and lk ≥ 0 for k ≠ i

}
,

(7.5)

F(i)
u
(�) =

∑

l=(l1,…,lN )∈Li,u

(−1)−li−1(−li − 1)!

N∏

k = 1

k ≠ i

lk!

N∏

k=1

�
lk
k
.
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A straightforward calculation from (7.3) gives

for k = 1,… ,N . Equivalently, for u ∈ M− , we have by (7.6)

More generally, if l1,… , lN are nonnegative integers, it follows that

In particular, it follows from the definition of the box operators (7.1) that

The condition on the summation in (7.5) implies that F(i)
u
(�) satisfies the Euler operators 

(7.2) with parameter � = u . In summary:

Lemma 7.1  For i = 1,… ,M and u ∈ M− , the series F(i)
u
(�) is a solution of the A-hyperge-

ometric system with parameter � = u.

Lemma 7.2  For i = 1,… ,M and u ∈ M− , the series F(i)
u
(�) lies in Ru.

Proof  The homogeneity condition is clear from (7.5). We prove that F(i)
u
(�) lies in R̃.

Let u ∈ M− . By the definition of the set A, we can write −u =
∑N

k=1
lk�k with the lk in ℕ . 

Suppose that (l�
1
,… , l�

N
) ∈ Li,u . Then

Furthermore, we have lk + l�
k
≥ 0 for k ≠ i and li + l�

i
≤ 0 , so

It follows that Li,u ⊆ −(l1,… , lN) + Li , hence F(i)
u
(�) ∈ �

−l1
1

⋯�
−lN
N

RE . 	�  ◻

Remark  We note the relation between the F(i)
u
(�) and the Fij(�) defined in the Introduction: 

for i, j = 1,… ,M,

Lemma 7.3  For i = 1,… ,M and u ∈ M− , the coefficients of the series F(i)
u
(�) are integers 

divisible by (−un+1 − 1)!.

�

��i

q(�0�ix
�i ) = �0x

�i q(�0�ix
�i ) −

1

�i

.

(7.6)
�

��k

F(i)(�, x) = �−

(
�0x

�kF(i)(�, x)
)

(7.7)
�

��k

F(i)
u
(�) = F(i)

u−�k
(�).

(7.8)
N�

k=1

�
�

��k

�lk

F(i)
u
(�) = F

(i)

u−
∑N

k=1
lk�k

(�).

(7.9)□l

(
F(i)
u
(�)

)
= 0 for all l ∈ L, i = 1,… ,M, and all u ∈ M−.

N∑

k=1

(lk + l�
k
)�k = �.

(l1 + l�
1
,… , lN + l�

N
) ∈ Li.

(7.10)Fij(�) = �jF
(i)
−�j

(�) = �
(
F(�, x)

)
.
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Proof  Since the last coordinate of each �k equals 1, the condition on the summation in (7.5) 
implies that

i. e.,

Applying this formula to the coefficients of the series in (7.5) implies the lemma. 	�  ◻

Although the series F(i)
u
(�) are more natural to consider, we replace them in what fol-

lows by some related series G(i)
u
(�) that are more closely tied to the Dwork-Frobenius oper-

ator �∗.
For i = 1,… ,M , define

where the second equality follows from (4.1). If we write

then by (3.8) and (7.4) one gets from the first equality of (7.11)

Note that as a series in � , G(i)
u
(�) has exponents in Li,u.

We have an analogue of Lemma 7.3 for these series.

Lemma 7.4  For i = 1,… ,M and u ∈ M− , G(i)
u
(�)∕(−un+1 − 1)! has p-integral coefficients.

Proof  Using (3.9) we can write (7.13) in the form

The series F(i)

u(1)
(�)∕(−u

(1)

n+1
− 1)! has integral coefficients by Lemma 7.3. The condition on 

the first summation on the right-hand side of (7.14) implies that

N∑

k=1

lk = un+1,

(−li − 1) = (−un+1 − 1) +

N∑

k = 1

k ≠ i

lk.

