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Abstract

We identify the p-adic unit roots of the zeta function of a projective hypersurface over a
finite field of characteristic p as the eigenvalues of a product of special values of a certain
matrix of p-adic series. That matrix is a product F(A?)~!'F(A), where the entries in the
matrix F'(A) are A-hypergeometric series with integral coefficients and F(A) is independent
of p.
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1 Introduction

Dwork [7] expressed the unit root of the zeta function of an ordinary elliptic curve in the
Legendre family in characteristic p in terms of the Gaussian hypergeometric function
,F(1/2,1/2,1, A). There have since been a number of generalizations and extensions of
that result: see [3, Sect. 1]. The point of the current paper is to prove such a result for pro-
jective hypersurfaces where the zeta function has multiple unit roots by using the matrix
of A-hypergeometric series that appeared in [1]. We note that related results have recently
been obtained for hypersurfaces in the torus by Beukers and Vlasenko [4, 5] using different
methods.

Let {xP }szl be the set of all monomials of degree d in variables x,...,x

soN = <d:n>>andlet
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N

FiGgsenx) = ) A € Flxg, ..., x,] (1.1)
k=1

be a homogeneous polynomial of degree d over the finite field F,, ¢ = p®, p a prime. Let
X, C [P’;q be the projective hypersurface defined by the vanishing of f; and let Z(X, /F,, 1)

be its zeta function. Define a rational function P,(¢) by the equation
n— —-b"
Pyt)= (ZX,/F,(1 =) (1 — gD (1 —g'0) ™ e 1 +4zZ[11].

When X is smooth, P,(t) is the characteristic polynomial of Frobenius acting on middle-
dimensional primitive cohomology. In this case, P,(f) has degree

d7'((d = 1" + (=1 d - D).

In the general case, we know only that P,(#) is a rational function.

We regard f; as a polynomial with fixed exponents and variable coefficients, giving rise to
a family of rational functions P (). The p-adic unit (reciprocal) roots of P,(¢) all occur in the
numerator (Proposition 1.1) and for generic A it has the maximal possible number of p-adic
unit (reciprocal) roots (by the generic invertibility of the Hasse-Witt matrix, see below). Our
goal in this paper is to give a p-adic analytic formula for these unit roots in terms of A-hyper-
geometric series.

Write b, = (by. ..., by;) with X7 by = d. It will be convenient to define an augmenta-
tion of these vectors. Fork = 1, ..., N, put

ak = (bk7 1) = (b()k’ blk’ ’bnk’ 1) (S Nn+2

(where N denotes the nonnegative integers). Let A = {a, }f{\'zl. Note that the vectors a, all lie

on the hyperplane Y u; = du,,, in R Let

n
U= {u = (g - 1y 1) €N | N ;= d and u; > O for i:O,...,n}.
i=0

Note that {x* .- x;" | u € U} is the set of all monomials of degree d that are divisible b
0 g y

d—-1

the product x;, - x,, so |U| = < " > We assume throughout that d > n + 1, which

ns

implies U # @. (If d < n+ 1, then U is empty and none of the reciprocal roots of P,(¢) is a
p-adic unit. If one defines the determinant of an empty matrix to be 1, then Theorem 1.1
below is trivially true in this case.)

We recall the definition of the Hasse-Witt matrix of f;, a (|U| X |U|)-matrix with rows and
columns indexed by U. Let A, ..., Ay be indeterminates and let H(A) = [HW(A)] wveU be the
matrix of polynomials:

AYI A;’\]N
H,,(A) = > LY eqQla,,.., Ayl
VII"'\/N! 12
ve NV (L.2)

N —_—
Dimt Vil = pu—v

Since the last coordinate of each a,, u, and v equals 1, the condition on the summation
implies Zszl v, = p — L. In particular, it follows that v, < p — 1for all &, so the coefficients
of each H,,(A) lie inQ N Z,. Let H, (A) e F,[A] be the reduction mod p of H,,(A) and let

uv uv
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H(A) be the reduction mod p of H(A). Then H(A) is the Hasse-Witt matrix of ", (relative to
a certain basis: see Katz [8, Algorithm 2.3.7.14]).

Write P,(t) = Q,(¢)/R,(t), where Q,(t),R,(t) € 1 + Z][] are relatively prime polyno-
mials. As a special case of [2, Theorem 1.4] we have the following result.

Proposition 1.1 Forall 2 € [Fév we have R;(t) = 1 (mod g) and
0,1 =det (I - tHW YA ) - HA)) (mod p).

Proposition 1.1 implies that all the unit roots of P,(#) occur in the numerator and that
there are at most card(U) of them. The Hasse-Witt matrix is known to be generically
invertible for a “sufficiently general” polynomial f; (Koblitz [9], Miller [10, 11]). We
recall the precise version of that fact that we need.

We suppose the a, to be ordered so that U = {ak}kle, M = (d; ! ) We may then
M

write the matrix H(A) as [Hij(A)] =1’ where
A AW
Hy(A) = > L € @NZ)IA;. . Ayl
ve N eV (1.3)
N
Zio) Vi =Dpa; — a;

Consider the related matrix B(A) = [Bl-j(A)] Z:I of Laurent polynomials defined by

Bi(A) = ATAH{A) € QNZ)IA, ... A AT Ay AL (1.4)

i. e, B(A)=CAP)'H(A)C(A), where C(A) is the diagonal matrix with entries
Ay, ..., Ay Since ii = A for 4, € F,, Proposition 1.1 has the following corollary.

Corollary 1.1 Forall A € ([FqX)M X [F(;\"M,
0,(1) = det (I — tB(¥")B(A"”) - B()) (mod p).

Put D (A) = det B(A). By [1, Proposition 2.11] we have the following result.
Proposition 1.2 The Laurent polynomial D(A) has constant term 1.

Proposition 1.2 implies that neither D(A) nor D(A) is the zero polynomial, so the
matrix B(A) is invertible for 4 in a Zariski open subset of (FX) x F¥~M a nonempty set
for g sufficiently large. It follows from Corollary 1.1 that for D(4) # 0, P ,(0) has M unit
reciprocal roots. Let {ﬂj(l) };‘i , be these roots and put

M

p(A, 1) = H (1 - 7(d).

J=1

Our goal is to describe the polynomial p(4, ¢) in terms of the A-hypergeometric series intro-
duced in [1, Equation (3.3)].

We begin by defining a ring that contains the desired series. For eachi=1,...,M,
the Laurent polynomials B;(A) have exponents lying in the set
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N
L= {z: (o) €ZV 1Y fag = 0.1, <0, andl, > 0 for k;éi}.
k=1

Let ¥ C RY be the real cone generated by U?il L;. By [1, Proposition 2.9], the cone ¢
does not contain a line, hence it has a vertex at the origin. Put £ =%n Z". Note that
(y, ..., 1ly) € E implies that sz=1 l,a, = 0 and that sz=1 [, = 0 since the last coordinate of
each a; equals 1. Let C, be the completion of an algebraic closure of Q, with absolute value
| - | associated to the valuation ord, normalized by ord p = 1and |p| = p~!. Set

Ry = {f(A) = Z clA’l' Aﬁfl’ | ¢, € Cyand {|c)|}ep is bounded},
1=(l)....y)EE

i. e., Ry is the set of Laurent series over C, having exponents in £ and bounded coefficients.
Note that R is a ring (since ¢ has a vertex at the origin) and that the entries of B(A) all lie
in Ry. By Proposition 1.2, the Laurent polynomial D(A) is an invertible element of Ry, so
B(A)~! has entries in Ry,

We define a matrix F(A) = [Fij(/\)]id;:1 with entries in Ry. For i # j, put

L (=L =) .
Fn= Y et AL AT
(s ly) €L I —1)! I!

