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Abstract
Motivated by calculations of motivic homotopy groups, we give widely attained conditions

under which operadic algebras and modules thereof are preserved under (co)localization

functors.
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1 Introduction

Operads are key mathematical devices for organizing hierarchies of higher homotopies in a

variety of settings. The earliest applications were concerned with iterated topological loop

spaces. More recent developments have involved derived categories, factorization

homology, knot theory, moduli spaces, representation theory, string theory, deformation

quantization, and many other topics. This paper is a sequel to our work on operads in the

context of the slice filtration in motivic homotopy theory [10].

The problem we address here is that of preservation of algebras over colored operads,

and also modules over such algebras, under Bousfield (co)localization functors. For this we

only require a few widely attained technical assumptions and notions on the underlying

model categories and the operads, e.g., that of strongly admissible operads in a cofibrantly

generated symmetric monoidal model category. We refer to [2, 6, 20, 22] and [21], for

related results on (co)localization of monadic algebras.

Our main motivation for studying the mentioned problem of preservation of algebras is

rooted in Morel’s p1-conjecture [16, 17]. For a field F, this conjecture states there exists a
short exact sequence of Nisnevich sheaves on the category of smooth F-schemes of finite

type

0 �! KM
2 =24 �! p1;01 �! p1;0KQ �! 0: ð1Þ
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Here, 1 is the motivic sphere spectrum, KM denotes Milnor K-theory, and KQ is the

hermitian K-theory spectrum. The solution of Morel’s p1-conjecture [17] involves an

explicit calculation in the slice spectral sequence of the motivic sphere spectrum. One of

the precursors for this calculation is the fact that the total slice functor takes E1 motivic

spectra, in particular the algebraic cobordism spectrum, to graded E1 MZ-algebras in a

functorial way. Here,MZ denotes the motivic Eilenberg-MacLane spectrum. Theorems 3.8

and 3.14 in this paper coupled with our construction of the slice filtration in [10, §6] verify

the mentioned multiplicative property (which in turn is used in the proof of [17, Theo-

rem 2.20]). We envision that future calculations with slice spectral sequences will exploit

multiplicative structures to a greater extent, and as such will be relying on the results

herein.

The paper starts with §2 on model structures on operads and algebras. Our main results

on preservation of algebras and modules under Bousfield (co)localization functors are

shown in §3 and §4. To make the paper reasonably self-contained we have included two

appendices fixing our conventions on model categories and colored operads. In particular,

we review tensor-closed sets of objects in a homotopy category, the Reedy model structure,

operadic algebras, and modules over such algebras.

2 Model structures of operads and algebras

Let C be a cocomplete closed symmetric monoidal category with tensor product �, unit I,
initial object 0, and internal hom functor Homð�;�Þ. For a set C we refer to Appendix B

for the definitions of C-colored collections and C-colored operads in C. Recall that a C-
colored collection K is pointed if it is equipped with unit maps I ! Kðc; cÞ for every

c 2 C. Denote by CollCðCÞ and Coll�CðCÞ the categories of C-colored collections and

pointed C-colored collections, respectively. If K is a C-colored collection, we can define a

pointed C-colored collection FðKÞ by setting FðKÞðc; cÞ :¼ Kðc; cÞ
‘

I for every c in C,
and FðKÞðc1; . . .; cn; cÞ :¼ Kðc1; . . .; cn; cÞ if n 6¼ 1. This defines the free-forgetful adjoint

functor pair

F : CollC(C) Coll•C(C) : U.

We denote by OperCðCÞ and OperðCÞ the categories of C-colored operads and (one-

colored) operads in C, respectively.
Suppose C is a cofibrantly generated symmetric monoidal model category. Then

CollCðCÞ and Coll�CðCÞ have transferred model structures, where weak equivalences and

fibrations are defined colorwise. There is a free-forgetful adjoint pair

F : Coll•C(C) OperC(C) : U. ð2Þ

Under suitable conditions, the model structure on (pointed) C-colored collections can be

transferred along (2) to a cofibrantly generated model structure on OperCðCÞ, in which a

map of C-colored operads is a fibration or a weak equivalence if its underlying (pointed) C-
colored collection is so. This holds for k-spaces, simplicial sets, and symmetric spectra; see

[3, Theorems 3.1, 3.2], [4, Theorem 2.1, Example 1.5.6] and [11, Corollary 4.1].

In general, (2) does not furnish a model structure on OperCðCÞ, but rather the weaker

structure of a semi model structure. In a semi model category the axioms of a model

category hold with the exceptions of the lifting and factorization axioms, which hold only
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for maps with cofibrant domains. The trivial fibrations have the right lifting property with

respect to cofibrant objects, since the initial object of a semi model category is assumed to

be cofibrant. For operads the following result is shown in [19, Theorem 3.2] (cf. [8,

Theorem 12.2A]). Our extension to colored operads follows similarly.

Theorem 2.1 If C is a cofibrantly generated symmetric monoidal model category, then the
model structure on Coll�CðCÞ transfers along the free-forgetful adjunction (2) to a cofi-

brantly generated semi model structure on OperCðCÞ, in which a map O ! O0 is a

fibration or a weak equivalence if Oðc1; . . .; cn; cÞ ! O0ðc1; . . .; cn; cÞ is a fibration or a
weak equivalence in C, respectively, for every tuple of colors ðc1; . . .; cn; cÞ.

Throughout the paper we will implicitly assume that OperCðCÞ always admits a cofibrantly

generated transferred model structure, where the weak equivalences and fibrations are

defined at the level of the underlying collections.

Let CC denote the product category
Q

c2C C. If O is a C-colored operad, denote by

AlgOðCÞ the category of O-algebras in C; see Appendix B. There is a free-forgetful adjoint

pair

FO : CC AlgO(C) : UO, ð3Þ

where the left adjoint is the free O-algebra functor defined by

FO(A )(c) =
n≥0

⎛
⎝

c1,...,cn∈C

O(c1, . . . , cn; c) ⊗Σn
A (c1) ⊗ · · · ⊗ A (cn)

⎞
⎠ .

If it is clear from the context we shall write F and U instead of FO and UO, respectively.
Let C be a cofibrantly generated symmetric monoidal model category. Recall from [3]

that a C-colored operad O is admissible if the product model structure on CC transfers to a

cofibrantly generated model structure on AlgOðCÞ via (3). An O-algebra A is underlying

cofibrant if UðAÞ is cofibrant in CC; i.e., AðcÞ is cofibrant in C for all c 2 C.
As indicated in [19, I.5], if C is a simplicial symmetric monoidal model category and O

is an admissible C-colored operad, then AlgOðCÞ is naturally a simplicial model category.

For a simplicial set K and an O-algebraA, the cotensorAK is the object ðUOAÞK with O-

algebra structure given by the composition O ! EndðAÞ ! EndðAKÞ — for the endo-

morphism colored operad — induced by the diagonal map K ! K � � � � � K. For K fixed,

the functor ð�ÞK has a left adjoint defining the tensor. For A fixed, the functor Að�Þ has a
right adjoint defining the simplicial enrichment in AlgOðCÞ.

Definition 2.2 Let C be a cofibrantly generated symmetric monoidal model category. A C-

colored operad O in C is strongly admissible if there is a weak equivalence u : O0 ! O of

admissible C-colored operads inducing a Quillen equivalence

ϕ! : AlgO (C) AlgO(C) : ϕ∗

and O0 satisfies one of the conditions:
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(i) It has an underlying cofibrant C-colored collection.

(ii) It has an underlying cofibrant pointed C-colored collection, and C has an additional

cofibrantly generated symmetric monoidal model structure with the same weak

equivalences, more cofibrations and cofibrant unit.

We call the triple ðO;O0;uÞ a strongly admissible pair.

Remark 2.3 By [15, Theorem 1] any combinatorial symmetric monoidal model category

satisfying the very strong unit axiom admits a combinatorial symmetric monoidal model

structure with the same weak equivalence and (possibly) more cofibrations making the unit

cofibrant. The very strong unit axiom says that tensoring any object with a cofibrant

approximation of the unit is a weak equivalence. This holds in many examples, e.g., when

tensoring with cofibrant objects preserve weak equivalences [15, Corollary 9].

