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Abstract
Let M be a compact connected smooth pseudo-Riemannian manifold that admits a topolog-
ically transitive G-action by isometries, where G = G1 …G

l
 is a connected semisimple Lie 

group without compact factors whose Lie algebra is � = �1 ⊕ �2 ⊕⋯⊕ �
l
 . If m0, n0, n

i

0
 are 

the dimensions of the maximal lightlike subspaces tangent to M, G, G
i
 , respectively, then 

we study G-actions that satisfy the condition m0 = n
1

0
+⋯ + n

l

0
 . This condition implies 

that the orbits are non-degenerate for the pseudo Riemannian metric on M and this allows 
us to consider the normal bundle to the orbits. Using the properties of the normal bundle to 
the G-orbits we obtain an isometric splitting of M by considering natural metrics on each 
G

i
.

Keywords  Bi-invariant metric · Pseudo-Riemannian · Semisimple Lie group · 
Topologically transitive action

Mathematics Subject Classification  53C05 · 53C10

1  Introduction

A fundamental problem in geometry is to understand the actions of a noncompact con-
nected semisimple Lie group G on pseudo-Riemannian manifolds. This is particularly 
interesting when one of these G-actions preserves a geometric structure on a manifold M.

An example to consider is Gromov’s centralizer theorem which proves that for a non-
compact semisimple Lie group G acting analytically on a manifold M preserving a finite 
volume and either a connection or a geometric structure of finite type, there is a nontrivial 
space of globally defined Killing vector fields on the universal cover M̃ that centralizes the 
action of G (see [16] for more about the Gromov-Zimmer machinery).

It was proved in [2] that for a compact pseudo-Riemannian manifold M and a con-
nected noncompact simple Lie group G acting on M by isometries, then some covering 
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M̃ splits as a product of a set S and G. In this paper we improve that result using our 
own work (see for example [14–16]) and some ideas established in [1, 12, 17].

It is well known that interesting examples of pseudo-Riemannian manifolds appear 
when we consider Lie groups with bi-invariant pseudo-Riemannian metrics. In addition, 
this class of Lie groups that support bi-invariant pseudo-Riemannian metrics is quite 
large. In [6], Milnor discussed the problem of determining the real simple Lie groups 
admitting left invariant Riemannian metrics. Using results established in [3] (see also 
[10]), about simple real Lie algebras � , in terms of their complexifications �ℂ , we found 
in [14] a classification of the bi-invariant pseudo-Riemannian metric on G, a Lie group 
with real semisimple Lie algebra � = �1 ⊕ �2 ⊕⋯⊕ �l.

If the G-action is topologically transitive then the G-orbits have the same dimension, 
and because of that the G-orbits on M define a smooth foliation O , whose tangent bun-
dle T(O) can be trivialized by the G action. In [15] we proved that the normal bundle 
TO⟂ is integrable, and from now on we call � the foliation associated with the normal 
bundle. Furthermore, we prove that the leaves of the foliation � are totally geodesic.

Under certain conditions it can be proven that a manifold M is isometric to a product 
of two manifolds, and this is known as a splitting theorem, see [11]. Our main goal in 
this paper is to prove an isometric splitting theorem for the metric of the pseudo-Rie-
mannian manifold M on which a semisimple Lie group G acts.

The organization of this article is as follows. In Sect. 2 we collect some basic results 
about bi-invariant pseudo-Riemannian metrics on a Lie group G. Also we give the clas-
sification of the Ad (G)-invariant bilinear forms on a semisimple Lie algebra. This is 
mentioned in [2], but the generalization to semisimple Lie groups is new, also see [14]. 
As a consequence we give the classification of the bi-invariant pseudo-Riemannian met-
rics on G. In Sect. 3 we give some results about the foliation given by the normal bundle 
of the tangent space of the G-orbits. In Sect. 4 we show the main result of this work.

I would like to thank Michael Josephy for useful comments that allowed us to sim-
plify the exposition of this work.

2 � Bi‑invariant metrics on a semi‑simple Lie group

We are going to study the geometry of the orbits and the normal bundle in the case 
where a semi-simple Lie group G acts on a pseudo-Riemannian manifold M, with the 
aim of obtaining a description of the pseudo-Riemannian manifold on which the Lie 
group acts.