N G -1 H k
Jj k=1
k#i,j

and fori =j put

Fa= Y =S gl

1 N

(o IyEL, H "
k=1
k#1i

The coefficients of these series are multinomial coefficients, hence lie in Z, so these series
lie in Rp. Note also that each F;(A) has constant term 1, while the F;(A) for i # j have no
constant term. It follows that det F'(A) has constant term 1, hence det F(A) is an invertible
element of R;. We may therefore define a matrix .#(A) with entries in Ry by the formula

F(A) = F(AP)YTE(A). (1.5)

The interpretation of the F};(A) as A-hypergeometric series will be explained in Sect. 7 (see
Equation (7.10)).
Put

D={(A), ..., Ay) € c:g [ |4l =1fork=1,...,M,

1.6
[A] <1 fork=M+1,...,N, and |D(A)| = 1}. (16)

Our main result is the following.
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Theorem 1.1 The entries in the matrix # (A) are functions on 9. Let A € ([F;)M X [F;V -M
and let 1€ @p(qul)N be its Teichmiiller lifting. If D(A) #0, then W' € 9 for
i=0,...,a—1land

p(A, 1) = det (I — tZA" T - F(D)).

Remark 1 The first sentence of Theorem 1.1 will be made more precise in Sect. 2 (see
Theorem 2.1). The assertion that e P foralliif D(2) # 0 follows immediately from the
fact that D(A) has coefficients in F,.

Remark 2 The series F;(A) are related to the Laurent polynomials B;(A) by truncation (see
[1, Proposition 3.8]). One can thus regard Theorem 1.1 as a refinement of Corollary 1.1,
i. e., one may think of #(A) as a p-adic refinement of the Hasse-Witt matrix B(A).

2 Rings of p-adic series

This section has two purposes. We need a ring R large enough to contain all the series
that will be encountered in the proof of Theorem 1.1 and we need to identify a subring
R’ C R whose elements define functions on 2.

Consider the C -vector space

B:= {f(A) = Z aA | {lelhiezy is bounded}

lezN

of all Laurent series with bounded coefficients. We define a norm on B by setting

[E(A)] = sup [¢].
lezN

The C,-vector space B is complete in this norm and Ry is a C,-subspace of B which is also
complete.

We begin by defining a subring R}, of the ring R, whose elements define functions on
2. Let Ly denote the subring of Ry, consisting of the Laurent polynomials that lie in R.
Since D(A) is an invertible element of R, we may define a subring of R

h(A
Lgpy *= {ﬁ | W(A) € Ly and k € N}.

The definitions of Ry and & show that the elements of Ly, 4 are functions on Z. We
define R} to be the completion of Ly 4, under the norm on B. Clearly R, is a subring of
Rp. The next two lemmas will show that the elements of R). define functions on .

Lemma 2.1 For h(A) € L and k € N, one has

‘ h(A)
D(AY

= |h(A)I.

Proof Write
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DAY * = Z dA.

leE

Since D (A) has constant term 1 and p-integral coefficients, it follows that d, = 1 and the d,
are p-integral. Write

.
h(A) = Z h,A®
i=1
where e; € E fori =1, ..., r. The coefficient of Alin the quotient 2(A)/D(A)* is
2 i, @
i=1

with the understanding thatd;_, = 0if [ —e; & E. Since the d;_, are p-integral
Z hidl—ei
i=1

which implies that |2(A)/D(A)| < |h(A)).
We must have |#(A)| = |h;| for some i. To fix ideas, suppose that

< sup Ihl,
i=1,...,r

|h(A)| = |h;| fori=1,....s (2.2)
and
[A(A)| > |h;| fori=s+1,...,r. 2.3)

Since the cone ¥ has a vertex at the origin, we can choose a vector v € R" such that the
inner productvewis > 0 forallw € € and vew = O only if w = 0. For some i € {1, ...,s},
the inner product v  ¢; is minimal. To fix ideas, suppose that

vee <vee; fori=2,...,s. 24)

From (2.1), the coefficient of A¢ in h(A)/D(A)* is (using d,, = 1)
r
hy + Z;, hd, . 2.5)
i

Fori=2,...,s we have by (2.4) thatve(e; —¢;) <0.Bute, —e; #0,s0¢, —¢; & E. This
implies de]_ =0, so (2.5) simplifies to

ho+ ) hd, .

i

i=s+1
Equations (2.2) and (2.3) now imply that
h+ Y hd, | =Ih(A)],
i=s+1
hence [1(A)/D(A)| 2 [(A)]. |
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It follows from the definition of E that if (/;,...,Iy) €E, then [;>0 for
i=M+1,...,N. This implies that if #(A) € Ly and A € &, then

|h(A)] < |h(A)]. (2.6)

Lemma 2.2 Let h(A) € Lg for k > 1. We suppose the sequence {hk(A)/D(A)k}]‘f=1 con-
verges to £(A) € R;. Then for all A € 9, the sequence {hk()»)/D(A)k}]‘:i1 converges in C,,.

Proof For k < k' we have

() )| _ hk(MDu)"’—k—hk/u)‘
DK()  DF(A)| D¥ (1)
= | (DD =y (D))
< (DDA =y (4)]
I (MDA * — By, (A)
D¥(A) ‘
h(A) ()
DK(A)  D¥(A) ’

where the second line follows from the requirement that|D(4)| = 1for A € 2, the third line
holds by (2.6), and the fourth line holds by Lemma 2.1.

Since the sequence {/;(A)/D(A) }7o, converges, it is a Cauchy sequence. This inequal-
ity shows that the sequence {/,(1)/D (A)* Y, is also a Cauchy sequence, which must con-
verge because C, is complete. O

It is easy to see that the limit of the sequence {hk(/l)/D(A)"}l‘:‘;1 is independent of the

choice of sequence {hk(/l)/D(A)k}]‘:‘;l converging to £(A). We may therefore define
(D)
A) = lim ——.
€)= lim 5 n

Using this definition, the elements of R’E become functions on &. Note that the proof of
Lemma 2.2 shows that, as functions on 2, the sequence {/; /D"};‘;l converges uniformly
to .

We shall need the following fact later.

Lemma2.3 If£(A) € R, and 4 € 7, then |E(A)| < |E(A)]

Proof 1t follows from Lemma 2.1, Equation (2.6), and the fact that |D(A)| = 1for A € &
that

' h(A)
D(A)k

< ‘ h(A)
| D(A)

Q.7

for h(A) € Ly, ke N, and 1 € 2. If we choose a sequence {h,(A)/D (A)k}]fil, with the
hi(A) in Lg, converging to &(A) € Ry, then for k sufficiently large we have
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232 A. Adolphson, S. Sperber

hy (A)
D(AY

|g(M)] =

and for 4 € & we have by the definition of £(A)

by (4)

()] = D[

The assertion of the lemma now follows from (2.7). O
The following result is our more precise version of Theorem 1.1.