Remark 2.4 The category of symmetric spectra over simplicial sets with the positive

model structure [18] is an example of a monoidal model structure where the unit is not

cofibrant, but that satisfies condition (ii) of Definition 2.2. The same is true for the positive

model structure on the category of motivic symmetric spectra [13].

Remark 2.5 If C is a symmetric monoidal model category with cofibrant unit, then every

C-colored operad in C with an underlying cofibrant pointed C-colored collection has an

underlying cofibrant C-colored collection.

Let A be a monoid in a closed symmetric monoidal category C. Define the operad OA by

OAðnÞ ¼ A if n ¼ 1 and zero otherwise. The algebras over OA in C are precisely the A-

modules. A map of monoids A ! B induces a map of operads OA ! OB.

Definition 2.6 Let C be a cofibrantly generated symmetric monoidal model category. A

monoid A in C is strongly admissible if there is another monoid A0 and a weak equiv-

alence u : A0 ! A such that ðOA;OA0 ;uÞ is a strongly admissible pair.

The constant simplicial object functor sends an object X to the simplicial object X� with

Xn ¼ X for all n. If C is symmetric monoidal, this is a symmetric monoidal functor for the

objectwise tensor product on sC. Thus, if O is a C-colored operad in C, we can view it as a

C-colored operad in the category of simplicial objects sC by applying the constant functor

levelwise.

Lemma 2.7 Suppose O is an admissible C-colored operad in a simplicial symmetric
monoidal model category C. For every simplicial object A� in AlgOðCÞ there is a natural
isomorphism

|U(A•)|CC
∼= U(|A•|AlgO(C)),

where U and j � j denote the corresponding forgetful and realization functor, respectively.

Proof In any simplicial model category there are adjoint functors j � jC : sC ! C and

SingC : C ! sC, where SingCðXÞ is the simplicial object with SingCðXÞn ¼ XD½n�. Since
AlgOðCÞ is also a simplicial model category, we have the adjunction
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| − |AlgO(C) : sAlgO(C) AlgO(C) : SingAlgO(C).

By Lemma A.3 (ii) j � jC is a symmetric monoidal functor. Hence there exists an induced

adjunction between O-algebras in sC and C. But the O-algebras in sC — viewing O as a

constant simplicial object in sC — are precisely sAlgOðCÞ. We claim the two adjoint pairs

are isomorphic. Indeed, if A is an O-algebra, AD½n� is ðUOAÞD½n� with O-algebra structure

given by the composite EndðAÞ ! EndðAD½n�Þ, as explained in [19, I.5]. It follows easily

that the right adjoints coincide. h

Proposition 2.8 Suppose O is an admissible C-colored operad in a cofibrantly generated
symmetric monoidal model category C.

(i) If O has an underlying cofibrant C-colored collection, then every cofibrant O-

algebra is underlying cofibrant.
(ii) If O has an underlying cofibrant pointed C-colored collection and C has a second

symmetric monoidal model structure with the same weak equivalences and
cofibrant unit, then every cofibrant O-algebra is underlying cofibrant in this model
structure.

Proof The proof for operads in [3, Corollary 5.5] extends to colored operads. (The proof

of [4, Theorem 4.1] gives closely related steps.) Alternatively, use the colored operads

version of [19, Proposition 4.8]. h

We refer to Appendix A.1 for the Reedy model structure on simplicial categories.

Lemma 2.9 Suppose O is a C-colored operad with an underlying cofibrant collection in a
cofibrantly generated symmetric monoidal model category C. Then O — viewed as an
operad in sC via the constant functor — has an underlying cofibrant C-colored collection
in sC.

Proof Suppose G is a discrete group and CG is the category of objects in C with right G-

actions. Then the Reedy model structure on sðCGÞ — for the transferred model structure on

CG — coincides with the model structure on ðsCÞG transferred from the Reedy model

structure on sC. Thus the corresponding model structures on sCollCðCÞ and CollCðsCÞ
coincide. Recall that Dop has cofibrant constants [12, Corollary 15.10.5]. Thus cofibrancy

of the underlying C-colored collection of O in CollCðCÞ implies the underlying C-colored
collection of O — viewed as a constant simplicial object — is Reedy cofibrant in

sCollCðCÞ [12, Theorem 15.10.8(1)], and hence it is cofibrant in CollCðsCÞ. h

Lemma 2.10 Suppose O is an admissible C-colored operad in a symmetric monoidal

model category C. Then sAlgOðCÞ has a model structure transferred from ðsCÞC —
equipped with the colorwise Reedy model structure — which coincides with its Reedy
model structure.
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Proof We show that the Reedy model structure on sAlgOðCÞ is the transferred model

structure from ðsCÞC. Since the weak equivalences are defined objectwise in the Reedy

model structure, the weak equivalences in sAlgOðCÞ are precisely the maps that become

weak equivalences in ðsCÞC . A map in sAlgOðCÞ is a Reedy fibration if certain maps

involving matching objects and fiber products are fibrations in AlgOðCÞ. But since the

fibrations in AlgOðCÞ are the underlying fibrations and the matching objects and fiber

products commute with taking the underlying collection, the result follows. h

Corollary 2.11 Suppose O is an admissible C-colored operad in a cofibrantly generated
symmetric monoidal model category C.

(i) If O has an underlying cofibrant C-colored collection, then any Reedy cofibrant
object in sAlgOðCÞ is Reedy cofibrant as an object in sC.

(ii) Suppose O has an underlying cofibrant pointed C-colored collection and C has a
second symmetric monoidal model structure with the same weak equivalences and
cofibrant unit. Then any Reedy cofibrant object in sAlgOðCÞ is cofibrant in sC
equipped with the Reedy model structure induced by this model structure on C.

Proof The category of O-algebras in sC has a model structure transferred from ðsCÞC by

assumption and Lemma 2.10. Moreover, sC is a symmetric monoidal model category by

Lemma A.3 (i). Also every object in sC is small relative to the whole category.

To prove part (i) note that the constant operad on O in sC has an underlying cofibrant

collection by Lemma 2.9. Thus we can apply Proposition 2.8(i) to sC with the Reedy

model structure. Since a Reedy cofibrant object of sAlgðOÞ is cofibrant for the transferred
model structure, by Lemma 2.10, this gives the result.

Part (ii) is proved similarly by reference to [19, Proposition 4.8]. (By assumption the

constant operad on O in sC has an underlying cofibrant collection in sC for the Reedy

model structure induced by the second model structure on C.) h

3 (Co)localization of algebras over colored operads

3.1 Colocalization of algebras

In this section we show that tensor-closed K-colocalization functors preserve algebras over

cofibrant C-colored operads. More precisely, we prove that if O is a cofibrant C-colored
operad and f is an LFðKÞ-colocalization in the category of O-algebras AlgOðCÞ, then U(f)
is a K-colocalization in C, where U denotes the forgetful functor.

If K is a set of isomorphism classes of objects of HoðCÞ, and C is a set of colors, denote

by KC the set of objects in HoðCÞC defined as KC ¼
Q

c2C K. Note that an object in CC is

KC-colocal if and only if it is colorwise K-colocal.

Lemma 3.1 Suppose O is a strongly admissible C-colored colored operad in a cofibrantly
generated simplicial symmetric monoidal model category C. For a simplicial object A� in
AlgOðCÞ, the canonical map
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hocolimΔopU(A•) −→ U(hocolimΔopA•)

is a weak equivalence, where U denotes the corresponding forgetful functor.