The next lemma, although trivial, will be of great importance in the subsequent results, 
and therefore we present it for the sake of completeness of the work. The proof is essen-
tially contained in [9, Lemma 3, Chapter 11].

Lemma 1  Let G be a connected Lie group with Lie algebra � and F ∶ � × � → ℝ a sym-
metric bilinear form such that F([X, Y], Z) = −F(Y , [X, Z]) for all X, Y , Z ∈ � . Then F is 
Ad(G)-invariant.

The classification of the Ad(G)-invariant bilinear forms on a simple Lie algebra can be 
found in [14]. The next result gives the classification of the Ad(G)-invariant bilinear forms 
on a real semisimple Lie algebra.
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Theorem  1  Let G be a connected semisimple Lie group such that 
Lie(G) = � = �1 ⊕ �2 ⊕⋯⊕ �l , where each �i is a simple ideal of the Lie algebra � . We 
shall suppose the following:

•	 The complexification of each �i , for i = 1,… , k is simple; and
•	 The complexification of each �i , for i = k + 1,… , l is not simple and so there exists a 

complex structure Ji for each �i.

Then every Ad(G)-invariant bilinear form B on � is given by

where each B
�i
 is the Killing–Cartan form on �i , for i = 1,… , l , all �i and �j

i
 are real num-

bers, and BJi
�j
(X, Y) = B

�j
(X, JiY).

Proof  By the previous lemma it follows that B(X, [Y , Z]) = B([X, Y], Z) , for all X, Y , Z ∈ �.
On the other hand, it is easy to show the following properties: [�i, �j] = {0} for all i ≠ j , 

and [�i, �i] = �i , for all i.
We have for Y ∈ �j there exists Z,W ∈ �j such that Y = [Z,W] , and for X ∈ �i we con-

clude B(X, Y) = B([X, Z],W) = 0.
Therefore 𝔤i ⟂ 𝔤j for all i ≠ j with respect to B. From this it follows that 

B = B
�1
⊕⋯⊕ B

�l
.

Now we use the classification of Ad(G)-invariants bilinear forms on a simple Lie alge-
bra given in [14]. 	�  ◻

Using [9, Proposition 9, Chapter 11] and the previous results we can give a classifica-
tion of the bi-invariant metrics on semisimple Lie groups.

Theorem 2  Let G and M be as in Theorem 1. Then every bi-invariant pseudo-Riemann-
ian metric � on G is given by

where each B
�i
 is the Killing–Cartan form on �i , for i = 1,… , l , all �i and �j

i
 are real num-

bers, and BJi
�j
(X, Y) = B

�j
(X, JiY).

3 � Properties of the foliation given by a G‑action

From now on G = G1 …Gl will be a connected semisimple Lie group without compact 
factors and with Lie algebra � = �1 ⊕ �2 ⊕⋯⊕ �l.

We shall suppose the following:

•	 The complexification of each �i , for i = 1,… , k is simple; and

B = �1B�1
+⋯ + �kB�k

+
(
�
k+1
1

B
�k+1

+ �
k+1
2

B
Jk+1
�k+1

)
+⋯ +

(
�
l
1
B
�l
+ �

l
2
B
Jl
�l

)
,

� = �1B�1
+⋯ + �kB�k

+
(
�
k+1
1

B
�k+1

+ �
k+1
2

B
Jk+1
�k+1

)
+⋯ +

(
�
l
1
B
�l
+ �

l
2
B
Jl
�l

)
,
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•	 The complexification of each �i , for i = k + 1,… , l is not simple and so there exists a 
complex structure Ji for each �i.

The above assumptions are possible due to [3, Proposition 1.5, Chapter X].
In this work M will denote a compact pseudo-Riemannian manifold, unless otherwise 

stated.
We always assume that the action of G on M is analytic, faithful, and preserves the 

pseudo-Riemannian metric.

Definition 1  The dimension of maximal lightlike tangent subspaces for M will be denoted 
by m0 = min{m1,m2} , where (m1,m2) represents the signature of M, i.e., that m1 corre-
sponds to the dimension of maximal timelike tangent subspaces and m2 corresponds to the 
dimension of the maximal spacelike tangent subspaces.