Theorem 2.1 The entries in the matrix F(A) lie in R’ Let A€ ([FqX)M X F¥NM and let
le Q,(¢, _DV be its Teichmiiller lifting. If D(A) # 0, then e 9 fori = ,a—land

a—2

p(A, 1) = det (I — tZA" T - Z(D)).

Most of this paper is devoted to proving the first sentence of Theorem 2.1. The
remaining assertion will then follow by an application of Dwork’s p-adic cohomology

theory.
Unfortunately the rings R and R}, are not large enough to contain all the relevant series
we shall encounter and therefore need to be enlarged. Let R = RE[A+l . A“] and let

R =R [AE, L AZ Ayyys o AL

It is clear from the definition of 2 that the elements of R’ are functions on 2. We define R
(resp. R’) to be the completion of R (resp. R’) under the norm on B. Note that the elements
of R’ define functions on 2. It follows from Lemma 2.3 that

|EA)| < |E(A)] for é(A) ER' and A € 2. (2.8)

Remark One can show using the argument of Dwork [6, Lemma 1.2] that for £(A) € R’

sup [E(D] = [£(A)].
AED

Let .# C Z"*? be the abelian group generated by A. We define an .#-grading on R and R'.
Every £(A) € R can be written as a series £(A) = Y, v ¢ ,A We say that £(A) has degree
u€ M if Zk , L, = ufor all [ € ZN for which ¢, # 0. We denote by R, the C,-subspace
of R consisting of all elements of degree u. Each R, is complete in the norm and is a mod-
ule over R, which is a ring. Identical remarks apply to the induced grading on R'.

3 p-adic estimates
In this section we recall some estimates from [3, Sect. 3] to be applied later. Let

AH(r) = exp(zl —0 g /p ) be the Artin-Hasse series, a power series in ¢ with p-integral
coefficients, let y, be a zero of the series Z, -0 ' /p having ord v, = 1/(p — 1), and set
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0(1) = AH(yor) = ) 0,1
i=0
We then have
ord 6, > —* G.1)
We define () = I, 6(t”), which gives (1) = 6(r)/0("). If we set
oy
V= Z ii’ (3.2)
i=0
then
0(5) = exp < > yjt”’) = [T expt™. (3.3)
J=0 J=0
If we write 6(r) = Z -0 l(yot) /i1, then by [3, Equation (3.8)] we have
ord §; > 0. (3.4
We shall also need the series
b,() : H exp(y”) = Z —(yot)' (3.5)
Note that 8(t) = exp(y,t)é, (1). By [3, Equation (3.10)]
N i(p—1
ordd, > 2= (3.6)
’ P
Define the series 6, (A, x) by the formula
N
0,(A.x) =[]0 A (3.7)
k=1
PutNA = {Z /; € N}. Expanding the product (3.7) according to powers of x we get
bhan= > by, 38)
u=(Uy,...,u, 1 )ENA
where
N 9 A
b= ) M= AV
=1 k] (3.9)
ki,....ky €N "7 :

ijl ka;=u

We have similar results for the reciprocal power series
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0,07 = [ exp(=r").
J=1

If we write

© p

b =Y =

i=0
then the coefficients satisfy

ip—1)
.

ord 9; >
We also have
N
b,(A,07" = [T oA,
k=1

which we again expand in powers of x as

él(A,X)_l — 2 é;!u(A)ygwlxu
u=(ttg,...,u,1)ENA
with
o (A) ﬂ ei’kf Akl AkN
Lu o kj' 1 N
kyv....ky €N “i=
N
Zj=l ka; =u
We also define

N
(A, x) = [ ] oAx™).
k=1

Expanding the right-hand side in powers of x, we have

0(Ax) = ) 0,(Ax",

ueNA
where
0,A) =) 67
veNN
and

N P
o0 — { Il 0, if Z}vﬂ va, = u,
v 0 if Y,_, via, #u,

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

so 0,(A) is homogeneous of degree u. The equation Z:’:] V4, = u has only finitely many
solutions v € NV, 50 6, (A) is a polynomial in the A,. Equations (3.1) and (3.18) show that
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Z{\il Vj u
ord, 60 > ==~ = (3.19)
Y oop-1 p-ld

4 The Dwork-Frobenius operator

We define the spaces S and S’ and Dwork’s Frobenius operator on those spaces.

Note that the abelian group .# generated by A lies in the hyperplane Zi=0 u; = du,
in R"™2. Set #_ = M N (Z_,)"**. We denote by 6_ the truncation operator on formal
Laurent series in variables x,, ..., x,,, that preserves only those terms having all expo-
nents negative:

5_( 2 ckxk> = 2 Xk,
kezn+? kE(Z<(,)”+2

We use the same notation for formal Laurent series in a single variable #:

6( i cktk> = i ot

k=—o0 k=—o0

It is straightforward to check that if &, and &, are two series for which the product &,&, is
defined and if no monomial in &, has a negative exponent, then

5_(6_(£)&) = 6_(£1&)- 4.1
Define S to be the C,-vector space of formal series
S = {§(A,x) = D &y x| E,(A) € R, and {IE, 1}, is bounded}.
ueM_

Let ' be defined analogously with the condition “£,(A) € R,” being replaced by
“£.(A) e R;”. Define a norm on S by setting

|E(A, )| = sup {[,[}.
ueM

Both § and S’ are complete under this norm.
Let

EAX) = ) &AMy €S.

VEM_

We show that the product 6(A, x)E(A?, x7) is well-defined as a formal series in x. We have
formally

O(ADEA", ) = Y £, (AW,

pEM

where
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£,(A) = > 7o 0,(A)E(AD).
ueNA,ve 4 4.2)
ut+pv=p

Since 6,(A) is a polynomial, the product 8,(A)¢, (A”) is a well-defined element of R - 1t fol-
lows from (3.17), (3.19), and the equality u + pv = p that the coefficients of y(:”*‘ 0,(A) all
have p-ordinal at least (p,,,/(p — 1)) = v, Since |&,(A)| is bounded independently of v
and there are only finitely many terms on the right-hand side of (4.2) with a given value of
V41 the series (4.2) converges to an element of R, (because —v,,,; — o0 as v — 00). This
estimate also shows that if £(A,x) € §’, then {,(A) € R; .