Proof We give two proofs according to the two cases which appear in the definition of

strongly admissible (Definition 2.2). In the first case, since O is strongly admissible, there

is a weak equivalence u : O0 ! O such that O0 has an underlying cofibrant C-colored
collection and AlgOðCÞ is Quillen equivalent to AlgO0ðCÞ. Let A� be a simplicial object in

AlgOðCÞ and consider the simplicial object B� ¼ u�A� in AlgO0ðCÞ. By the homotopy

invariance of the homotopy colimit, we may further assume that B� is Reedy cofibrant. By

Lemma A.4, sC is cofibrantly generated. Thus by Corollary 2.11(i) UðB�Þ is Reedy

cofibrant as well. By Lemma A.1, jB�jAlgO0 ðCÞ computes the homotopy colimit of B�, and

jUðB�ÞjCC computes the homotopy colimit of UðB�Þ. Lemma 2.7 gives an isomorphism

jUðB�ÞjCC ffi UðjB�jAlgO0 ðCÞÞ. So we obtain that

hocolimΔopU(B•) −→ U(hocolimΔopB•)

is a weak equivalence for every simplicial object B� 2 AlgO0 ðCÞ. To finish the proof note

that hocolimDopUðA�Þ ¼ hocolimDopUðB�Þ since A� and u�A� have the same underlying

object (we just change the algebra structure). But also

U(hocolimΔopB•) = U(hocolimΔopϕ∗A•)

Uϕ∗(hocolimΔopA•)
= U(hocolimΔopA•),

because the functor u� is a right Quillen equivalence and hence commutes with homotopy

colimits.

In the second case, we proceed as in the first case except that we also use the symmetric

monoidal model category sC equipped with the Reedy model structure induced by the

second model structure on C. Starting with a Reedy cofibrant B ¼ u�A� (here only the

first model structure on C enters) Corollary 2.11(ii) gives a Reedy cofibrant UðB�Þ (here
the second model structure enters). The last part of the argument is as in the first case using

the fact that jUðB�ÞjCC also computes the homotopy colimit of UðB�Þ since the two model

structures on C furnish a Quillen equivalence. h

Let C be a symmetric monoidal model category and O a C-colored operad in C. Given any

O-algebra A in AlgOðCÞ we define the standard simplicial object associated to A by

setting An ¼ ðFUÞnþ1A with the usual structure maps. Here, F and U denote the free

functor and the forgetful functor, respectively. There is a canonical augmentation A� !
A obtained by viewing A as a constant simplicial object.

Lemma 3.2 Suppose O is a strongly admissible colored operad in a cofibrantly generated
simplicial symmetric monoidal model category C. For every O-algebra A, the augmen-
tation map induces a canonical weak equivalence hocolimDopA� ! A.
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Proof Let eD denote the split augmented simplicial category with naturally ordered objects

½�1�þ ¼ fþg, ½n�þ ¼ fþ; 0; . . .; ng for n
 0. Morphisms in eD are monotone maps pre-

serving þ, so eD has an initial object. The evident functor from Dop to eD
op

is homotopy

right cofinal in the sense of [12, Definition 19.6.1]. Thus, by [12, Theorem 19.6.7(1)], for

any split augmented simplicial object X� in C the natural map

hocolimΔopX• −→ hocolim
Δop X• ∼= X−1

is a weak equivalence. The result now follows from Lemma 3.1 since UðA�Þ ! UðAÞ is
a split augmented simplicial object. h

Remark 3.3 In Lemma 3.2 one should be mindful of forming the ‘‘correct’’ derived

simplicial object, i.e., in degree n it is weakly equivalent to ðFQUÞnþ1A, where Q is a

cofibrant replacement functor in CC.

Lemma 3.4 Let O be a strongly admissible C-colored operad in a cofibrantly generated
simplicial symmetric monoidal model category C, and K a tensor-closed set of isomor-

phism classes of objects of HoðCÞ. Suppose Oðc1; . . .; cn; cÞ �L � preserves K-colocal

objects for all ðc1; . . .; cn; cÞ, n
 0. If X in CC is colorwise K-colocal, then LFðXÞ is
underlying colorwise K-colocal.

Proof Since O is strongly admissible we may assume that O has an underlying cofibrant

collection or an underlying cofibrant pointed collection. We note that Oðc; cÞ � X is

cofibrant in C for every cofibrant X and every c 2 C also in the second case. Moreover, we

have

F (X)(c) =
n≥0 d∈Cn

O(d1, . . . , dn; c) ⊗Σn
X(d1) ⊗ · · · ⊗ X(dn) .

The result follows now from the fact that K is tensor-closed, K-colocal objects are closed

under coproducts, and F(X)(c) is a homotopy quotient of K-colocal objects for every

c 2 C, hence K-colocal. h

Remark 3.5 If Oðc1; . . .; cn; cÞ is K-colocal, then Oðc1; . . .; cn; cÞ � � preserves K-colocal

objects for all ðc1; . . .; cn; cÞ, n
 0, since K is tensor-closed. The converse holds provided

the unit I is K-colocal.

Lemma 3.6 Under the same assumptions as in Lemma 3.4, let D : I ! AlgOðCÞ be a
diagram of underlying colorwise K-colocal algebras. Then hocolimID is underlying
colorwise K-colocal.

Proof We give two proofs according to the two cases in the definition of strongly

admissible. In the first case we can assume O has an underlying cofibrant collection. Also

assume without loss of generality that D takes values in cofibrant objects. For every i 2 I ,
let DðiÞ� ! DðiÞ be the augmented standard simplicial object associated to D(i). Note that
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by Proposition 2.8(i) and the explicit formula for the free functor F, UðFUÞnDðiÞ is

cofibrant for every i 2 I and n
 0. For Xn ¼ hocolimIDð�Þn we have

Xn ’ LFðhocolimIUðFUÞnDð�ÞÞ. By Lemma 3.4, each UðFUÞnDðiÞ is colorwise K-

colocal and thus Xn is underlying colorwise K-colocal. Lemma 3.2 implies that

hocolimID ’ hocolimDopX�. Finally, hocolimDopUðX�Þ ’ UðhocolimDopX�Þ follows from

Lemma 3.1.

Now we treat the second case. We can assume that O has an underlying cofibrant

pointed collection. Assume, without loss of generality, that D takes values in cofibrant

objects. We note that the ðFUÞnDðiÞ have the correct homotopy type, that is, the canonical

maps ðFQUÞnDðiÞ ! ðFUÞnDðiÞ are weak equivalences, where Q denotes a cofibrant

replacement functor in CC and C is the set of colors of O. This follows from Proposi-

tion 2.8(ii) and the fact LF can also be computed by applying F to an object of CC which is

colorwise cofibrant for the second cofibrantly generated model structure on C offered by

the strong admissibility of O. Using this the proof works as in the first case. h

Proposition 3.7 With the same assumptions as in Lemma 3.4 the following holds.

(i) If A is an underlying colorwise K-colocal O-algebra, then A is LFðKCÞ-colocal.
(ii) If AlgOðCÞ has a good LFðKCÞ-colocalization, then every LFðKCÞ-colocal object

is underlying colorwise K-colocal.

Proof We may assume that O has an underlying cofibrant collection or an underlying

cofibrant pointed collection depending on the strong admissibility condition used.

To prove part (i) we may assume A is cofibrant. Let A� ! A be the associated

augmented standard simplicial object. As in the proof of Lemma 3.6 it follows that An has

the correct homotopy type for every n, i.e., each An is weakly equivalent to

ððLFÞUÞnþ1ðAÞ. By Lemma 3.2, the map hocolimA� ! A is a weak equivalence. Each

An is FðKCÞ-colocal by Lemmas 3.4 and A.7(ii). Thus A is FðKCÞ-colocal.
For part (ii), note that if X in CC is colorwise K-colocal, then LFðXÞ is underlying

colorwise K-colocal by Lemma 3.4. We conclude from Lemma 3.6 since by assumption

the FðKCÞ-colocal objects are generated under homotopy colimits by FðKCÞ. h

Theorem 3.8 Let O be a strongly admissible C-colored operad in a cofibrantly generated
simplicial symmetric monoidal model category C. Let K be a tensor-closed set of iso-

morphism classes of objects of HoðCÞ. Suppose AlgOðCÞ has a good LFðKCÞ-colocaliza-
tion and Oðc1; . . .; cn; cÞ � � preserves K-colocal objects for all ðc1; . . .; cn; cÞ, n
 0. If

A0 ! A is an LFðKCÞ-colocalization of A in AlgOðCÞ, then UðA0Þ ! UðAÞ is a KC-

colocalization in CC.