The group G itself can be considered as a pseudo-Riemannian manifold. In fact, Gro-
mov remarked in [2] that if (n1, n2) is the signature of the metric given by the Kill-
ing-Cartan form on � , then any other bi-invariant pseudo-Riemannian metric on G has 
signature given by either (n1, n2) or (n2, n1) . We extended that context in the previous 
section when we proved that any bi-invariant pseudo-Riemannian metric on G can be 
described in terms of the Killing-Cartan form.

Definition 2  The dimension of maximal lightlike tangent subspaces for Gi , i = 1,… , l , 
will be denoted by ni

0
= min{ni

1
, ni

2
} , where (ni

1
, ni

2
) represents the signature of Gi.

We are interested in comparing the numbers m0 and n1
0
+⋯ + nl

0
 . We obtain a geo-

metric property of the G-orbits on M when the condition n1
0
+⋯ + nl

0
= m0 is satisfied.

When the G-action is locally free on M we obtain a foliation O of M whose leaves 
are the orbits G ⋅ p of the action, where p ∈ M . The results established in [17] guarantee 
that if the action of G on M is topologically transitive then the G-action is locally free 
on M.

We will denote by TO the tangent bundle to the orbits of the G-action on M. If X ∈ � , 
we define the infinitesimal generator X∗ as the vector field on M induced by X. This new 
vector field is given by

It is clear that X∗ is a Killing vector field, X∗
x
∈ Tx(G ⋅ x) , for x ∈ M , and the following 

relation holds for every X, Y ∈ � : [X∗, Y∗] = −[X, Y]∗ , see [5, Proposition 4.1, Chapter I]. 
Furthermore, since the G-action is locally free on M, the condition X∗

x
= 0 for some x ∈ M 

implies X = 0.
We will use the following map �x ∶ � → Tx(Gx) , given by �x(X) = X∗

x
 , where x ∈ M . 

We refer to [12] for further details about this map.

Theorem 3  Suppose G is a connected semisimple Lie group without compact factors acting 
topologically transitively, i.e. there is a dense G-orbit, on a pseudo-Riemannian manifold 
M preserving its pseudo-Riemannian metric. If n1

0
+⋯ + nl

0
= m0 , then the G-orbits are 

nondegenerate with respect to the metric on M.

X∗
p
=

d

dt
||t=0 exp (tX) ⋅ p .
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Proof  We observe that the G-action on M is everywhere locally free by the results in [17] 
and so the G-orbits define a smooth foliation O on M.

The condition for G-orbits to be nondegenerate means that there is a G-invariant open 
subset U of M so that the G-orbit of every point in U is nondegenerate.

We will prove that for a G-invariant open subset U of M the G-orbit of every point in U 
is nondegenerate.

We consider the well known smooth map 𝛹 ∶ M → �
∗ ⊗ �

∗ given by 
�x = hx(�x⋅,�x⋅) ∶ � × � → ℝ , for h the metric on M.

This map is G-equivariant and the G-action is tame on � × � , then using results estab-
lished in [18] we conclude that this map is constant on the support of almost every 
ergodic component of M. If N is the support of one such ergodic component, then there is 
an Ad(G)-invariant bilinear form BN on � such that the metric induced by M on TN(O) is 
almost everywhere given by BN on each fiber.

Using Lemma  1, with BN , it is easy to see that its kernel, K, is an ideal of 
� = �1 ⊕ �2 ⊕⋯⊕ �l.

If K = � , then the tangent bundle restricted to N: TN(O) is lightlike which implies 
dim (�) ≤ m0 . On the other hand, for each i = 1… l it follows that dim �i ≥ ni

0
 

and dim � = dim �1 +⋯ + dim �l , and so n1
0
+⋯ + nl

0
< m0 . But this contra-

dicts the condition n1
0
+⋯ + nl

0
= m0 . If K =

⨁
i∈J �j , where J ⊂ {1,… , l} , then 

we have a subspace of null vectors in the tangent bundle to the G-orbits which 
has a dimension equal to dim

⨁
j∈J �j + n

j1
0
+⋯ + n

js
0
 . We conclude as before that 

m0 ≥ dim
⨁

j∈J �j + n
j1
0
+⋯ + n

js
0
> n1

0
+⋯ nl

0
 . If K is trivial then BN is nondegenerate, 

and so almost every G-orbit contained in N is nondegenerate. In particular, the set U is 
conull and so not empty, because almost every G-orbit is nondegenerate.