(7.11)

G(i)(𝛬, x) = 𝛿−

(
F(i)(𝛬, x)𝜃̂1(𝛬, x)

)

= 𝛿−

(
q(𝛾0𝛬ix

�i )𝜃̂1(𝛬ix
�i )

( N∏

k = 1

k ≠ i

𝜃̂(𝛬kx
�k )

))
,

(7.12)G(i)(�, x) =
∑

u∈M−

G(i)
u
(�)�

un+1
0

xu,

(7.13)
G(i)

u
(𝛬) =

∑

u(1) ∈ M−, u
(2) ∈ ℕA

u(1) + u(2) = u

F
(i)

u(1)
(𝛬)𝜃̂1,u(2) (𝛬).

(7.14)

G(i)
u
(𝛬) =

�

u(1) ∈ M−, u
(2) ∈ ℕA

u(1) + u(2) = u

F
(i)

u(1)
(𝛬)

(−u
(1)

n+1
− 1)!

�

l1,… , lN ∈ ℕ∑N

k=1
lk�k = u(2)

� N�

k=1

𝜃̂1,lk

�
(−u

(1)

n+1
− 1)!

∏N

k=1
lk!

𝛬
l1
1
⋯𝛬

lN
N
.
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where −un+1,−u
(1)

n+1
≥ 1 since u, u(1) ∈ M− . Since the last coordinate of each �k equals 1, 

the condition on the second summation on the right-hand side of (7.14) implies that

so by (7.15)

It follows that the ratio (−u(1)
n+1

− 1)!∕
∏N

k=1
lk appearing in the second summation on the 

right-hand side of (7.14) is an integer divisible by (−un+1 − 1)! . For each N-tuple (l1,… , lN) 
appearing in the second summation on the right-hand side of (7.14) we have

by (3.6). This implies that the series on the right-hand side of (7.14) converges to a series 
in the �k with p-integral coefficients that remain p-integral when divided by (−un+1 − 1)! . 	
� ◻

We also have an analogue of Lemma 7.2.

Lemma 7.5  For i = 1,… ,M and u ∈ M− the series G(i)
u
(�) lies in Ru.

Proof  The homogeneity condition is clear. Since the second summation on the right-hand 
side of (7.14) is finite, the sum

lies in R̃ by the proof of Lemma 7.2. Furthermore, it follows from (7.16) that the expres-
sion (7.17) has norm bounded by p−u

(2)

n+1
(p−1)∕p . In the first summation on the right-hand side 

of (7.14), a given u(2) ∈ ℕA can appear at most once, i. e, u(2) → ∞ in this summation. This 
implies that the first summation on the right-hand side of (7.14) converges in the norm on 
� . 	�  ◻

We define a matrix G(�) =
[
Gij(�)

]M
i,j=1

 corresponding to F(�) by the analogue of (7.10):

Like the Fij(�) , the monomials in the Gij(�) have exponents in Li . Furthermore, the Gii(�) 
have constant term 1, while the Gij(�) for i ≠ j have no constant term. This implies that 
detG(�) is an invertible element of R, hence G(�)−1 is a matrix with entries in R. Since the 

(7.15)(−un+1 − 1) + u
(2)

n+1
= −u

(1)

n+1
− 1,

u
(2)

n+1
=

N∑

k=1

lk,

(−un+1 − 1) +

N∑

k=1

lk = −u
(1)

n+1
− 1.

(7.16)ord

N�

k=1

𝜃̂1,lk
≥

∑N

k=1
lk(p − 1)

p
=

u
(2)

n+1
(p − 1)

p

(7.17)

F
(i)

u(1)
(𝛬)

(−u
(1)

n+1
− 1)!

�

l1,… , lN ∈ ℕ∑N

k=1
lk�k = u(2)

� N�

k=1

𝜃̂1,lk

�
(−u

(1)

n+1
− 1)!

∏N

k=1
lk!