Proof By Proposition 3.7(ii) the object UðA0Þ is KC-colocal, and by Lemma A.7(ii) the

map UðA0Þ ! UðAÞ is a KC-colocal equivalence. h

Remark 3.9 Theorem 3.8 implies Proposition 3.7(i) provided AlgOðCÞ acquires a good

LFðKCÞ-colocalization. If CC has a good KC-colocalization, the theorem states that for a

cofibrant replacement A0 ! A in AlgOðCÞ
LFðKCÞ

the map UðA0Þ ! UðAÞ is a cofibrant

replacement in ðCCÞK
C

.
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Proposition 3.10 If either of the model structures AlgOðCÞ
LFðKCÞ or AlgOðCKÞ exists, then

so does the other and they coincide.

Proof It suffices to check that the fibrations and weak equivalences coincide. For the

fibrations, note that the model structures on the algebras are transferred from C and CK, for
the same classes of fibrations. For the weak equivalences we use Lemma A.7(ii). h

Remark 3.11 The model structure AlgOðCÞ
LFðKCÞ

exists if AlgOðCÞ is right proper, e.g.,

when C is right proper. We also remark that AlgOðCKÞ exists if the colocalized model

structure CK can be transferred. A version of Proposition 3.10 for model categories of

algebras over monads can be found in [22, Theorem 2.6] and [6, Theorem 7.14(a)].

3.2 Localization of algebras

In this section we show that tensor-closed S-localization functors preserve algebras over

cofibrant C-colored operads. More precisely, we prove that if O is a cofibrant C-colored
operad and f an LFðSÞ-localization in AlgOðCÞ, then U(f) is an S-localization in C.

If S is a set of homotopy classes of maps in C and C is a set of colors, we denote by SC

the set
Q

c2C S. Note that a map in CC is an SC-local equivalence if and only if it is

colorwise an S-local equivalence.

Lemma 3.12 Let O be a strongly admissible C-colored operad in a cofibrantly generated
simplicial symmetric monoidal model category C. Suppose S is set of homotopy classes of
maps such that S-equivalences are tensor-closed. If g is colorwise an S-equivalence, then
F(g) is underlying colorwise an S-equivalence.

Proof Let g : A ! B be a map in C. Then UF(g) is the map

n≥0 c1,...,cn∈C

O(c1, . . . , cn; c) ⊗Σn
A (c1) ⊗ · · · ⊗ A (cn)

n≥0 c1,...,cn∈C

O(c1, . . . , cn; c) ⊗Σn
B(c1) ⊗ · · · ⊗ B(cn) .

By assumption, the map Aðc1Þ � � � � �AðcnÞ ! Bðc1Þ � � � � �BðcnÞ is an S-local
equivalence for every n-tuple ðc1; . . .; cnÞ, and tensoring with Oðc1; . . .; cnÞ preserves this
property. The result follows by using that S-local equivalences are closed under homotopy

colimits and coproducts. h

Remark 3.13 The assumptions of the theorem are automatically satisfied if, for instance,

the functor X �L � preserve S-local equivalences for all X in C.
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Theorem 3.14 Let O, C, C, and S be as above and suppose in addition that AlgOðCÞ has a
good LFðSCÞ-localization. If A ! A0 is an LFðSCÞ-localization in AlgOðCÞ, then

UðAÞ ! UðA0Þ is an SC-localization in CC.

Proof By Lemma A.7(i) it follows that UðA0Þ is SC-local. It remains to show the map

UðAÞ ! UðA0Þ is an SC-local equivalence. Consider the diagram

FUA FUFUA · · · (FU)nA · · ·

F (UA ) FUF (UA ) · · · (FU)n−1F (UA ) · · · ,

where UA ! dUA is a fibrant replacement of UA in the localized model category ðCCÞSC .

The leftmost vertical map is an FðSCÞ-local equivalence by Lemma A.7(i).

By [9, Theorem 5.7] the map UA ! dUA coincides with UðA ! BÞ for some map of

O-algebras A ! B. Lemma 3.12 shows UFUA ! UFUB is an SC-local equivalence,

hence FUFUA ! FUFUB is an FðSCÞ-local equivalence. Iterating this argument, it

follows that

An = (FU)nA −→ (FU)n−1F (UA ) = (FU)nB = Bn

is an FðSCÞ-local equivalence. Taking homotopy colimits in the previous diagrams yields

the commutative square

A hocolimΔopA•

B hocolimΔopB•.

The right vertical map is an FðSCÞ-local equivalence (a homotopy colimit of FðSCÞ-local
equivalences). The horizontal maps are weak equivalences by Lemma 3.2. Hence A ! B

is an FðSCÞ-local equivalence. By repeating the same construction with A0 instead of A,

we obtain a commutative diagram

A A

B B ,

where all four maps are FðSCÞ-local equivalences and A0, B and B0 are FðSCÞ-local.
Hence the left vertical map and the bottom horizontal map are weak equivalences. If we

apply the forgetful functor we get a commutative diagram
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U(A ) U(A )

U(B) = U(A ) B = U(A ),

where the left vertical map is an SC-local equivalence and the right vertical and bottom

horizontal maps are weak equivalences. It follows that UðAÞ ! UðA0Þ is an SC-local

equivalence. h

Proposition 3.15 If the transferred model structure AlgOðCSÞ exists, then the localized
model structure AlgOðCÞLFðSCÞ also exists and they coincide.

Proof It suffices to check that AlgOðCSÞ has the same cofibrations as AlgOðCÞ and that its

fibrant objects are the LFðSCÞ-local objects. The trivial fibrations of AlgOðCSÞ are the

same as the trivial fibrations of AlgOðCÞ, because the model structures are transferred from

C and CS , respectively. Hence, both model structures have the same cofibrations. For the

fibrant objects we use Lemma A.7(i). h

Remark 3.16 The model structure AlgOðCÞLFðSCÞ exists if AlgOðCÞ is left proper. We also

remark that AlgOðCSÞ exists if the localized model structure CS can be transferred. A

version of Proposition 3.15 for model structures on algebras over monads can be found in

[2, Theorem 3.4] and [6, Theorem 7.14(b)].

4 (Co)localization of modules over algebras

In the following we shall run similar arguments for modules over a given monoid instead

of algebras over a colored operad, culminating in analogous statements of Theorem 3.8

and Theorem 3.14. When colocalizing (resp. localizing) a module over a monoid A with

respect to a tensor-closed set of objects K (resp. of morphisms S) for whichA is K-colocal

(resp. S-local), one can simply apply Theorem 3.8 or Theorem 3.14 because there exists an

operad whose algebras are exactly the modules over the given monoid. That is, let O be the

operad with Oð1Þ ¼ A and OðiÞ ¼ ; for i 6¼ 1. Then the categories of O-algebras and A-

modules are equivalent. Furthermore, O is strongly admissible ifA is. But in practice, e.g.,

for the motivic slice filtration, one wants to colocalize or localize a module with respect to

a colocalization or localization functor other than the one for which the monoid is colocal

or local.

4.1 Colocalization of modules

We first address colocalization of modules over monoids, and second colocalization of

modules over arbitrary operads. In the latter case we employ enveloping algebras and

restrict to monoids.
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Lemma 4.1 Let A be a strongly admissible monoid in a symmetric monoidal model
category C. Then the forgetful functor U : ModðAÞ ! C preserves homotopy colimits,
where ModðAÞ denotes the category of A-modules.

Proof Since A is strongly admissible, we may assume its underlying object is cofibrant

(case (i) in Definition 2.2), or its unit map is a cofibration in C (case (ii)). In the first case, U
is a left Quillen functor since its right adjoint given by the internal hom HomðA;�Þ
preserves fibrations and trivial fibrations, so the result follows. In the second case, the same

argument shows that U is a left Quillen functor for the model structure on C furnished by

the strong admissibility of A. h

Proposition 4.2 With A and C as in Lemma 4.1, let K be a set of isomorphism classes of

objects for HoðCÞ. Suppose A�L K is underlying K-colocal. If M 2 ModðAÞ is

underlying K-colocal, then it is also A�L K-colocal. If, in addition, ModðAÞ has a good

A�L K-colocalization, then every A�L K-colocal A-module is underlying K-colocal.