Define for £(A,x) € S

a* (E(A,x)) = 6_(0(A, 0)EAP, X))

PRAS

pEM_

Forp € ./, putn,(A) = y,"*' ¢ (A), so that

a(EA0) = D (g 4.3)
pEM_
with (by (4.2))
n,(A) = > 7o, (A)E(AP).
ueNA,ve #Z_ “4.4)
Uut+pv=p

Proposition 4.1 The map a* is an endomorphism of S and of S', and for £(A, x) € S we have
la* (£(A, )| < |pE(A,2)]. 4.5)
Proof By (4.3), the proposition will follow from the estimate

[7,(A)] < |p&(A,x)| forall pe ..
Using (4.4), we see that this estimate will follow in turn from the estimate

7,10, (A)] < |pl

for all u € NA, v e . _, with u+ pv = p. From (3.17) and (3.19) we see that all coeffi-

cients of 7/0_ Pt ¥ Vet 0,(A) have p-ordinal greater than or equal to

“Ppp1 T Vg Tl

p—1

Since u + pv = p, this expression simplifies to —v,,, , so
“Pur1HVar -
7" 0, ()] < [pl ™ (4.6)

and —v,, | > lsincev € .Z_. O
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Note that the equality —v,,, =1 occurs for only M points v € .#_, namely,
v = -ay,...,—a,. The following corollary is then an immediate consequence of the proof
of Proposition 4.1.

Corollary 4.1 If&é (A) = Oforv = —a, ..., —ay,, then|a*(E(A, x))| < [p*E(A,x)|.

5 A technical lemma

The action of a* is extended to S¥ componentwise: if

E(A,x) = (ED(A,x),...,EM(A,x) € Y, (5.1
then
o (E(A,0) = (a* (ED(A, X)), ..., a" (EM(A,x))). (5.2)
Let £(A, x) be as in (5.1) with
E0Ax) = ) E Ay X (5.3)
vEM.

Since &% (A) € R_, , the matrix

-a; —ap
M
ij=1

M(&4.0) = (4,9 ()

has entries in Ry. If &(A,x) € (§), then M(&(A,x)) has entries in R]. The map
E(A,x) » M(é(A,x))is a Cp—linear map from S™ to the Cp-vector space of (M X M)-matri-
ces with entries in R,,. Note that if Y(A) is an (M X M)-matrix with entries in R, then

M(Y(AEA, X)) = Y(ADM(&(A, X)), (54)

where we regard &(A,x) as a column vector for the purpose of matrix multiplication. In
particular, if M (5(/1, x)) is an invertible matrix, then

M(M(S(A,X))_lé(A,X)) =1 (5.5)

We extend the norm on S to S and the norm on R to Mat,,(R), the (M x M)-matrices with
entries in R. For £(A, x) as in (5.1), we define

|E(A, )| = max{|£9(A, 0|},
and for Y(A) = (Y,_.,.(A))f_‘j= , with Y;(A) € R we define
[Y(A)] = max{|Y;(A)|}}"

iyj=1"

Note that the matrix M (f(/l,x)) has an inverse with entries in R, if and only if
det M(é(/l,x)) is an invertible element of R,. Likewise, if £(A,x) € (§')¥, this matrix has
an inverse with entries in Ri) if and only if its determinant is an invertible element of Ri).
The main result of this section is the following assertion.
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Lemma 5.1 Ler &(A,x) € SM with M(&(A,x)) invertible, [M(E(A,x))| = |€(A,x)|, and
| det M(&(A,x))| = |E(A, ). Then M(a*(E(A, x))) is invertible,

[M(a*(E(A,x))| = |@* (&(A, )| = IpEA, x)], (5.6)
and
| det M(a*(E(A,x)))| = Ip&(A, 0)|M. (5.7

Remark To prove Lemma 5.1, it suffices to show that M (a*(&(A, x))) is invertible and that
(5.7) holds: from Proposition 4.1 we get

M (a*(E(A, 0))| <

a*(E(A,0)] < IpEA, ).

If any of these inequalities were strict, the usual formula for the determinant of a matrix in
terms of its entries would imply that

| det M(a*(E(A,x)))| < Ip&(A, 0)|M.
Similar reasoning applies to the inverse of M(a*(£(A,x))). By (5.7) we have
| detM(a*(&(4,)) " | = Ipe(A, x| ™. (5.8)

The usual formula for the inverse of a matrix in terms of its cofactors implies that

1
Ip&(A, 0|

But if this inequality were strict it would lead to a contradiction of (5.8), so we have the
following corollary.

IM(a*(EA,0) 7| <

Corollary 5.1 Under the hypotheses of Lemma 5.1,
_ 1
IpE(A, )|

The proof of Lemma 5.1 will require several steps. We first consider a matrix constructed
from 6(A, x) (Equation (3.16)):

IM(a*EA,0)) 7|

M
ij=1"

M, (A) = (epa’__aj(/l))
From (3.17) and (3.18) we have explicit formulas for these matrix entries:

N
- 2 (fla)e
k=1

ve NV

N —
Zk:1 Vi = pa; — a;

Furthermore, since the last coordinate of pa; — a; equals p — 1, each v, in this summation is
< p — 1, so from their definition 6, = ygk/vk!. Since sz:l v, =p — 1, we have
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p=1 4y
v A
Opa—a (A) = Z [
' ve NV A
N
Zk=1 Vi =pa; — a;
Thus
Mo(4) = 70" H(A), (5.9)
where H(A) is given in Equation (1.3), and
CAPMy(A)C(A) = v}~ B(A), (5.10)

where B(A) is given in Equation (1.4). It now follows from the discussion in Sect. 1 that
C(A)PMy(A)C(A)is an invertible element of R(’]. Furthermore, we have

det C(A)PMy(A)C(A) = 1~ "M D(A). (5.11)
And since |[D(A)| = 1 (since D(A) has constant term 1 and integral coefficients) we get
| det C(A)PMy(A)C(A)| = |p¥]. (5.12)
With £(A, x) as in (5.1), we rewrite (5.2) as
o (8(A,0) = (nV(A,x), ... .1™(A, 1)),

where (see (4.3) and (4.4))

A0 = Y (A x G.13)
pPEM_ ’
with
”Ii,i)(A) — Z J/O_ﬂ”“w"“eu(/l)f‘(j)(Ap)-
ueNA, ve . #_ (5.14)
u+pv=p

‘We then have

* i M

M (a* (€A, ) = (A0, ()7 ;- (5.15)
Ifv# —a,,...,—ay, thenv, | < -2, so by (5.14) we may write
M
N5 (A) = Y Oy o (DEG, (A7) + > 7570, (AED(AP),
k=1 ueNA,ve .
u+pv=-a
Vitl < -2

(5.16)

We write M(a*(&(A,x))) = MD(A) + M@(A), where
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M
M (A) = A; D O, (DEY, (A7) (5.17)
k=1
and
MP(A) = 4, > 7", (AED(AP).
u+pv=-a '
Vi1 < -2

It follows from (5.17), (5.18), and a short calculation that

M(a*(&(A, %)) = M(E(A”, %)) C(A)PMy(A)C(A) + MP(A). (5.19)

Proof of Lemma 5.1 For notational convenience set
M(A) = M (E(A7, %)) C(A)PMy(A)C(A)
so that (5.19) can be rewritten as
M(a* (A, x))) = M(A) + MP(A). (5.20)
From (5.10) we get
M| < IPMEA, )] = [PM(EA, )|
and from (5.11)
| det M(A)] = [p" detM(E(A”, )] = [p" det M(E(A, ).
Applying our hypotheses gives
IM(A)] < (A, ) (5.21)
and
| det M(A)| = |pE(A, 0)|M. (5.22)