There is a G-orbit O0 which is dense in M and so O0 ∩ U ≠ � . Using the G-invariancy 
of U, it is easy to show that O0 ⊂ U . The above shows that � (O0) = B0 , where B0 is the 
nondegenerate bilinear form on � obtained when the metric on M is restricted to O0 . Using 
the continuity of � and the density of O0 it follows that � (M) = B0 . We conclude that all 
G-orbits are nondegenerate. 	�  ◻

We will consider the so-called smooth normal bundle TO⟂ . In a previous paper, [15], 
we proved that the foliation on M associated with this normal bundle is integrable.

It is well known that a transverse Riemannian structure defines a Riemannian metric on 
the quotient bundle. This metric remains invariant when we move along the leaves on the 
manifold. Considering suitable Riemannian metrics on the manifold that carry the folia-
tion, we can construct transverse Riemannian structures for a foliation. These suitable met-
rics are the bundle-like metrics. This is a well known concept whose further discussion can 
be found in [7].

Theorem 4  Suppose G is a connected semisimple Lie group without compact factors act-
ing topologically transitively on a manifold M preserving its pseudo-Riemannian metric 
and satisfying n1

0
+⋯ + nl

0
= m0 . Then the foliation � on M associated to TO⟂ is totally 

geodesic.

Proof  First, the normal bundle TO⟂ is integrable. By Frobenius’s theorem there exists an 
induced foliation � on M.

We show that its leaves are totally geodesic submanifolds of M, i.e, the second funda-
mental form � of the leaves of � is equal to zero.
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By h we will denote the metric on M preserved by G. If X ∈ � , we define X∗ , the infini-
tesimal generator, as the vector field on M induced by X. If Y, Z are horizontal vector fields 
or local sections of TO⟂ that preserve the foliation � , then [X∗, Y] and [X∗, Z] are vertical 
vector fields or local sections of TO . Hence, X∗(h(Y , Z)) = h([X∗, Y], Z) + h(Y , [X∗, Z]) = 0

.
Now note that the function h(Y,  Z) is constant along the G-orbits because 

X∗(h(Y , Z)) = 0 . We conclude that the metric h is a bundle-like metric for the foliation O 
whose leaves are the G orbits. See [7] for further details about bundle-like metrics.

By results in [7] we have a transverse metric to the foliation O from h, and at every point 
of M we can also obtain a pseudo-Riemannian submersion � ∶ U → B , where U is a open 
set in M, such that the fibers of � define the foliation O restricted to U.

Let A be the associated fundamental tensor defined in [8]. The second fundamental ten-
sor � for the leaves of the foliation � is given by AXY  , for X, Y tangent vector fields to �.

On the other hand, by [4, Lemma 1.2] we have, for X,  Y tangent to � , that 
AXY =

1

2
V[X, Y] , where V[X, Y] denotes the projection of [X, Y] on TO . We conclude that 

AXY  takes values in TO.
We know that TO⟂ is integrable and hence A vanishes on vertical vector fields to � , and 

therefore the leaves of the foliation � are totally geodesic. 	�  ◻

A remarkable property of Riemannian foliations is that, with respect to compatible 
bundle-like metrics, geodesics which start perpendicular to a leaf of the foliation stay 
perpendicular to all leaves. The proof of this result can be found in [7].

The next lemma is fundamental to obtain an isometric splitting.

Lemma 2  If G is a connected semisimple Lie group without compact factors acting top-
ologically transitively on M preserving its pseudo-Riemannian metric and satisfying 
n1
0
+⋯ + nl

0
= m0 , then the leaves of the foliation defined by TO⟂ are complete for the 

metric induced by M.

Proof  We know that TO⟂ is either Riemannian or antiRiemannian, see [14]. Hence, the 
foliation by G-orbits on M carries a Riemannian or antiRiemannian structure obtained 
from TO⟂.

On the other hand, using the compactness of M it follows that geodesic completeness is 
satisfied for geodesics orthogonal to the G-orbits, then we get the completeness for leaves 
of the foliation given by TO⟂ , see [7]. 	�  ◻

Using Lemma 2 we can obtain an isometric covering map in the case of a compact 
pseudo-Riemannian manifold M.