Proof We may assume M is cofibrant. It follows, using the left Quillen functor U in the

proof of Lemma 4.1, that M is underlying cofibrant (in case (i)), or cofibrant in C for the

second model structure (in case (ii)). Letting Mn ¼ A�ðnþ1Þ �M, the augmented sim-

plicialA-moduleM� ! M splits after forgetting the A-module structure. By Lemma 4.1

the natural A-module map hocolimM� ! M is a weak equivalence. Each Mn is

A�L K-colocal by Lemma A.7(ii) and the assumption that A�L K is underlying K-

colocal, since K-colocal object are generated by taking the closure of K under weak

equivalences and homotopy colimits. It follows that M is A�L K-colocal.

For the second assertion, we use Lemma 4.1, the fact that A�L K-colocal A-modules

are generated under homotopy colimits by A�L K, and the assumption that A�L K is

underlying K-colocal. h

Remark 4.3 Note that since we are dealing with monoids instead of arbitrary operads, we

do not assume in Proposition 4.2 that the set K is tensor-closed (cf. Proposition 3.7).

Theorem 4.4 WithA, C, and K as in Proposition 4.2, suppose thatA�L K is underlying

K-colocal and ModðAÞ has a good A�L K-colocalization. If M0 ! M is a A�L K-

colocalization of M 2 ModðAÞ, then UM0 ! UM is a K-colocalization in C.

Proof Proposition 4.2 implies that M0 is underlying K-colocal. Using Lemma A.7(ii) we

conclude that M0 ! M is an underlying K-colocal equivalence. h

Next we discuss E1 operads, i.e., parameter spaces for multiplication maps that are

associative and commutative up to all higher homotopies, and their algebras. For an operad

O in C and an O-algebra A we denote by EnvOðAÞ the enveloping algebra of A. This is a

monoid with the property that ModðAÞ ’ ModðEnvOðAÞÞ. For an operad O with

underlying cofibrant collection, AlgOðCÞ has a left semi model structure [19, Theorem 4.7]

provided the domains of the generating cofibrations of C are small relative to the whole

category.
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Theorem 4.5 Let C be a cofibrantly generated symmetric monoidal model category with a
set K of isomorphism classes of objects for HoðCÞ. Suppose C is left proper, its generating
cofibrations can be chosen in such a way that their domains are cofibrant and small
relative to the whole category, and its unit is cofibrant. Let O be a pointed E1 operad in C.
Suppose A 2 AlgOðCÞ is cofibrant, the objects of A�L K are underlying K-colocal, and

ModðAÞ has a good EnvOðAÞ �L K-colocalization. If M0 ! M is an EnvOðAÞ �L K-

colocalization of M 2 ModðAÞ, then UM0 ! UM is a K-colocalization in C.

Proof The enveloping algebra EnvOðAÞ is underlying cofibrant in C [19, Corollary 6.6]

(the cofibrancy assumption on the unit is missing in loc. cit.). By [19, Lemma 8.6], the

adjoint EnvOðAÞ ! A in ModðAÞ of the unit map for A is a weak equivalence (here we

use thatO is an E1 operad). Hence theA-module EnvOðAÞ �L K is underlyingK-colocal.

Thus EnvOðAÞ satisfies the assumptions of Theorem 4.4, and the result follows. h

Remark 4.6 In the above theorem we could also assume that O is cofibrant as an operad

(the operads in C form a left semi model category over CR;� — for notation, see [19, §3] —

by [19, Theorem 3.2]), and A is underlying cofibrant [19, Corollaries 6.3, 8.7].

It is desirable to have a parallel theory for modules over operad algebras (in the one-

colored case). Since we have the equivalence ModðAÞ ’ ModðEnvOðAÞÞ and the

enveloping algebra is always a monoid, we can restrict to the latter case. A key point is to

show that EnvOðAÞ is underlying K-colocal under suitable assumptions, making our proof

of Theorem 4.5 for E1 operads go through. For this we employ the simplicial resolution

A� ! A. It is easily seen that EnvOðAnÞ is underlying K-colocal for each n
 0, so the

result follows provided EnvOðAÞ is weakly equivalent to the homotopy colimit over Dop of

the diagram EnvOðA�Þ.
For a symmetric monoidal category C, we denote by PairsðCÞ the category of pairs

ðO;AÞ, where O 2 OperðCÞ and A 2 AlgOðCÞ. Next we review some facts about the

colored operads O and P whose algebras are OperðCÞ and PairsðCÞ, respectively. The set
of colors for O is N, while for P it is N [ fag. The operad O is a special case of a colored

operad defined in [11, §3] whose algebras are itself colored operads for a fixed set of colors

C. We take C to be a one point set and let O ¼ SCC in the notation of [11]. The colored

operad O is the image in C of an N-colored operad in sets denoted SC, which we now

describe (an explicit description of O can be found in [4, 1.5.6]).

Let SCðn1; . . .; nk; nÞ denote the set of isomorphism classes of certain trees. We consider

planar connected directed trees such that each vertex has exactly one outgoing edge. There

are two different types of edges, namely inner edges with vertices at both ends, and

external edges with a vertex only at one end or no vertices at all. It follows that there is

exactly one external edge leaving a vertex, the so-called root. There are n external edges

which are input edges to vertices, called leaves. These are numbered by f1; . . .; ng. There
are k vertices numbered by f1; . . .; kg. The planarity of the tree means that the input edges

of each vertex v are numbered by f1; . . .; inðvÞg, where if v is numbered by i, then
inðvÞ ¼ ni. As described in [4, 1.5.6] or [11, §3.2] there is anN-colored operad structure on

SC . We set Os ¼ SC. Then O is the image of Os under the tensor functor sending the one

point set to the unit, and AlgðOÞ ’ OperðCÞ [11, Proposition 3.5, §3.3].

Let c1; . . .; ck 2 N [ fag, n 2 N. If each ci is in N, we set

Pðc1; . . .; ck; nÞ ¼ Oðc1; . . .; ck; nÞ, and otherwise we set Pðc1; . . .; ck; nÞ ¼ ;. If the output
c ¼ a, then Pðc1; . . .; ck; cÞ ¼ Oðc01; . . .; c0k; 0Þ, where c0i ¼ ci if ci 2 N and c0i ¼ 0 if ci ¼ a.
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Proposition 4.7 There is an N [ fag-colored operad structure on P. Moreover, there is a
natural equivalence AlgðPÞ ’ PairsðCÞ.

Proof The composition product and the unit maps of P are defined using the composition

product and unit maps of O. If A is a P-algebra, then the structure maps

P(c1, . . . , ck; c) ⊗ A (c1) ⊗ · · · ⊗ A (ck) −→ A (c)

when c1; . . .; ck; c 2 N give the sequence O ¼ fAðnÞgn
 0 the structure of an operad, since

Pðc1; . . .; ck; cÞ ¼ Oðc1; . . .; ck; cÞ. The O-algebra structure on AðaÞ is defined by the

structure maps

P(n, a, (k). . ., a; a) ⊗ A (k) ⊗ A (a)⊗ (n)· · · ⊗A (a) −→ A (a),

since Pðn; a; . . .ðkÞ ; a; aÞ ¼ Oðn; 0; . . .ðnÞ ; 0; 0Þ. h

Note that, as for O, P is the image in C of a colored operad, say Ps, in sets.

Lemma 4.8 If the unit in C is cofibrant, then the underlying collections of O and P are
cofibrant. More precisely, let c1; . . .; ck and c be sequences of colors for O and P,

respectively. Then the stabilizer groups of these sequences — which are subgroups of Rk —
act freely on Osðc1; . . .; ck; cÞ and Psðc1; . . .; ck; cÞ, respectively.

Proof This uses the explicit description of these colored operads: two isomorphic planar

trees of the type we consider are already uniquely isomorphic, the additional numbering of

the vertices — and leaves for the case of Ps — force the actions to be free. h

Proposition 4.9 Let C be a cofibrantly generated simplicial symmetric monoidal model
category such that all of its objects are small relative to the whole category. Suppose P is
strongly admissible (e.g., the unit in C is cofibrant and PairsðCÞ has a transferred model
structure by Lemma 4.8). For a simplicial object A� in PairsðCÞ there is a canonical weak
equivalence

hocolimΔopU(A•) −→ U(hocolimΔopA•).