And since the equality in (5.22) would fail if the inequality in (5.21) were strict, we must
have

M) = Ip&(a, ). (5.23)
The matrix NNA](A) is invertible by (5.10) and our hypotheses, and (5.22) implies
| detM(A)™"| = [p&(A, )™ (5.24)
Arguing as in the derivation of Corollary 5.1 from (5.8) then gives

1

M) = ———.
M Ipé(A, x)]

(5.25)
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Rewrite (5.20) as
M (a*(E(A,x))) = M(A) (1 + M) M (4)). (5.26)
Estimate (4.6) implies that
IMP(A)] < [p*&(A, 0], (5.27)
s0 by (5.25)
IM(4)"MP(A)] < [pl. (5.28)

It follows from (5.28) that 7 + M(A)"'MP(A) is invertible, so by (5.26) the invertibility of
M(A) implies the invertibility of M (a* (&, x))). Estimate (5.28) implies that

| det (1 +M(A) MO ()| = 1, (5.29)

so (5.7) follows from (5.26) and (5.22). O

6 Contraction mapping

We use the Dwork-Frobenius operator to construct a contraction mapping on a subset of
SM . Finding the fixed point of this contraction mapping will be the crucial step in proving
the first assertion of Theorem 2.1.

Put

T = {&(A,x) € SY | M(£(A, ) =1 and |E(A,x)| = 1)

and put 7/ = T N (S). Note that T and 7’ are closed in the topology on S¥. Elements of T
satisfy the hypotheses of Lemma 5.1. By that result, if £(A, x) € T, then M(a*(&(A, x))) is
invertible, so we may define

B(E(A, X)) 1= M(a*(E(A,0) " a" (&4, ),

where we regard a*((A, x)) on the right-hand side as a column vector for the purpose of
matrix multiplication. By Equation (5.5) we have

M($(E(A,x) =1. 6.1)
Equation (4.5) and Corollary 5.1 imply that |p(£(A, x))| < 1, so in fact
lp(A, )| =1 6.2)

by (6.1). Equations (6.1) and (6.2) show that ¢(T) C T and ¢(T") C T".

Proposition 6.1 The operator ¢ is a contraction mapping on T. More precisely, if
EV(A,X),ED(A,x) €T, then

|9(£V(A,0) - p(EP(A,0)| < Ipl - 1ED(A,x) - (A, %)].
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Proof For notational convenience we sometimes write #7(A, x) = a*(E?(A, x)) fori = 1,2.
Then

B(£V(A, %)) - (XA, 1)
= M(71V(4,0) " 1A, x) - M(1P(A4,0) " 124, x)

=M(1V(A,)" <f1“)(A,x) - n<2>(A,x)> 6.3)
—M(nA,0) " <M(n“>(/1,x) - n(z)(A,x))>M(n(2)(A, 0) " 1A, ).

The difference £ (A, x) — EP (A, x) satisfies the hypothesis of Corollary 4.1, so
o (DA, x) = EP(A, )| < IP*] - [EV(A, x) = EP (A, ). 6.4)
By Corollary 5.1 we have
IM(a" €A, x)) ' = IM(a* P (A, ) ' = 1/1pl, (6.5)

SO
‘M(n(”(A,X))_l (n“>(A,x) - n@)(A,x)) ’ <ol - 1EUD) - A (66)

By Proposition 4.1 we have
|o* (£2(A,0)] < Ipl,
and by (6.4) we have

[M(a* (£V(A,x) = EP(A,0)))] < [P*] - 1€V (A, x) = EP(A, )],

SO
‘M(W(A, )™ <M(n“>(A,x) —1?(A,0) ) M (72 (A,2) " 1P (A, x) 6
i
< pl - 1EV(A,x) = ED(A, ).
The assertion of the proposition now follows from (6.3), (6.6), and (6.7). O

By a well-known theorem, the contraction mapping ¢ has a unique fixed point, and
since ¢ is stable on T” that fixed point lies in 7’. In the next section we discuss certain
hypergeometric series and their p-adic relatives. These p-adic relatives will be used to
describe explicitly this fixed point.

7 A-hypergeometric series
The entries of the matrix F(A) are A-hypergeometric in nature. The purpose of this section

is to recall their construction and to introduce some related series that satisfy better p-adic
estimates.
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Let L C ZN be the lattice of relations on the set A:
N
L= {1: Ul €ZV 1 Y lay = 0}.
=1

Foreach! = (l,,...,ly) € L, we define a partial differential operator [], in variables {Aj};i |
by '

0 lj J =
D;=H<()—Aj> —H(()—A) : 7.1

;>0 ;<0
For g = (By, Bys .- Pus1) € C"*2, the corresponding Euler (or homogeneity) operators are
defined by
< 9
Z;= ; aiiAja_Aj —bi (72

fori=0,...,n+ 1. The A-hypergeometric system with parameter f consists of Equations
(7.1) forl € Land (7.2) fori =0,1,...,n+ 1.
Consider the formal series

q(t) = Z(—l)’nf’—l.

=0

Let i € {1,...,M}. The A-hypergeometric series of interest arise as the coefficients of
yg”*‘x” in the expression

N
FO(A,x) 1= 6_ (q(yOAixai) I exp(yOAkxak))

k=1 (7.3)
k#i
Foru € ./_, let F)(A) be the coefficient of y(l;"“x“ in (7.3) and write
FO(A,x) = Z Fl(li)(A)y(‘;nﬂxu. 7.4)
ueM_ ’
If we set
N
L, = {z =Uy,....l\) €Z" | ) la, =u,1; <0, and I, > Ofork # i},
k=1
then from (7.3)
. —D)TN (=l = D
FL’)(A)= Z (-1 N( i ) HAQ
I=(, ... y)EL;, k=1
(ot IT & (7.5)
k=1
k#1i

It follows from the definition of ¢(¢) that fori =1,... ,M
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0 ) ) 1
a_/1,-4(7’0/11'962’) = yoxq(yoAix™) — X,

A straightforward calculation from (7.3) gives

0 i i
S FOA2) = 5 (1" FO(A.) (7.6)
k

fork=1,...,N. Equivalently, foru € .#_, we have by (7.6)

9_ k) FO
0TF )= ul ak(A). a7
More generally, if [, ..., [, are nonnegative integers, it follows that
- 4 " () (i)
— ) FO(A)=F" A). .
g(aAk> u (A) = M Zkllkak( ) (7.8)

In particular, it follows from the definition of the box operators (7.1) that
O,(FPA) =0 forallleL,i=1,....M, andall u€ .Z_. (7.9)

The condition on the summation in (7.5) implies that F\)(A) satisfies the Euler operators
(7.2) with parameter f = u. In summary:

Lemma7.1 Fori=1,...,M andu € .#_, the series Ffl")(/\) is a solution of the A-hyperge-
ometric system with parameter ff = u.

Lemma?7.2 Fori=1,...,M andu € .#_, the series Fg)(A) liesin R,.
Proof The homogeneity condition is clear from (7.5). We prove that F' (’)(A) lies in R.