𝛬
l1
1
⋯𝛬

lN
N

(7.18)Gij(�) = �jG
(i)
−�j

(�) = �
(
G(�, x)

)
.
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series Gij(�) have integral coefficients (Lemma 7.4) and the Gii(�) have constant term 1, it 
follows that

This implies in particular that

We simplify our notation: for u, u(1) ∈ M− , u ≠ u(1) , set

Note that this is a finite sum, Cu,u(1) is p-integral, and ordCu,u(1) > 0 by  (7.16). Equation 
(7.14) then simplifies to

Furthermore, the estimate (7.16) implies that Cu,u(1) → 0 as u(1) → ∞ in the sense that for 
any 𝜅 > 0 , the estimate ordCu,u(1) > 𝜅 holds for all but finitely many u(1).

We need the analogue of (7.21) with the roles of F and G reversed. It follows from 
(7.11) and (4.1) that for i = 1,… ,M

This leads to the analogue of (7.14):

where the 𝜃̂′
1,lk

 are defined by (3.10) and Lemma  7.4 tells us that the

have p-integral coefficients. We define for u, u(1) ∈ M− , u ≠ u(1),

Since the 𝜃̂′
1,lk

 also satisfy the estimate (7.16) (see (3.11)), we get that C�

u,u(1)
 is p-integral and 

ordC�

u,u(1)
> 0 . In addition, C�

u,u(1)
→ 0 as u(1) → ∞ . Substitution into (7.23) now gives the 

desired formula:

(7.19)||G(�)|| = || detG(�)|| = 1.

(7.20)|G(�)−1| ≤ 1.

Cu,u(1) =
�

l1,… , lN ∈ ℕ∑N

k=1
lk�k = u − u(1)

� N�

k=1

𝜃̂1,lk

�
(−u

(1)

n+1
− 1)!

∏N

k=1
lk!

𝛬
l1
1
⋯𝛬

lN
N
.

(7.21)
G(i)

u
(�) = F(i)

u
(�) +

∑

u(1) ∈ M−

u(1) ≠ u

Cu,u(1)

F
(i)

u(1)
(�)

(−u
(1)

n+1
− 1)!

.

(7.22)F(i)(𝛬, x) = 𝛿−

(
G(i)(𝛬, x)𝜃̂1(𝛬, x)

−1
)
.

(7.23)

F(i)
u
(𝛬) =

�

u(1) ∈ M−, u
(2) ∈ ℕA

u(1) + u(2) = u

G
(i)

u(1)
(𝛬)

(−u
(1)

n+1
− 1)!

�

l1,… , lN ∈ ℕ∑N

k=1
lk�k = u(2)

� N�

k=1

𝜃̂
�

1,lk

�
(−u

(1)

n+1
− 1)!

∏N

k=1
lk!

𝛬
l1
1
⋯𝛬

lN
N
,

G
(i)

u(1)
(�)∕(−u

(1)

n+1
− 1)!

C�

u,u(1)
=

�

l1,… , lN ∈ ℕ∑N

k=1
lk�k = u − u(1)

� N�

k=1

𝜃̂
�

1,lk

�
(−u

(1)

n+1
− 1)!

∏N

k=1
lk!

𝛬
l1
1
⋯𝛬

lN
N
.
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For future reference, we record estimates that were used in the proof of (7.21) and (7.24).

Proposition 7.1  For u, u(1) ∈ M− , u ≠ u(1) , we have ordCu,u(1) > 0 (resp. ordC�

u,u(1)
> 0 ) 

and Cu,u(1) → 0 (resp. C�

u,u(1)
→ 0 ) as u(1) → ∞.

8 � Eigenvectors of ̨ ∗

We use the series of Sect. 7 to construct eigenvectors of �∗ . These eigenvectors will lead to 
the fixed point of the contraction mapping of Sect. 6. We begin by recalling some results 
from [3].