Theorem  5  Suppose G is a semisimple Lie group without compact factors acting top-
ologically transitively and by isometries on a compact manifold M and satisfying 
n1
0
+⋯ + nl

0
= m0 . Let N be a leaf of the foliation defined by TO⟂ , and consider it as a 

pseudo-Riemannian manifold with the metric inherited from M. Then the map G × N → M

,obtained by restricting the G-action to N, is a G-equivariant pseudo-Riemannian cover-
ing map, when we fix on G a bi-invariant pseudo-Riemannian metric induced by the met-
ric inherited by M. Also, we obtain a G-equivariant pseudo-Riemannian covering map 
G × Ñ → M , where Ñ is the universal covering space of N.
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Proof  By Lemma  2 we have that N is a complete manifold. It is known that G is com-
plete, see chapter II of [3]. Hence G × N is a complete pseudo-Riemannian manifold. 
As G × N → M is a local isometry it follows (see [8, Corollary 29, Chapter  7]) that 
G × N → M is a pseudo-Riemannian covering map. The G-invariancy follows from this, 
h ⋅ (g, n) = (hg, n).

Let � be the map G × N → M , obtained by restricting the G-action to N. Then we have 
a local isometry � ∶ G × Ñ → M if we define �(g, ñ) = �(g,�(ñ)) , where � ∶ Ñ → N.

The map � is G-equivariant because of the following:

	�  ◻

4 � An isometric splitting

In this section we want to improve on the previous result, Theorem 5.

Theorem  6  With the hypothesis of Theorem  4, the pseudo-Riemannian metric h on M 
restricted to the orbits defines a leafwise pseudo-Riemannian metric which is given by

where fi, f1,j, f2,j ∶ ℝ → ℝ are G-invariant smooth functions, for all i = 1,… , k , and 
j = k + 1,… , l.

Proof  As in the proof of Theorem  3, we consider the following map 𝛹 ∶ M → �
∗ ⊗ �

∗ 
given by the bilinear symmetric map �x = hx(�x⋅,�x⋅) ∶ � × � → ℝ . We show that �x is 
Ad(G)-invariant, and �x is independent of x.

If x ∈ M , X, Y ∈ � , and g ∈ G , then because G preserves the metric, we have 
�gx(X, Y) = hx(dg

−1
gx
X∗
gx
, dg−1

gx
Y∗
gx
) . On the other hand the fact that dg−1(X∗) = Ad(g)X∗ 

implies hx(dg−1gx X
∗
gx
, dg−1

gx
Y∗
gx
) = hx(Ad(g

−1)X∗
x
, Ad(g−1)Y∗

x
).

Based on the previous result, we conclude that the map � satisfies 
�gx(X, Y) = �x(Ad(g

−1)X, Ad(g−1)Y) , which means that � is G-equivariant. Therefore � 
is G-invariant, and the result follows by [17, Proposition 4.3]. Therefore �x = �gx for all 
g ∈ G and x ∈ M,

By a result in [14] the action is locally free everywhere and by Theorem 3 each orbit is 
nondegenerate. Then the metric h on M restricted to each orbit is nondegenerate, therefore 
�x is the metric induced on G. If this metric is bi-invariant, then we can use the classi-
fication of bi-invariant pseudo-Riemannian metrics for semisimple groups and the claim 
follows.

Given that �x = �gx for all g ∈ G and x ∈ M , it follows that 
�x(X, Y) = �x(Ad(g)X, Ad(g)Y) for all X, Y ∈ � showing that �x is an Ad-invariant bilinear 
symmetric form for all x ∈ M . Hence the result follows by Theorem 2. 	�  ◻

�
(
g1 ⋅ (g, ñ)

)
= �

(
g1g, ñ

)

= �
(
g1g,�(ñ)

)

= g1 ⋅�(g,�(ñ))

= g1 ⋅ �(g, ñ).

k∑

i=1

fiB�i
+

l∑

j=k+1

(
f1,jB�j

+ f2,jB
�j ,Jj

)
,
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The next corollary is an easy consequence of the above and it will be useful in the main 
theorem of this work.