Here, U denotes the forgetful functor PairsðCÞ ! CN[fag.

Proof This follows directly from Lemma 3.1 and Proposition 4.7. h

There is an embedding / : OperðCÞ ! PairsðCÞ given by O7!ðO;Oð0ÞÞ. It is shown in [5,
Proposition 1.6] that / has a left adjoint ðO;AÞ7!OA. The operad OA has the property

that the category of O-algebras under A is equivalent to OA-algebras, and the canonical

O-algebra map A ! OAð0Þ is an isomorphism [5, Lemma 1.7]. Moreover, there is a

canonical isomorphism of monoids EnvOðAÞ ffi OAð1Þ; see [5, Theorem 1.10].
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Lemma 4.10 Suppose C is a symmetric monoidal model category, and OperðCÞ and
PairsðCÞ have transferred model structures. Then the embedding / : OperðCÞ ! PairsðCÞ
is a right Quillen functor.

Proof With these assumptions the functor / has a left adjoint and preserves fibrations and

weak equivalences. h

Lemma 4.11 Let C be a cofibrantly generated symmetric monoidal model category such
that the domains of the generating cofibrations are small relative to the whole category.
Suppose PairsðCÞ has a transferred model structure. Then ðO;AÞ 2 Pairs is cofibrant if
and only if O is cofibrant in OperðCÞ and A is cofibrant in AlgOðCÞ.

Proof Recall OperðCÞ has a left semi model structure over CR;�, and if O 2 OperðCÞ is
cofibrant, then the same holds for AlgOðCÞ over C [19, Theorems 3.2, 4.3].

Suppose ðO;AÞ is cofibrant. The lifting property with respect to trivial fibrations

ðO1; ptÞ ! ðO2; ptÞ shows that O is cofibrant. And the lifting property with respect to

trivial fibrations ðO;A1Þ ! ðO;A2Þ shows that A is cofibrant in AlgOðCÞ.
Conversely, assume O and A are cofibrant. Let ðO1;A1Þ ! ðO2;A2Þ be a trivial

fibration in PairsðCÞ, and ðO;AÞ ! ðO2;A2Þ a map. First, we can lift O ! O2 to a map

O ! O1. Pulling the algebrasA1 andA2 back to O gives us a lifting problem in AlgOðCÞ,
which can be solved. h

Theorem 4.12 Let C be a cofibrantly generated simplicial symmetric monoidal model
category such that all of its objects are small relative to the whole category. Let K be a
tensor-closed set of isomorphism classes of objects for HoðCÞ. Suppose O and P are
strongly admissible (e.g., if the unit in C is cofibrant and OperðCÞ and PairsðCÞ have
transferred model structures). If ðO;AÞ 2 PairsðCÞ is cofibrant and each OðnÞ is K-
colocal and A is underlying K-colocal, then the enveloping algebra EnvOðAÞ is
underlying K-colocal.

Proof Let F : C�AlgðOÞ :U be the free-forgetful adjunction. Let A� ! A be the

standard augmented simplicial object with An ¼ ðFUÞnþ1A. Since AlgOðCÞ is a left semi

model category over C it follows that UðFUÞnA, n
 0, is cofibrant (for n[ 0 one can also

use the explicit formula for F). By Lemma 4.11 it follows that ðO;AnÞ 2 PairsðCÞ is

cofibrant.

For X 2 C the enveloping algebra EnvOðFXÞ ffi OFXð1Þ is given by the formula

EnvO(FX) ∼=
n≥0

O(n + 1) ⊗Σn
X⊗n.

It follows that EnvOðAnÞ is underlying K-colocal for each n
 0.

Since the augmented simplicial object UA� ! UA splits, Proposition 4.9 for PairsðCÞ
implies there is a canonical weak equivalence

hocolimΔopA• −→ A .

Next we apply the derived functor of the left Quillen functor ðO0;A0Þ7!O0
A0 — see
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Lemma 4.10 — to ðO;A�Þ ! ðO;AÞ, giving the augmented simplicial object OA� !
OA in OperðCÞ. Since derived left Quillen functors commute with homotopy colimits,

there is a weak equivalence

hocolimΔopOA• −→ OA .

Proposition 4.9 for OperðCÞ implies the weak equivalence

hocolimΔopOA•(1) −→ OA (1).

Here, the homotopy colimit is computed in C. It follows that OAð1Þ ffi EnvOðAÞ is

underlying K-colocal, as claimed. h

Corollary 4.13 Let C, O, A, and K be as in Theorem 4.12 and suppose that ModðAÞ has
a good EnvOðAÞ �L K-colocalization. If M0 ! M is an EnvOðAÞ �L K-colocalization

of M 2 ModðAÞ, then UðM0Þ ! UðMÞ is a K-colocalization in C.

Proof Since K is tensor closed and EnvOðAÞ is underlying K-colocal by Theorem 4.12, it

follows that the A-module EnvOðAÞ �L K is underlying K-colocal. To conclude we

proceed exactly as in the proof of Theorem 4.4, now with the monoid EnvOðAÞ. h

Remark 4.14 One may ask for other hypothesis such that Theorem 4.12 still holds. With C
and K as above, supposeOperðCÞ and PairsðCÞ have transferred model structures. Suppose

C has a second simplicial model structure with the same weak equivalences and cofibrant

unit. We wish to conclude that a cofibrant underlying K-colocal ðO;AÞ yields an

underlying K-colocal enveloping algebra EnvOðAÞ.
As a replacement for Proposition 4.9 we sketch an alternate argument: Suppose every

Reedy cofibrant object X� 2 sPairsðCÞ is cofibrant in sCN[fag for the Reedy model

structure. Now Ps — viewed as a colored operad in sSets — has an underlying cofibrant

collection. Let us assume the objectwise tensor functor sSets� sC ! sC is a Quillen

bifunctor. Then ci ! X� is a cofibration in sPairsðCÞ, where ci is the constant simplicial

object on the initial object i of PairsðCÞ, see [19, Proposition 4.8]. Since Dop has cofibrant

constants, it follows that X� is underlying Reedy cofibrant.

The same argument works for OperðCÞ. Alternatively, one can use that OperðCÞ is a left
semi model category over CR;�.

4.2 Localization of modules

As in the previous section, we first discuss localization of modules over monoids and then

localization of modules over arbitrary operads.

Given a monoid A, we say that the functor A�L � preserves S-equivalences if the

tensor product of A with any S-equivalence is an underlying S-equivalence.

Theorem 4.15 Let A be a strongly admissible monoid in a symmetric monoidal model

category C. Let S be a set of homotopy classes of maps such that A�L � preserves S-
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local equivalences and ModðAÞ has a good A�L S-localization. If M ! M0 is an

A�L S-localization of M 2 ModðAÞ, then UðMÞ ! UðM0Þ is an S-localization in C.

Proof The proof is basically the same as for Theorem 3.14. We note the assumption of

tensor-closedness on the S-local equivalences is not needed since the free A-module

functor is defined by FðXÞ ¼ A� X for every X in C, and therefore An ¼ ðFUÞnþ1A !
ðFUÞnþ1B ¼ Bn is an FðSÞ-equivalence for every map of monoids A ! B. h

Theorem 4.16 Let C be a cofibrantly generated simplicial symmetric monoidal model
category such that all of its objects are small relative to the whole category. Let S be a set
of homotopy classes of maps such that S-equivalences are tensor-closed. Suppose O and P
are strongly admissible (e.g., if the unit in C is cofibrant and OperðCÞ and PairsðCÞ have
transferred model structures). Let ðO;AÞ 2 PairsðCÞ be cofibrant. If A�L � preserves

S-equivalences, then so does EnvOðAÞ �L �.

Proof Let F : C�AlgðOÞ :U be the free-forgetful adjunction. Let A� ! A be the

standard augmented simplicial object with An ¼ ðFUÞnþ1A. Suppose that for every S-
local equivalence g the map A�L g is an S-local equivalence. Then, EnvOðAnÞ �L g is

also an S-local equivalence for every n
 0. Now, using the same argument as in the proof

of Theorem 4.12 with the operad OA, it follows that EnvO � g is an S-equivalence. h

Corollary 4.17 Let C, O, A and S be as in Theorem 4.16 and suppose that ModðAÞ has a
good EnvOðAÞ �L S-localization. If M ! M0 is an EnvOðAÞ �L S-localization for

M 2 ModðAÞ, then UðMÞ ! UðM0Þ is an S-localization in C.