By [3, Lemma 6.1] the product 𝜃̂1(t)q(𝛾0t) is well-defined so we may set

where the Qi are defined by the second equality. The proof of [3, Lemma 6.1] shows that 
the Qi are p-integral. By [3, Proposition 6.10] we have

It follows from (8.2) that

for some series A(t) in nonnegative powers of t. Fix i, 1 ≤ i ≤ M , and replace t in this equa-
tion by �ix

�i:

Since �−(Q(�ix
�i )) = Q(�ix

�i ) and �−(A(�ix
�i )) = 0 , we get

These series are related to the G(i)(�, x) defined in Sect. 7.

Lemma 8.1  We have

Proof  Combining (7.11), (7.3), and (3.7) and using (4.1) we get

(7.24)
F(i)
u
(�) = G(i)

u
(�) +

∑

u(1) ∈ M−

u(1) ≠ u

C�

u,u(1)

G
(i)

u(1)
(�)

(−u
(1)

n+1
− 1)!

(8.1)Q(t) = 𝛿−

(
𝜃̂1(t)q(𝛾0t)

)
=

∞∑

i=1

Qii!𝛾
−i−1
0

t−i−1,

(8.2)�−

(
�(t)Q(tp)

)
= pQ(t).

�(t)Q(tp) = pQ(t) + A(t)

�(�ix
�i )Q(�

p

i
xp�i ) = A(�ix

�i ) + pQ(�ix
�i ).

(8.3)�−

(
�(�ix

�i )Q(�
p

i
xp�i )

)
= pQ(�ix

�i ).

G(i)(𝛬, x) = 𝛿−

(
Q(𝛬ix

�i )

N∏

j = 1

j ≠ i

𝜃̂(𝛬jx
�j )

)
.
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Using (3.3) and (3.5), this may be rewritten as

The assertion of the lemma now follows from (8.1) and (4.1). 	�  ◻

The following result is a key step in the proof of Theorem 2.1.

Theorem 8.1  For i = 1,… ,M we have

Proof  Since 𝜃(t) = 𝜃̂(t)∕𝜃̂(tp) we have

We now compute

where the first equality follows from Lemma 8.1, the second follows from (4.1) and rear-
ranging the product, the third follows from (8.3) and (8.4), and the fourth follows from 
Lemma 8.1. Note that the rearrangement of the product occuring in the second equality is 
not completely trivial. One of the series contains negative powers of the xi , the rest contain 
positive powers of the xi , so they do not all lie in a common commutative ring. One has to 
write out both sides to verify that they are equal. (See Sect. 5 of: Adolphson, A., Sperber, 

G(i)(𝛬, x) = 𝛿−

(
q(𝛾0𝛬ix

�i )

N∏

j = 1

j ≠ i

exp(𝛾0𝛬jx
�j )

N∏

j=1

𝜃̂1(𝛬jx
�j )

)
.

G(i)(𝛬, x) = 𝛿−

(
q(𝛾0𝛬ix

�i )𝜃̂1(𝛬ix
�i )

N∏

j = 1

j ≠ i

𝜃̂(𝛬jx
�j )

)
.

�
∗
(
G(i)(�, x)

)
= pG(i)(�, x).

(8.4)

N∏

j = 1

j ≠ i

𝜃(𝛬jx
�j )

N∏

j = 1

j ≠ i

𝜃̂(𝛬
p

j
xp�j ) =

N∏

j = 1

j ≠ i

𝜃̂(𝛬jx
�j).

𝛼
∗
(
G(i)(𝛬, x)

)
= 𝛿−

( N∏

j=1

𝜃(𝛬jx
�j )𝛿−

(
Q(𝛬

p

i
xp�i )

N∏

j = 1

j ≠ i

𝜃̂(𝛬
p

j
xp�j )

))

= 𝛿−

(
𝜃(𝛬ix

�i )Q(𝛬
p

i
xp�i )

N∏

j = 1

j ≠ i

𝜃(𝛬jx
�j )

N∏

j = 1

j ≠ i

𝜃̂(𝛬
p

j
xp�j )

)

= p𝛿−

(
Q(𝛬ix

�i )

N∏

j = 1

j ≠ i

𝜃̂(𝛬jx
�j )

)

= pG(i)(𝛬, x),
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S.: On the integrality of hypergeometric series whose coefficients are factorial ratios, avail-
able at arXiv:2001.03283, for more details on this calculation.) 	�  ◻

The action of �∗ was extended to SM coordinatewise, so if we set

then we get the following result.