Letu e #_. By the definition of the set A, we can write —u = Zk | lya, with the [; in N,
Suppose that (Z, ..., ) € L;,,. Then

N
U+ 1a, =0.
k=1
Furthermore, we have [, + l;c >0fork#iand/; + lf <0,so
L+, Iy+ 1) EL,.
It follows that L; , € —(/,, ..., Ly) + L;, hence F(A) € Al_ e A;JINRE. O

Remark We note the relation between the F' <’)(A) and the F; (A) defined in the Introduction:
fori,j=1,...,M,

Fy() = AFS, (4) = M(F(A,). (7.10)

Lemma?7.3 Fori=1,...,M and u € .#_, the coefficients of the series Fff)(A) are integers
divisible by (—u, ., — 1)\
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Proof Since the last coordinate of each a, equals 1, the condition on the summation in (7.5)
implies that

N
Z lk = Upyrs
k=1

ie.,
N
(L= = (=t =D+ D L
k=1
k#i
Applying this formula to the coefficients of the series in (7.5) implies the lemma. a

Although the series Fg)(/\) are more natural to consider, we replace them in what fol-
lows by some related series Gﬁf)(A) that are more closely tied to the Dwork-Frobenius oper-
ator a*.

Fori=1,...,M, define

GO(A,x) = 6_(FO(A,x)0,(A, %))
N
=4_ <q(yoAl-xaf)91(Aixaf)< 11 9(Akxa*)>>, (7.11)

k=1
k#i

where the second equality follows from (4.1). If we write

G<i)(A,x) — Z Gf‘i)(/l)}’g"“xu,

7.12
ueM_ ( )
then by (3.8) and (7.4) one gets from the first equality of (7.11)
G(A) = > FO ()0, (A).
u € A _,u® e NA (7.13)

ul +u® =y

Note that as a series in A, G(A) has exponents in L.
We have an analogue of Lemma 7.3 for these series.

Lemma7.4 Fori=1,....Mandu € #_,GP(A)/(~u,,, — 1) has p-integral coefficients.

Proof Using (3.9) we can write (7.13) in the form

F9 (4) (-, = D!
A A ) Iy
GO(4) = — X ( [1 m) A Ay
WV e u®eNa T TN T en NV [Ty 4!

u +u® =y ZkN=1 La, = u®
(7.14)
The series F' '(4?1)(/1) / (_”;1-21 — 1)!' has integral coefficients by Lemma 7.3. The condition on

the first summation on the right-hand side of (7.14) implies that

@ Springer



246 A. Adolphson, S. Sperber

2) _ (1)
(Cttyy = Dtu o= -, = 1 (7.15)
where —u,,, |, —u(l:l > 1 since u, u) € .#_. Since the last coordinate of each a, equals 1,

the condition on the second summation on the right-hand side of (7.14) implies that

N
(2)
Uy Z lk’
k=1
so by (7.15)

(1)
(- —1)+Zlk_ Wl =1

It follows that the ratio (— u -1/ Hk I, appearing in the second summation on the
right-hand side of (7.14) is an 1nteger d1V1Slble by (—u,,, — 1)!. For each N-tuple (/;, ..., ly)
appearing in the second summation on the right-hand side of (7.14) we have

N N (2)
R L(p-1 p-1
ord H91[ > ZH (P ) U . )
Tk p p

(7.16)

by (3.6). This implies that the series on the right-hand side of (7.14) converges to a series
in the A, with p-integral coefficients that remain p-integral when divided by (—u,,,; — 1)!.
O
We also have an analogue of Lemma 7.2.

Lemma?7.5 Fori=1,...,M andu € .#_ the series GS)(A) liesin R,,.

Proof The homogeneity condition is clear. Since the second summation on the right-hand
side of (7.14) is finite, the sum

(i) N o)
Fu(l)(A) 2 Hé (_un+l - D! A[l AlN
O =1 Y N 7.17
G =DV T en VK [T 4! (7.17)

N 2
Zk:1 La, = u?

lies in R by the proof of Lemma 7.2 2Furthermore it follows from (7.16) that the expres-
sion (7.17) has norm bounded by p~ u:1®=D/P n the first summation on the right-hand side
of (7.14), a given u® € NA can appear at most once, i. e, u' — co in this summation. This
implies that the first summation on the right-hand side of (7.14) converges in the norm on
B. O

We define a matrix G(A) = [GU(A)] correspondlng to F(A) by the analogue of (7.10):
Gy(A) = AjG(_’)a/(A) = M(G(A,x)). (7.18)
Like the F;;(A), the monomials in the G;;(A) have exponents in L;. Furthermore, the G;;(A)

have constant term 1, while the G;(A) for i#]j have no constant term. This implies that
det G(A) is an invertible element of R hence G(A)~!is a matrix with entries in R. Since the
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series G,_-,-(A) have integral coefficients (Lemma 7.4) and the G;;(A) have constant term 1, it
follows that

|G(A)| = | detG(A)| = 1. (7.19)
This implies in particular that
|G < 1. (7.20)
We simplify our notation: for u, u'V’ € .#_, u # u'V, set

o (_“;1:1 -Dbl Iy
Cu’u(]) = Z HQL,k —Al "'AN.

N
Liy....ly €N k=1 [Ty !

N - 1
zk:l lkak =u- u( )

Note that this is a finite sum, C, i is p-integral, and ord C, o) > 0 by (7.16). Equation
(7.14) then simplifies to

. | F.(4)
GON=FOM+ Y Cpo—a——.
=l = (7.21)
WV e e

u #u

Furthermore, the estimate (7.16) implies that C, ., — 0 as u‘)) — oo in the sense that for
any k > 0, the estimate ord C, ., > « holds for all but finitely many 1.
We need the analogue of (7.21) with the roles of F and G reversed. It follows from

(7.11) and (4.1) that fori =1, ... ,M
FO(A,x) = 6_(G(A, 08, (A, 0)7"). (7.22)
This leads to the analogue of (7.14):
G(?U(A) A _“511)1 -Db I
()

WV € A u® eNA T I, ..., lyeN =l
W4 4™ = N — 0
wetus =u Zk=llkak_“()

FOA) =

where the éi j, are defined by (3.10) and Lemma 7.4 tells us that the

) )
Gu’m(A)/(—un+1 - 1!

have p-integral coefficients. We define for u, u'V € .#_, u # u®,

" d Ar (_“;1:1 =Dl I
Cu,u“) = 2 <H91,lk> N | All AIGI
A= IR =t !

szzl lkak =u- u(])

Since the é{ L also satisfy the estimate (7.16) (see (3.11)), we get that C;
ordC’ > 0. In addition, C’

u,u' uu
desired formula:

is p-integral and

o)

, = 0as u) - co. Substitution into (7.23) now gives the
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()
F(l)(A) — G(l)(A) + Z C, Gu(l)(A)
u u u,u (1) | (7 24)
e Tl D! '
u £y

For future reference, we record estimates that were used in the proof of (7.21) and (7.24).

Proposition 7.1 For u, uV e A, u+#u, we have ord C .y >0 (resp. ord c’ > 0)

u,u

and C, o) — 0 (resp. C”w(l) - 0)asuV - co.