Proof Theorem 4.16 shows EnvOðAÞ �L � preserves S-local equivalences. The result

follows by applying Theorem 4.15 to the monoid EnvOðAÞ. h

A Preliminaries on model categories

If C is a cofibrantly generated model category with set of generating cofibrations I and set

of generating trivial cofibrations J, we implicitly assume the (co)domains of the elements

of I are small relative to the I-cellular maps and that the (co)domains of the elements of J
are small relative to the J-cellular maps. This condition is satisfied if C is a combinatorial
model category; that is, C is cofibrantly generated and locally presentable, since in this case

every object is k-small for some cardinal k. Let sSets denote the category of simplicial

sets.

A.1 The Reedy model structure on simplicial objects

Let C be a model category. The category of simplicial objects in C is the category sC of Dop-

diagrams in C, where D denotes the simplicial category. In its Reedy model structure [12,

15.3] the weak equivalences are the levelwise weak equivalences, while the cofibrations

and fibrations are defined by means of latching and matching objects, respectively.
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Let C be a simplicial model category. The realization jX�jC of a simplicial object

X� : Dop ! C is the coequalizer of the diagram

[m]→[n] Δ[m] ⊗ Xn [n] Δ[n] ⊗ Xn

induced by Xn ! Xm and D½m� ! D½n�, respectively, for each map ½m� ! ½n� in D. Using
coend notation, as in [12, 18.3.2] and [14, IX.6], this can be recast as

|X•|C =
[n]∈Δ

Δ[n] ⊗ Xn = Δ ⊗Δop X•.

If the category is clear from the context we write jX�j instead of jX�jC.

Lemma A.1 Let C be a simplicial model category and X� a Reedy cofibrant simplicial
object in C. Then the Bousfield–Kan map

hocolimΔopX• = N(− ↓ Δop)op ⊗Δop X• −→ Δ ⊗Δop X• = |X•|

is a weak equivalence.

Proof See [12, Theorem 18.7.4]. h

The category s2C of bisimplicial objects in C is the category of simplicial objects in sC.
There is an obvious diagonal functor diag : s2C ! sC defined by diagðX�;�Þn ¼ Xn;n.

Lemma A.2 Let X�;� be a bisimplicial object in a simplicial model category C. Then there is
a natural isomorphism

[n],[m]∈Δ×Δ

(Δ[n] × Δ[m]) ⊗ Xn,m
∼=

[n]∈Δ

Δ[n] ⊗ Xn,n.

Proof The left Kan extension of the Yoneda functor D ! sSets along the diagonal D !
D� D is the functor D� D ! sSets that sends ([n], [m]) to D½n� � D½m�. Hence the

coends D�Dop diagðX�;�Þ and ðD� DÞDop�DopX�;� are isomorphic. h

If C has a symmetric monoidal structure, there is a symmetric monoidal tensor product in

sC defined by the objectwise tensor product, i.e., ðX� � Y�Þn ¼ Xn � Yn.

Lemma A.3 Let C be a symmetric monoidal model category.

(i) Then sC is a symmetric monoidal model category for the Reedy model structure.
(ii) If C is simplicial the realization functor is symmetric monoidal.
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Proof The first part is an application of [1, Theorem 3.51 and Example 3.52]. For the

second part, observe that

|X•| ⊗ |Y•| ∼=
[n]∈Δ

Δ[n] ⊗ Xn ⊗
[m]∈Δ

Δ[m] ⊗ Ym

∼=
([n],[m])∈Δ×Δ

(Δ[n] × Δ[m]) ⊗ Xn ⊗ Ym ∼=
[n]∈Δ

Δ[n] ⊗ Xn ⊗ Yn,

where the last isomorphism follows by applying Lemma A.2 to the bisimplicial object

ðX � YÞn;m ¼ Xn � Ym. h

Lemma A.4 Let C be a cofibrantly generated model category. Then the Reedy model
structure on sC is cofibrantly generated.

Proof Here we make use of smallness of the (co)domains of the sets of generating (trivial)

cofibrations, see [12, Theorem 15.6.27]. h

A.2 Bousfield (co)localizations

Let C be a simplicial model category, S a set of homotopy classes of maps in C, and K a set

of isomorphism classes of objects of HoðCÞ. The homotopy type of the derived simplicial

mapping space mapðX; YÞ can be computed using MapðQX;RYÞ, where Mapð�;�Þ is the
simplicial enrichment. Here, Q and R denote cofibrant and fibrant replacement functors in

C, respectively.
An object Z in HoðCÞ is S-local if for every representative f : A ! B of an element of

S, the induced map

f∗ : map(B, Z) −→ map(A, Z)

is an isomorphism in HoðsSetsÞ. An object Z in C is S-local if its image in HoðCÞ is so.
The class of S-local objects is closed under homotopy limits. A map g : X ! Y in HoðCÞ is
an S-local equivalence or simply an S-equivalence if for every S-local Z, the induced map

g∗ : map(Y, Z) −→ map(X, Z)

is an isomorphism in HoðsSetsÞ. A map X ! Y in C is an S-local equivalence if its image

in HoðCÞ is so.
A map f : X ! Y in HoðCÞ is a K-colocal equivalence if for any representative K of an

element of K, the induced map

f∗ : map(K, X) −→ map(K, Y )

is an isomorphism in HoðsSetsÞ. Likewise, a map in C is a K-colocal equivalence if its

image in HoðCÞ is so. An object W in HoðCÞ is called K-colocal if for every K-colocal

equivalence g : X ! Y , there is an induced isomorphism
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g∗ : map(W, X) −→ map(W, Y )

in HoðsSetsÞ. An object W in C is K-colocal if its image in HoðCÞ is so. The class of K-

colocal objects is closed under homotopy colimits.

If X is an object of C, an S-localization is an S-local equivalence X ! X0 for X0 S-local.
Dually, a K-colocalization is a K-colocal equivalence X0 ! X for X0 K-colocal.

If C is a simplicial symmetric monoidal model category we call S tensor-closed if the

class of S-local equivalences is closed under the derived tensor product. Likewise, K is

tensor-closed if the class of K-colocal objects is closed under the derived tensor product.

Definition A.5 Let S be a set of maps and K be a set of objects in a simplicial model

category C.

(i) C has a good S-localization if the left Bousfield localization with respect to S
exists; that is, if the classes of cofibrations in C and S-local equivalences define a

model structure on C. This is the S-local model structure denoted by CS .
(ii) C has a good K-colocalization if the right Bousfield localization with respect to K

exists; that is, if the classes of fibrations in C and K-colocal equivalences define a

model structure on C, and the K-colocal objects are generated under homotopy

colimits by the objects of K. This is the K-colocal model structure denoted by CK.

The S-local fibrations are the maps in C with the right lifting property with respect of all

maps of C that are cofibrations and S-local equivalences, Similarly, the K-colocal cofi-

brations are the maps in C with the left lifting property with respect to all maps of C that are

fibrations and K-colocal equivalences.

If C has a good CS-localization, then an S-localization of X is just a fibrant replacement

of X in the localized model structure CS (also called an S-local replacement). Similarly, if C
has a good K-colocalization, then a K-colocalization is a cofibrant replacement in the

colocalized model structure CK.

Theorem A.6 Let C be a cellular or combinatorial simplicial model category.

(i) If C is left proper, then C has a good S-localization for every set of maps S.
(ii) If C is right proper, then C has a good K-colocalization for every set of objects K.

Moreover, the K-colocal objects is the smallest class of objects of C that contains
K and is closed under homotopy colimits and weak equivalences.

Proof For C cellular see [12, Theorem 4.1.1] and [12, Theorem 5.1.1, Theorem 5.1.5]. If C
is combinatorial the result follows from [1, Theorem 4.7] and [1, §5]. h

If F : C ! D is a left Quillen functor, denote by LF : HoðCÞ ! HoðDÞ its left derived
functor. If U : D ! C is a right Quillen functor, denote by RU its right derived functor.
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Lemma A.7 Let F : C�D : U be a simplicial Quillen adjunction, S a set of homotopy
classes of maps in C, and K a set of isomorphism classes of objects of HoðCÞ.