Corollary 8.1  We have �∗
(
G(�, x)

)
= pG(�, x).

We now verify that G(�)−1G(�, x) ∈ T  . First of all,

by (7.18) and (5.5). This implies in particular that

But |G(�, x)| ≤ 1 by Lemma 7.4 and |G(�)−1| ≤ 1 by (7.20), so

also. We thus conclude that

Corollary 8.2  The product G(�)−1G(�, x) is the unique fixed point of � , hence lies in T ′.

Proof  From the definition of �∗ and Corollary 8.1 we have

This implies by (7.18) and (5.4) that

hence

	�  ◻

Corollary 8.3  The entries of G(�p)−1G(�) lie in R′

�
.

Proof  Corollary 8.2 implies that G(�)−1G(�, x) lies in (S�)M , and since �∗ is stable on (S�)M 
we also have �∗

(
G(�)−1G(�, x)

)
∈ (S�)M . The assertion of the corollary now follows from 

(8.7). 	�  ◻

Put G(�) = G(�p)−1G(�) . We note one more consequence of Theorem 8.1.

(8.5)G(�, x) =
(
G(1)(�, x),… ,G(M)(�, x)

)
∈ SM ,

�
(
G(�)−1G(�, x)

)
= I

|G(�)−1G(�, x)| ≥ 1.

|G(�)−1G(�, x)| ≤ 1

(8.6)|G(�)−1G(�, x)| = 1.

(8.7)�
∗
(
G(�)−1G(�, x)

)
= G(�p)−1�∗

(
G(�, x)

)
= G(�p)−1pG(�, x).

(8.8)�
(
�
∗
(
G(�)−1G(�, x)

))
= pG(�p)−1G(�),

�
(
G(�)−1G(�, x)

)
= G(�)−1G(�, x).
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Proposition 8.1  The reciprocal eigenvalues of G(�) are p-adic units for all � in D.

Proof  We showed earlier that G(�)−1G(�, x) ∈ T  , so G(�)−1G(�, x) satisfies the hypoth-
eses of Lemma 5.1. By (8.6) and (5.7) we have

and by (8.6) and Corollary 5.1 we have

Combining these equalities with (8.8) gives

By (2.8), we then have

which implies that detG(�) assumes unit values on D . Since G(�) assumes p-integral values 
on D , it follows that the roots of det(I − tG(�)) are p-adic units. 	�  ◻

We introduce some additional notation that will be useful later. Put

This is an element of T ′ by Corollary 8.2, so each G(i)
(�, x) lies in S′ and we may write

with G(i)

u
(�) in R′

u
 for all i, u.

9 � Relation between F(�) and G(�)

In this section we prove the first assertion of Theorem  2.1 and show that the second 
assertion of Theorem  2.1 is equivalent to the same statement with F(�) replaced by 
G(�) (see Proposition 9.2).

Put F(�, x) = (F(1)(�, x),… ,F(M)(�, x)) , where F(i)(�, x) is given by (7.3). We regard 
F(�, x) and G(�, x) (defined in (8.5)) as column vectors so they can be multiplied on 
the left by (M ×M)-matrices. The following result is a consequence of the fact that 
G(�)−1G(�, x) lies in (S�)M (Corollary 8.2).

Proposition 9.1  The vectors F(�)−1F(�, x) , G(�)−1F(�, x) , and F(�)−1G(�, x) lie in (S�)M.

Proof  We begin by showing that G(�)−1F(�, x) ∈ (S�)M . Writing Equation  (7.24) for 
i = 1,… ,M and multiplying by G(�)−1 gives the vector equation

|| det�
(
�
∗
(
G(�)−1G(�, x)

))|| = |p|

|| det�
(
�
∗
(
G(�)−1G(�, x)

))−1|| = |1∕p|.

|| det
(
G(�p)−1G(�)

)|| = || det
(
G(�)−1G(�p)

)|| = 1.

| detG(�)| ≤ 1 and | detG(�)−1| ≤ 1 for all � ∈ D,

(8.9)G(�, x) =
(
G
(1)
(�, x),… ,G(M)

(�, x)
)
= G(�)−1G(�, x).