8 Eigenvectors of @*

We use the series of Sect. 7 to construct eigenvectors of a*. These eigenvectors will lead to
the fixed point of the contraction mapping of Sect. 6. We begin by recalling some results
from [3].

By [3, Lemma 6.1] the product él(t)q(yot) is well-defined so we may set

o) = 5_(6,(0q(rpd) = Y, Qidlyy ', @.1)
i=1

where the Q; are defined by the second equality. The proof of [3, Lemma 6.1] shows that
the Q; are p-integral. By [3, Proposition 6.10] we have

5_(6DQ(")) = pQ(1). (8.2)
It follows from (8.2) that

0()Q(") = pO(1) + A1)

for some series A(f) in nonnegative powers of 7. Fix i, 1 <i < M, and replace ¢ in this equa-
tion by Ax*:

O(AXM)QATX™) = A(Ax™) + pO(AX™).
Since 5_(Q(A ™)) = Q(A.x*) and 6_(A(Ax)) = 0, we get
o_ <9(A,«xa")Q(Afxpa")> = pO(Ax™). (8.3)
These series are related to the G (A, x) defined in Sect. 7.

Lemma 8.1 We have
N
GO(A,x)=6_ <Q(Aixaf) H é(A_,-xaf)>.
j=1
J#i
Proof Combining (7.11), (7.3), and (3.7) and using (4.1) we get
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N N
GO(A,x) = 6_ (q(yOAx ) I1 exp(yoAxf)Hﬂl(Axf)>
j=1 =
JF

Using (3.3) and (3.5), this may be rewritten as

N
GY(A,x)=6_ (q(yOAl-xaf)él(Aix“f) H é(ija/)>.
Jj=1
J#FI

The assertion of the lemma now follows from (8.1) and (4.1). O

The following result is a key step in the proof of Theorem 2.1.
Theorem 8.1 Fori=1,...,M we have
a*(GV(A,x)) = pGV(A, x).
Proof Since 6(r) = 6(r)/0(1") we have

N N N
I1 e 1 (AT = I ocan®).

Jj=1 J=1 j=1
JF J#I J#I

(8.4)

We now compute

(G()(A x) =6_ <H0(Axr)6 <Q(Apr’a) H H(A[’xpa/)>>

j=1
J#Fi

N N
=6_ (9(A,.xaf)Q(Afoaf) I e ] é(A;’xPaf)>

j#i j#i
N
=p5_<Q(Aixa') I1 é(ij“o)
j=1
j#i

= pGP(A,x),

where the first equality follows from Lemma 8.1, the second follows from (4.1) and rear-
ranging the product, the third follows from (8.3) and (8.4), and the fourth follows from
Lemma 8.1. Note that the rearrangement of the product occuring in the second equality is
not completely trivial. One of the series contains negative powers of the x;, the rest contain
positive powers of the x;, so they do not all lie in a common commutative ring. One has to
write out both sides to verify that they are equal. (See Sect. 5 of: Adolphson, A., Sperber,
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S.: On the integrality of hypergeometric series whose coefficients are factorial ratios, avail-
able at arXiv:2001.03283, for more details on this calculation.) O

The action of a* was extended to S¥ coordinatewise, so if we set
G(A,x) = (GV(A,x),...,GM(A,x)) € S¥, (8.5)
then we get the following result.
Corollary 8.1 We have a*(G(A,x)) = pG(A, x).
We now verify that G(A)~'G(A,x) € T. First of all,
M(G(A)'G(A,x) =1
by (7.18) and (5.5). This implies in particular that
|G(A)'G(A,x)| > 1.
But|G(A, x)| < 1by Lemma 7.4 and |G(A)™!| < 1by (7.20), so
IG(A)'G(A, 0| £ 1
also. We thus conclude that

|G(A)™'G(A, )| = 1. (8.6)

Corollary 8.2 The product G(A)™'G(A, x) is the unique fixed point of ¢, hence lies in T'.
Proof From the definition of @™ and Corollary 8.1 we have
a* (G(A)'G(A, ) = GA") ' a*(G(A,x)) = G(A”) ' pG(A, x). 8.7)
This implies by (7.18) and (5.4) that
M(a*(G(A)'G(A,x))) = pG(A")™' G(A), (8.8)
hence

B(G(A)G(A,x) = G(A)'G(A, ).

Corollary 8.3 The entries of G(AP)"'G(A) lie in R
Proof Corollary 8.2 implies that G(A)™'G(A, x) lies in (S)™, and since a* is stable on (")
we also have a* (G(A)‘lG(A, x)) € ($)M. The assertion of the corollary now follows from

(8.7). O

Put 4 A) = G(A?)~'G(A). We note one more consequence of Theorem 8.1.
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Proposition 8.1 The reciprocal eigenvalues of A A) are p-adic units for all A in 9.

Proof We showed earlier that G(A)~"'G(A,x) € T, so G(A)~'G(A, x) satisfies the hypoth-
eses of Lemma 5.1. By (8.6) and (5.7) we have

| detM(a*(G(A)™'G(A,0)))| = Ipl
and by (8.6) and Corollary 5.1 we have
| detM(a* (G(A)'G(A, %)) ™' | = 11/pl.
Combining these equalities with (8.8) gives
| det (G(AP)'G(A))| = | det (G(A)T'G(AM))| = 1.
By (2.8), we then have
|detA)| <1and |detHA)~!| <1forallie 2,

which implies that det /() assumes unit values on Z. Since 4 4) assumes p-integral values
on 7, it follows that the roots of det(I — 14 1)) are p-adic units. a

We introduce some additional notation that will be useful later. Put
YA, x) = (4 (Ax), ... 4"(A,x) = GA) ' G(A,x). (8.9)
This is an element of 7’ by Corollary 8.2, so each 4(A, x) lies in 8’ and we may write

g(i)(A,x) — 2 %J)(A)ygwlxu

1
ue.M_ (8.10)

with 4”(A) in R’ for all i, u.

9 Relation between .7(A) and 4A)

In this section we prove the first assertion of Theorem 2.1 and show that the second
assertion of Theorem 2.1 is equivalent to the same statement with .%#(A) replaced by
Y A) (see Proposition 9.2).

Put F(A,x) = (FD(A,x), ..., F™(A, x)), where F?(A, x) is given by (7.3). We regard
F(A,x) and G(A,x) (defined in (8.5)) as column vectors so they can be multiplied on
the left by (M X M)-matrices. The following result is a consequence of the fact that
G(A)'G(A, x) lies in (S")™ (Corollary 8.2).

Proposition 9.1 The vectors F(A)"'F(A, x), G(A)™'F(A, x), and F(A)™'G(A, x) lie in (S")V.

Proof We begin by showing that G(A)~'F(A,x) € (). Writing Equation (7.24) for
i =1,...,M and multiplying by G(A)~! gives the vector equation
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FV(A)
G(A)™! :

FOD(A)

GD(A) ' G(:]))(A) 0.1
u w,uM _
=G 1 |+ o "o
— — 1!