(i) An object Z in D is LFðSÞ-local if and only if RUðZÞ is S-local in C.Moreover, if g
is an S-local equivalence in C, then LFðgÞ is an LFðSÞ-local equivalence in D.

(ii) A map f is an LFðKÞ-colocal equivalence in D if and only if RUðf Þ is a K-colocal
equivalence in C. Moreover, if W is K-colocal in C, then LFðWÞ is LFðKÞ-colocal
in D.

Proof Both statements follow by using derived adjunctions. h

B Colored operads

In this appendix we recall the definitions and basic properties of colored operads and their

algebras that are used in the paper. Throughout, V denotes a cocomplete closed symmetric

monoidal category with tensor product �, initial object 0, unit I, and internal hom

HomVð�;�Þ. The elements in the set C are referred to as colors.

Definition B.1 A C-colored collection K in V consists of a set of objects Kðc1; . . .; cn; cÞ in
V for each ðnþ 1Þ-tuple of colors ðc1; . . .; cn; cÞ equipped with a right action of the

symmetric group Rn given by maps

α∗ : K(c1, . . . , cn; c) −→ K(cα(1), . . . , cα(n); c),

where a 2 Rn (by default, Rn is the trivial group if n ¼ 0 or n ¼ 1).

A map of C-colored collections u : K �! L consists of maps in V

ϕc1,...,cn;c : K(c1, . . . , cn; c) −→ L(c1, . . . , cn; c),

for ðnþ 1Þ-tuples ðc1; . . .; cn; cÞ, n
 0, that is compatible with the action of Rn. We denote

by CollCðVÞ the category of C-colored collections in V.

Definition B.2 A C-colored operad O in V is a C-colored collection equipped with unit

maps I �! Oðc; cÞ for every c 2 C and, for every ðnþ 1Þ-tuple of colors ðc1; . . .; cn; cÞ and
n given tuples

(a1,1, . . . , a1,k1 ; c1), . . . , (an,1, . . . , an,kn ; cn),

a composition product map
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O(c1, . . . , cn; c) ⊗ O(a1,1, . . . , a1,k1 ; c1) ⊗ · · · ⊗ O(an,1, . . . , an,kn ; cn)

O(a1,1, . . . , a1,k1 , a2,1, . . . , a2,k2 , . . . , an,1, . . . , an,kn ; c),

that is compatible with the symmetric groups actions and subject to the associativity and

unitary isomorphisms, see [7, §2].

A map of C-colored operads is a map of the underlying C-colored collections that is

compatible with the unit and composition product maps.

Denote by VC the product category of copies of V indexed by the set of colors C; that is,

VC ¼
Q

c2C V. For every object X ¼ ðXðcÞÞc2C in VC, the endomorphism colored operad

EndðXÞ of X is the C-colored operad defined by

End(X)(c1, . . . , cn; c) := HomV (X(c1) ⊗ · · · ⊗ X(cn), X(c)).

Here, Xðc1Þ � � � � � XðcnÞ is the unit I when n ¼ 0. The composition product is ordinary

composition and the Rn-action is defined by permutation of the factors.

Definition B.3 Let O be any C-colored operad in V. An O-algebra (or an algebra over O)

A is an object X ¼ ðXðcÞÞc2C of VC together with a map O �! EndðXÞ of C-colored

operads.

Equivalently, since the monoidal category V is closed, an O-algebra is a family of objects

X(c) in V for every c 2 C together with maps

O(c1, . . . , cn; c) ⊗ X(c1) ⊗ · · · ⊗ X(cn) −→ X(c),

for every ðnþ 1Þ-tuple ðc1; . . .; cn; cÞ, that are compatible with the symmetric group action,

the unit maps of O, and subject to the usual associativity isomorphisms.

A map of O-algebras f : A �! B is comprised of maps ðfc : XðcÞ �! YðcÞÞc2C of

underlying collections inducing a commutative diagram of C-colored collections

O End(X)

End(Y) Hom(X,Y).

The top and left arrows are the givenO-algebra structures on X and Y, respectively. The C-
colored collection HomðX;YÞ is defined as

Hom(X,Y)(c1, . . . , cn; c) := HomV (X(c1) ⊗ · · · ⊗ X(cn), Y (c)),

and the right and bottom arrows are induced by the maps fc. If V has pullbacks, then a map

f of O-algebras can be viewed as a map of C-colored operads
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O −→ End(f),

where EndðfÞ is the pullback of the diagram of C-colored collections

End(f) End(X)

End(Y) Hom(X,Y).

ð4Þ

Note that EndðfÞ inherits a C-colored operad structure from the C-colored operads EndðXÞ
and EndðYÞ. We denote the category of O-algebras by AlgOðVÞ.

Definition B.4 Given a C-colored operad O and an object X ¼ ðXðcÞÞc2C in VC, the

restricted endomorphism operad EndOðXÞ is defined by

EndO(X)(c1, . . . , cn; c) :=
End(X)(c1, . . . , cn; c) if O(c1, . . . , cn; c) = 0,

0 otherwise.
ð5Þ

There is a canonical inclusion of C-colored operads EndOðXÞ �! EndðXÞ, and thus every

map O �! EndðXÞ of C-colored operad factors uniquely through the restricted endo-

morphism operad EndOðXÞ. Hence an O-algebra structure on X is given by a map of C-
colored operads O �! EndOðXÞ.

If a : C �! D is a function between sets of colors, any D-colored operad O pulls back

to a C-colored operad a�O and there is an adjoint functor pair (see [4, §1.6])

α! : OperC(V) OperD(V) : α∗. ð6Þ

The restriction functor a� is defined by ða�OÞðc1; . . .; cn; cÞ :¼ Oðaðc1Þ; . . .; aðcnÞ; aðcÞÞ. A
function a : C �! D also defines an adjoint pair between the corresponding categories of

algebras for every D-colored operad O in V, i.e.,

α! : Algα∗O(V) AlgO(V) : α∗. ð7Þ

If A is an O-algebra with structure map c : O �! EndðXÞ, then ða�XÞðcÞ :¼ XðaðcÞÞ for
all c 2 C, with structure map defined by (6), i.e.,

α∗γ : α∗O −→ α∗End(X) = End(α∗X). ð8Þ

When C ¼ fcg, a C-colored operad O is an operad, where OðnÞ is short for Oðc; . . .; c; cÞ
with n
 0 inputs. The associative operad Ass is the one-color operad with AssðnÞ ¼ I½Rn�
for n
 0. Here, I½Rn� is the coproduct of copies of the unit I indexed by Rn, on which Rn

acts freely by permutations. The commutative operad Com is the one-color operad with
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ComðnÞ ¼ I for n
 0. Algebras over Ass are the associative monoids in V, while algebras
over Com are the commutative monoids in V.

For O a one-colored operad in V, let ModO be the C-colored operad with colors

C ¼ fr;mg and nonzero terms ModOðr; . . .ðnÞ ; r; rÞ :¼ OðnÞ, n
 0, and

ModOðc1; . . .; cn;mÞ :¼ OðnÞ, n
 1, where exactly one ci is m and the rest (if any) are

equal to r. An algebra over ModO is a pair ðR;MÞ of objects of V, where R is an O-

algebra and M is a module over R. That is, an object equipped with maps

O(n) ⊗ R ⊗ (k−1)· · · ⊗ R ⊗ M ⊗ R ⊗ (n−k)· · · ⊗ R −→ M

for n
 1 and 1� k� n, that are equivariant and compatible with associativity isomor-

phisms and the unit of O.

When O ¼ Ass, an algebra over ModO is a pair ðR;MÞ where R is a monoid in V and

M is an R-bimodule, i.e., an object equipped with commuting left and right R-actions.

When O ¼ Com, then R is a commutative monoid in V and M is a module over it

(indistinctly left or right).

Let a denote the inclusion of frg into fr;mg. Then a�ModO ¼ O for every operad O,

and a�ðR;MÞ ¼ R for the corresponding algebras.
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