(8.10)G
(i)
(�, x) =

∑

u∈M−

G
(i)

u
(�)�

un+1
0

xu
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We have |G(�)−1| ≤ 1 by (7.20). Lemma 7.4, Proposition 7.1, and Corollary 8.2 imply that 
the sum on the right-hand side of (9.1) converges to an element of (R�

u
)M . Since u ∈ M− 

was arbitrary, this shows that G(�)−1F(�, x) ∈ (S�)M.
Take successively u = −�j , j = 1,… ,M in (9.1) and multiply the j-th equation by �j . 

We combine the column vectors in the resulting M equations into matrices and apply (7.10) 
and (7.18). The resulting matrix equation is

where we have written H(�) for the (M ×M)-matrix whose j-th column is

The entries in the matrix H(�) all lie in R′

�
 by Corollary 8.2 and have norm < 1 by (7.20), 

Lemma 7.4, and Proposition 7.1. We can thus apply the usual geometric series formula to 
invert the right-hand side of (9.2). This proves that F(�)−1G(�) is a matrix with entries in 
R′

�
 , all entries having norm ≤ 1 . Since the left-hand side of (9.1) lies in (R�

u
)M , we can now 

multiply it by F(�)−1G(�) to conclude that

This shows that F(�)−1F(�, x) lies in (S�)M.
The remaining assertion, that F(�)−1G(�, x) lies in (S�)M , can be proved similarly by 

reversing the roles of F and G and using (7.21) in place of (7.24). Since that result is not 
needed in what follows, we omit the details. 	�  ◻

Proposition 9.2  The matrix F(�) has entries in R′

�
 . For any � ∈ (� ×

q
)M × �N−M

q
 with 

D̄(𝜆) ≠ 0 we have

where 𝜆̂ ∈ ℚp(𝜁q−1)
N denotes the Teichmüller lifting of �.

Proof  We showed in the proof of Proposition 9.1 that H(�) ∶= F(�)−1G(�) and its inverse 
H(�)−1 = G(�)−1F(�) have entries in R′

�
 . We then have

(9.1)

G(�)−1
⎡
⎢
⎢⎣

F(1)
u
(�)

⋮

F(M)
u

(�)

⎤
⎥
⎥⎦

= G(�)−1
⎡
⎢
⎢⎣

G(1)
u
(�)

⋮

G(M)
u

(�)

⎤
⎥
⎥⎦
+

�

u(1) ∈ M−

u(1) ≠ u

C�

u,u(1)

(−u
(1)

n+1
− 1)!

G(�)−1
⎡
⎢
⎢⎣

G
(1)

u(1)
(�)

⋮

G
(M)

u(1)
(�)

⎤
⎥
⎥⎦
.

(9.2)G(�)−1F(�) = I + H(�),

�

u(1) ∈ M−

u(1) ≠ −�j

C�

−�j ,u
(1)
�j

(−u
(1)

n+1
− 1)!

G(�)−1
⎡
⎢
⎢⎣

G
(1)

u(1)
(�)

⋮

G
(M)

u(1)
(�)

⎤
⎥
⎥⎦
.

(9.3)F(�)−1
⎡
⎢
⎢⎣

F(1)
u
(�)

⋮

F(M)
u

(�)

⎤
⎥
⎥⎦
∈ (R�

u
)M for all u ∈ M−.

det
(
I − tF(𝜆̂p

a−1

)F(𝜆̂p
a−2

)⋯F(𝜆̂)
)
= det

(
I − tG(𝜆̂p

a−1

)G(𝜆̂p
a−2

)⋯G(𝜆̂)
)
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which implies the first assertion of the proposition since G(�) has entries in R′

�
 by Corol-

lary 8.3. Equation (9.4) implies

The Teichmüller lifting 𝜆̂ satisfies 𝜆̂pa = 𝜆̂ and H(�) is a function on D , so the second 
assertion of the proposition follows by evaluating (9.5) at 𝛬 = 𝜆̂ . 	�  ◻

The first assertion of Proposition 9.2 implies the first assertion of Theorem 2.1. The second 
assertion of Proposition 9.2 shows that the second assertion of Theorem 2.1 is equivalent to 
the following statement.