G| e g Tl — D! G%)(A)

u® £y

We have |G(A)~!| < 1by (7.20). Lemma 7.4, Proposition 7.1, and Corollary 8.2 imply that
the sum on the right-hand side of (9.1) converges to an element of (R’u W Since u € A
was arbitrary, this shows that G(A)~! F(A, x) € (S')M.

Take successively u = —a;, j=1,...,M in (9.1) and multiply the j-th equation by A;.
We combine the column vectors in the resultlng M equations into matrices and apply (7. 10)
and (7.18). The resulting matrix equation is

GA)'F(A) =1+ H(A), 9.2)

where we have written H(A) for the (M X M)-matrix whose j-th column is

(1)
C/—a ,u(‘)Aj Gu(])(A)
o
uh'e gy Ty — DI G“(?(A)

ul) # —a;

The entries in the matrix H(A) all lie in R:] by Corollary 8.2 and have norm < 1 by (7.20),
Lemma 7.4, and Proposition 7.1. We can thus apply the usual geometric series formula to
invert the right-hand side of (9.2). This proves that F(A)~"'G(A) is a matrix with entries in

R{’, all entries having norm < 1. Since the left-hand side of (9.1) lies in (R’ W we can now
multiply it by F(A)"!G(A) to conclude that
FO(A)
FA)™ : € (R/M)M forall u e .#_. 9.3)
FOD(A)

This shows that F(A)~'F(A, x) lies in (S")V.

The remaining assertion, that F(A)"'G(A, x) lies in ('), can be proved similarly by
reversing the roles of F and G and using (7.21) in place of (7.24). Since that result is not
needed in what follows, we omit the details. O

Proposition 9.2 The matrix F(A) has entries in Ry For any A€ ([FX)M X [FN‘M with
D(}) # 0 we have

det (I — tZP YT T) o F)) = det (I — 97" G - AD))
where J € @p(Cq_l)N denotes the Teichmiiller lifting of A.

Proof We showed in the proof of Proposition 9.1 that 4 A) := F(A)"'G(A) and its inverse
)™ = G(A)"'F(A) have entries in R). We then have
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F(A) =F(X) F(A) = HA) (G(A”) G(A)) Y
=AY N A,

which implies the first assertion of the proposition since ¢(A) has entries in R:) by Corol-
lary 8.3. Equation (9.4) implies

94

TN FN)VFNT) s FNAAN) = YN HYGNT) - A ). (9.5)
The Teichmiiller lifting A satisfies 47" = 1 and JAA) is a function on 2, so the second
assertion of the proposition follows by evaluating (9.5) at A = A O

The first assertion of Proposition 9.2 implies the first assertion of Theorem 2.1. The second
assertion of Proposition 9.2 shows that the second assertion of Theorem 2.1 is equivalent to
the following statement.

Theorem 9.1 Let A € ([FX)M [FN M and let J € Q, (&, be its Teichmiiller lifting. If
D(A) # 0, then 7' E@forz— .,a—land

a—2

p(A, 1) = det (I — G YGA"™) - A D).

10 Proof of Theorem 9.1

We apply Dwork’s p-adic cohomology theory to prove Theorem 9.1.
We begin by recalling the formula for the rational function P, (#) that was proved in [3]. For
asubset/ C {0,1,...,n},let

LI ={ Z Cuygunﬂ u|zu —dun+l’” >0f0rlEIC EC

ueNn+2 i=0

and {c,} is bounded }

Put g, = x,,,f;, so that

N

8,(xps s X)) = lekxak € F lxp, - s X,
oy

and let 2, be its Teichmiiller lifting:
N
830 o X)) = D ™ € Qg X0 ]
k=1
From (3.15) we have
N
004 x) = [T oG™). (10.1)
J=1

‘We also need the series 00(2, x) defined by
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a—1 N a—1
0,00 = [T [To(Gpmy) = [T 0. (102)
=0 j=1 i=0

Define an operator y on formal power series by

w( Z cux“> = Z cpux”. (10.3)

ueNn+2 ueNn+2

Denote by a; the composition
a; = y“o“multiplication by Go(j,x).e

The map «a; is stable on L for all I and we have ( [3, Equation (7.12)])

_ +1_|1‘ N I (—1)"*“‘"
Pign= [ dettr—q ' Mea; | L) . (10.4)
1€{0,1,...n}
For notational convenience, put I' = {0, 1,...,n}. The following lemma is an immediate

consequence of [3, Proposition 7.13(b)] (note that since we are assuming d > n+ 1, we
have y = 0 in that proposition).

Lemma 10.1 The unit reciprocal roots of P,(t) are obtained from the reciprocal roots of
det(/ — ta; | Lg) of q-ordinal equal to 1 by division by q.

We give an alternate description of det(/ — ta; | Lg) ([3, Sect. 7]). Set
B = {f* = Z c;ygu”“x” [c¢i—0asu— —oo},
UE(Z o)™*?

a p-adic Banach space with norm |£*| = supue(z<0),,+z{ |c¥|}. Define a map @ on formal
power series by

¢( ¥ ) =Y e

uez" uez"

Consider the formal composition az = 6_06,(A, x)o®". The following result is [3, Proposi-
tion 7.30].

Proposition 10.1 The operator az is an endomorphism of B which is adjoint to
a; 1 L) - L.

From Proposition 10.1, it follows by Serre [12, Proposition 15] that
Iy _ *
det({ — tay | L)) = det(/ — 1o | B), (10.5)
so Lemma 10.1 gives the following result.
Corollary 10.1 The unit reciprocal roots of P,(t) are obtained from the reciprocal roots of

det(/ — ta;f | B) of g-ordinal equal to 1 by division by q.
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We saw in Sect. 1 that P,() has exactly M unit roots when 4 € (F)M x [F;V‘M and
D(4) # 0. By Proposition 8.1, the eigenvalues of the (M x M)-matrix é(ﬁ) are units for
all A € 7. So to prove Theorem 9.1, it suffices to establish the following result.

Proposition 10.2 Let 1 € ([F;)I_"I X [F;V‘M and let } € Q,(&,_ )N be its Teichmiiller lifting.
Assume that D(A) # 0. Then e Dfori=0,...,a— land

det (I — g7 G - 4D))
is a factor of det(I — ta}‘ | B).
Proof Using the notation of (8.9), we have by (8.7)
o (YA, x)) = pANHA, x). (10.6)
Iterating this gives for allm > 0
@) (LA, %)) = p"HA"YHA") - HAAA, %). (10.7)
Evaluate XA, x)at A = 1:
Y, x) = (4P (A,x), -+, 4" (A, x),

where by (8.10)

gi)(/’i’ x) Z %(ul‘)(i)ygnﬂxu

ueM_
—(p—Du i), 4 u, u
— Z (yO(P ) ”H%ul)(/l))yg el
ueM
Since y,, =Dt 0 a5y — o0, this expression lies in B. One checks that the specializa-
tion of the left-hand side of (10.7) withm = aat A = Ais a;f(g(i,x)), so specializing (10.7)
withm=aand A = A gives

o (U4, %)) = g9 YUA") -+ ADG, ). (10.8)

We have proved that %4, x)is a vector of M elements of B and that the action of a;f on these
M elements is represented by the matrix

a—1

I NGy ).

This implies the assertion of the proposition. a
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