Corollary 1  With the same hypothesis as Theorem  6, there is a G-equivariant isomet-
ric immersion from G to M when G is considered with a bi-invariant pseudo-Riemannian 
metric.

In the previous theorem we can obtain a local result on an open conull subset S of M 
using the fact that there is an isomorphism between Killing vector fields that vanish at a 
specific point and elements of the Lie algebra of G. For that end we need to state the result 
due to Gromov [2, 13] whose proof for the case of semisimple Lie groups can be found in 
[16]. It is true without the assumption that the G-action is topologically transitive.

Definition 3  For any given pseudo-Riemannian manifold M we will denote by Kill(M, x) 
the Lie algebra of germs at x of local Killing vector field defined in a neighborhood Ux of x.

Theorem 7  Let M be a smooth pseudo-Riemannian manifold of finite volume, and G a 
connected semisimple Lie group without compact factors and acting smoothly on M by iso-
metries. If any normal subgroup acts nontrivially on M and G has a finite center, then there 
is a dense conull subset S ⊂ M such that, for every x ∈ S there exist an open set Ux of x, a 
Lie algebra Kill(M, x) and a homomorphism �x ∶ � → Kill (M, x) satisfying

•	 all elements of Kill(M, x) vanish at x.
•	 �x is an isomorphism onto its image �x(�) = �(x).
•	 [𝜌x(�),Y] ⊂ Y , where Y = {Y∗ ∶ Y ∈ �}.

The next theorem is needed to describe the geometry of the normal bundle to the 
G-orbits.

Theorem 8  For G and M with the hypothesis of Theorem 4 suppose G acts topologically 
transitively on M preserving its pseudo-Riemannian metric, h. If n1

0
+⋯ + nl

0
= m0 , then 

with the metric induced by M, the leaves of the normal foliation � lying in a fixed compo-
nent of M have isometric universal coverings.

Proof  As the orbits are nondegenerate then dLg
(
Tx(Gx)

⟂
)
⊂ Tx(Gx)

⟂ , for every x ∈ M , 
and g ∈ G . In fact, for every x ∈ M , we have Tx(M) = Tx(Gx)⊕ Tx(Gx)

⟂ . If v⟂ ∈ Tx(Gx)
⟂ , 

then dLg(v⟂) = w⟂ + w , where w ∈ Tx(Gx) . Therefore, h(dLg(v⟂), v) = h(w, v) . On the 
other hand, it follows that h(v⟂, dLg−1v) = 0 , and then dLg(v⟂) ∈ Tx(Gx)

⟂ . This proves that 
the action preserves the normal bundle TO⟂.

We now prove that GL is a connected component of M if L is a leaf of the foliation TO⟂ . 
Using the same argument that appears in corollary 2.8 in [1], we define an equivalence 
relation on the leaves of TO⟂ of M by saying L1 ∼ L2 if L2 = gL1 for some g ∈ G . It is 
easy to prove that GL = [L] , the equivalence class of L. Therefore GL is open in M, since 
GL = �(G × L) , where the local diffeomorphism � ∶ G × L → M is the restricion of the 
G-action map to the leaf L. Also, GL is closed because it is the complement of the union 
of open sets. Therefore GL is a connected component of M. The theorem is now a direct 
consequence of the above. 	�  ◻
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The next result is the main theorem of this work, and will give us a kind of splitting 
geometric theorem on the manifold M.

We observe this theorem is, in spirit, similar to [1, Theorem A] and [12, Theorem A].

Theorem 9  Let M be a compact connected smooth pseudo-Riemannian manifold, and G 
a connected semisimple Lie group without compact factors, acting smoothly and topologi-
cally transitively on M by isometries. If n1

0
+⋯ + nl

0
= m0 , and L is a leaf of the normal 

foliation F  in M, then there is a G̃-equivariant map G̃ × L̃ → M which is an isometric cov-
ering, where G̃ × L̃ is furnished with a metric k given as follows:

where fi, f1,j, f2,j ∶ L̃ → ℝ are smooth functions, for all i = 1,… , k , and j = k + 1,… , l and 
hF  is the metric on the common universal cover of the leaves of F  , induced by the restric-
tion of the metric h on M to the leaves of the foliation F .

Proof  By Theorem 3 it follows that G acts locally freely everywhere with nondegenerate 
orbits.