Theorem  9.1  Let � ∈ (� ×
q
)M × �N−M

q
 and let 𝜆̂ ∈ ℚp(𝜁q−1)

N be its Teichmüller lifting. If 
D̄(𝜆) ≠ 0 , then 𝜆̂pi ∈ D  for i = 0,… , a − 1 and

10 � Proof of Theorem 9.1

We apply Dwork’s p-adic cohomology theory to prove Theorem 9.1.
We begin by recalling the formula for the rational function P

�
(t) that was proved in [3]. For 

a subset I ⊆ {0, 1,… , n} , let

Put g
�
= xn+1f� , so that

and let ĝ
𝜆
 be its Teichmüller lifting:

From (3.15) we have

We also need the series 𝜃0(𝜆̂, x) defined by

(9.4)
F(�) =F(�p)−1F(�) = H(�p)

(
G(�p)−1G(�)

)
H(�)−1

=H(�p)G(�)H(�)−1,

(9.5)H(�pa )−1F(�pa−1 )F(�pa−2 )⋯F(�)H(�) = G(�pa−1 )G(�pa−2 )⋯G(�).

𝜌(𝜆, t) = det
(
I − tG(𝜆̂p

a−1

)G(𝜆̂p
a−2

)⋯G(𝜆̂)
)
.

LI =

{ ∑

u∈ℕn+2

cu𝛾
pun+1
0

xu ∣

n∑

i=0

ui = dun+1, ui > 0 for i ∈ I, cu ∈ ℂp,

and {cu} is bounded

}
.

g
�
(x0,… , xn+1) =

N∑

k=1

�kx
�k ∈ �q[x0,… , xn+1],

ĝ
𝜆
(x0,… , xn+1) =

N∑

k=1

𝜆̂kx
�k ∈ ℚ(𝜁q−1)[x0,… , xn+1].

(10.1)𝜃(𝜆̂, x) =

N∏

j=1

𝜃(𝜆̂jx
�j ).
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Define an operator � on formal power series by

Denote by 𝛼
𝜆̂
 the composition

The map 𝛼
𝜆̂
 is stable on LI for all I and we have ( [3, Equation (7.12)])

For notational convenience, put Γ = {0, 1,… , n} . The following lemma is an immediate 
consequence of [3, Proposition  7.13(b)] (note that since we are assuming d ≥ n + 1 , we 
have � = 0 in that proposition).

Lemma 10.1  The unit reciprocal roots of P
�
(t) are obtained from the reciprocal roots of 

det(I − t𝛼
𝜆̂
∣ LΓ

0
) of q-ordinal equal to 1 by division by q.

We give an alternate description of det(I − t𝛼
𝜆̂
∣ LΓ

0
) ( [3, Sect. 7]). Set

a p-adic Banach space with norm |𝜉∗| = supu∈(ℤ
<0)

n+2{|c∗u|} . Define a map � on formal 
power series by

Consider the formal composition 𝛼∗

𝜆̂
= 𝛿−◦𝜃0(𝜆̂, x)◦𝛷

a . The following result is [3, Proposi-
tion 7.30].

Proposition 10.1  The operator 𝛼∗

𝜆̂
 is an endomorphism of B which is adjoint to 

𝛼
𝜆̂
∶ LΓ

0
→ LΓ

0
.

From Proposition 10.1, it follows by Serre [12, Proposition 15] that

so Lemma 10.1 gives the following result.