Let � = G̃ × M̃ → M̃ be the lifted action. We consider L̂ a leaf of the normal bundle to 
the orbits in M̃ that is mapped onto L by the covering map � ∶ M̃ → M.

Let � = �|
G̃×L̂

 denote the restriction of � to G̃ × L̂ . It is an easy consequence of Theo-
rem 6 and Theorem 8 that � is an isometric immersion of G̃ × L̂ to M̃ , where G̃ × L̂ is con-
sidered as a pseudo-Riemannian manifold with metric, k, given by

We will show that � is injective and that the universal cover of L is equal to L̂.
Using Theorem 4 we conclude that the leaves of the normal foliation F  on M and M̃ are 

totally geodesic.
For the rest of the proof we are going to use some ideas established in [1, Theorem A].
In the proof of Theorem 8 we obtained that GL = M . From this it follows there are open 

sets V1 ⊂ G,V2 ⊂ L,Vx ⊂ M , for every x ∈ M , such that the map Hx ∶ V1 × V2 → Vx is a 
diffeomorphism.

If we denote by �2 ∶ V1 × V2 → V2 , the projection on the second factor, then we obtain 
a submersion �2◦H−1

x
∶ Vx → V2 . This submersion locally defines the foliation on M given 

by the G-orbits. Note that �2◦H−1
x

 is a pseudo-Riemannian submersion.
We can obtain {U�}� , an open covering of M for which we have pseudo-Riemannian 

submersions H� ∶ U� → L . For each � , the open set U� is connected, evenly covered by the 
universal covering � ∶ M̃ → M , and H�(U�) contained in an open set evenly covered by 
�1 ∶ L̂ → L.

There exists a pseudo-Riemannian submersion H ∶ M̃ → L̃ such that �1◦H|Ũ�,k
= H�◦� , 

for every � , and �−1(U�) = ∪kŨ�,k . The proof of this is based on known arguments of alge-
braic topology.

We conclude that the foliation defined by the submersion H is the foliation defined by the 
orbits of the action of G̃ on M̃ . In particular, H is a local isometry when it is restricted to every 
leaf L̂x of the foliation in L̃ given by F  . Moreover, H|

L̂x
∶ L̂x → L̃ is a bijection. This is proven 

by seeing that for each x ∈ L̂x , every geodesic �̂ ∶ [0, 1] → L̂ with �̂(0) = H(w) can be lifted 

k =

k∑

i=1

fiB�i
+

l∑

j=k+1

(
f1,jB�j

+ f2,jB
�j ,Jj

)
+ hF,

k =

k∑

i=1

fiB�i
+

l∑

j=k+1

(
f1,jB�j

+ f2,jB
�j ,Jj

)
+ hF.
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a geodesic �𝜎 ∶ [0, 1] → L̂x with �̃(0) = w . Therefore, H|
L̂x
∶ L̂x → L̃ is a covering map, and 

L̂x is the universal cover of Lx for every x ∈ M.
If �(g1, x1) = �(g2, x2) , then g1x1 = g2x2 . By using the fact that H is G-invariant, it follows 

that H(x1) = H(g1x1) = H(g2x2) = H(x2) , therefore x1 = x2.
On the other hand, it is easy to see that g = g−1

1
g2 ∈ Stab (x1) and we can consider 

Vx1
⊂ L̂ a normal neighborhood of x1 . Let � be a geodesic from x1 to x, where x ∈ Vx1

 . Then 
H(�(1)) = H(g�(1)) , so we obtain �(1) = g�(1) ∈ L̃ . Therefore g ∈ Stab (�(1)) and g fixes 
Vx1

 . By using that the action is analytic it follows that g fixes L̂.
Let Stab (L̂) denote the subgroup of G that fixes the points in L̂ . The map 

� ∶ G̃∕ Stab (L̂) × L̃ → M̃ given by �
(
g + Stab (L̂), x

)
= �(g, x) is a diffeomorphism. It 

follows that Stab (L̂) = {e} because M̃ is simply connected, so we obtain g1 = g2 . Therefore, 
� is injective.

We obtain the main part of the theorem by performing the following composition: 
�◦� ∶ G̃ × M̃ → M . 	�  ◻
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