Corollary 10.1  The unit reciprocal roots of P
�
(t) are obtained from the reciprocal roots of 

det(I − t𝛼∗

𝜆̂
∣ B) of q-ordinal equal to 1 by division by q.

(10.2)𝜃0(𝜆̂, x) =

a−1∏

i=0

N∏

j=1

𝜃
(
(𝜆̂jx

�j )p
i)
=

a−1∏

i=0

𝜃(𝜆̂p
i

, xp
i

).

(10.3)�

( ∑

u∈ℕn+2

cux
u

)
=

∑

u∈ℕn+2

cpux
u.

𝛼
𝜆̂
∶= 𝜓

a◦“multiplication by 𝜃0(𝜆̂, x).ε

(10.4)P
𝜆
(qt) =

∏

I⊆{0,1,…,n}

det(I − qn+1−|I|t𝛼
𝜆̂
∣ LI

0
)(−1)

n+1+|I|
.

B =

{
𝜉
∗ =

∑

u∈(ℤ
<0)

n+2

c∗
u
𝛾
pun+1
0

xu ∣ c∗
u
→ 0 as u → −∞

}
,

�

( ∑

u∈ℤn

cux
u

)
=

∑

u∈ℤn

cux
pu.

(10.5)det(I − t𝛼
𝜆̂
∣ LΓ

0
) = det(I − t𝛼∗

𝜆̂
∣ B),
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We saw in Sect.  1 that P
�
(t) has exactly M unit roots when � ∈ (� ×

q
)M × �N−M

q
 and 

D̄(𝜆) ≠ 0 . By Proposition 8.1, the eigenvalues of the (M ×M)-matrix G(�) are units for 
all � ∈ D  . So to prove Theorem 9.1, it suffices to establish the following result.

Proposition 10.2  Let � ∈ (� ×
q
)M × �N−M

q
 and let 𝜆̂ ∈ ℚp(𝜁q−1)

N be its Teichmüller lifting. 
Assume that D̄(𝜆) ≠ 0 . Then 𝜆̂pi ∈ D  for i = 0,… , a − 1 and

is a factor of det(I − t𝛼∗

𝜆̂
∣ B).

Proof  Using the notation of (8.9), we have by (8.7)

Iterating this gives for all m ≥ 0

Evaluate G(�, x) at 𝛬 = 𝜆̂:

where by (8.10)

Since �−(p−1)un+1
0

→ 0 as u → ∞ , this expression lies in B. One checks that the specializa-
tion of the left-hand side of (10.7) with m = a at 𝛬 = 𝜆̂ is 𝛼∗

𝜆̂
(G(𝜆̂, x)

)
 , so specializing (10.7) 

with m = a and 𝛬 = 𝜆̂ gives

We have proved that G(𝜆̂, x) is a vector of M elements of B and that the action of 𝛼∗

𝜆̂
 on these 

M elements is represented by the matrix

This implies the assertion of the proposition. 	�  ◻
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det
(
I − qtG(𝜆̂p

a−1

)G(𝜆̂p
a−1

)⋯G(𝜆̂)
)

(10.6)�
∗
(
G(�, x)

)
= pG(�)G(�, x).

(10.7)(�∗)m
(
G(�, x)

)
= pmG(�pm−1 )G(�pm−2 )⋯G(�)G(�, x).

G(𝜆̂, x) =
(
G
(1)
(𝜆̂, x),⋯ ,G(M)

(𝜆̂, x)
)
,

G
(i)
(𝜆̂, x) =

∑

u∈M−

G
(i)

u
(𝜆̂)𝛾

un+1
0

xu

=
∑

u∈M−

(
𝛾
−(p−1)un+1
0

G
(i)

u
(𝜆̂)

)
𝛾
pun+1
0

xu.

(10.8)𝛼
∗

𝜆̂

(
G(𝜆̂, x)

)
= qG(𝜆̂p

a−1

)G(𝜆̂p
a−2

)⋯G(𝜆̂)G(𝜆̂, x).

qG(𝜆̂p
a−1

)G(𝜆̂p
a−2

)⋯G(𝜆̂).
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