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Abstract
By introducing a new approximation technique in the L2 theory of the 𝜕̄-operator, Hör-
mander’s L2 variant of Andreotti-Grauert’s finiteness theorem is extended and refined on 
q-convex manifolds and weakly 1-complete manifolds. As an application, a question on 
the L2 cohomology suggested by a theory of Ueda (Tohoku Math J (2) 31(1):81–90, 1979), 
Ueda (J Math Kyoto Univ 22(4):583–607, 1982/83) is solved.
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1  Introduction

This article is a continuation of [34, 43]. A variant of Andreotti-Grauert’s finiteness theo-
rem on weakly 1-complete manifolds was obtained in [34] (see also [1, 30]) and it was 
recalled in [43] to invoke its connection to an extension problem from submanifolds with 
semipositive normal bundles. This connection was suggested by Serre’s celebrated works 
[50, 51] on algebraic sheaves that translated the ideas of Oka-Cartan’s theory in several 
complex variables into algebraic geometry. Hörmander’s method in [23] was employed in 
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[34] to explore an analytic aspect of the sheaf cohomology on weakly 1-complete mani-
folds. The point is that Andreotti-Grauert’s finiteness theorem does not say anything 
directly about the effect of twisting the sheaves by line bundles, which was the main inter-
est of [50, 51], but Hörmander’s theorem 3.4.9 in [23] does, although this advantage was 
not so explicitly stated there. Therefore, it may be worthwhile to pursue it further to look 
for a more general principle.

For that purpose, we shall revisit here Hörmander’s theorem on the finite-dimensional-
ity and harmonic representation of the 𝜕̄-cohomology groups on q-convex manifolds and 
strengthen the result in a way required in some geometric questions. It has been done to 
some extent in [46], but we would like to extend the method in a different way so that we 
can apply it to study a class of L2 𝜕̄-cohomology of certain 1-convex surfaces. Our specific 
interest is in a compact complex surface S containing a smooth divisor C whose self-inter-
section number is zero. Such a situation arises in the classification of the compactifications 
of ℂ∗ × ℂ

∗ (cf. [56]), for instance. A general result by Ueda says that S ⧵ C is 1-convex if 
the embedding C ↪ S is of finite type (cf. [57] or section 5 in this article). Ueda showed 
moreover that S ⧵ C admits no plurisubharmonic exhaustion function which is of logarith-
mic growth if S ⧵ C ↪ S is of finite type. Therefore it might be of some interest whether or 
not one can extend the following result to this case.

Theorem 0.1  (cf. [43], Theorem 1.41) Let M be a compact complex manifold of dimension 
n, let E → M be a holomorphic vector bundle and let D be an effective divisor on M. If the 
line bundle [D] associated to D is semipositive and E||D| is Nakano positive, then there 
exists a positive number �0 such that

is surjective if � ≥ �0 and

if k ≥ 1 and � ≥ �0 . Here Hk and Hj,k stand for the k-th sheaf cohomology and the 𝜕̄-coho-
mology of type (j, k), respectively, KM denotes the canonical line bundle of M, |D| the sup-
port of D and OX(⋅) (X = M or |D|) the sheaf of the germs of holomorphic sections.2

A remarkable fact is that, for any embedding C ↪ S of finite type, the bundle [C] is 
never semipositive on S although S ⧵ C is 1-convex. Moreover, for any embedding of C 
with topologically trivial normal bundle, it follows immediately from Ueda’s classification 
and Siu’s solution [52] of the Grauert-Riemenschneider conjecture on the characterization 
of Moishezon manifolds that [C] is semipositive if and only if [C] is U(1)-flat on some 
neighborhood of C. See the remark at the end of §5 and also Koike’s recent paper [27] for 
the relation between the semipositivity and U(1)-flatness in higher dimensional cases. [27] 
also gives an example of nef, big and non semipositive line bundle on a nonsingular projec-
tive surface. (See also [14], Example 5.2 for higer dimensional cases.)

H0(M,OM(KM ⊗ E⊗ [D]𝜇)) → H0(|D|,OD(KM ⊗ E⊗ [D]𝜇))

Hn,k(M,E⊗ [D]𝜇) ≅ Hn,k(M ⧵ |D|,E)

1  For the validity of the consequence of Theorem 1.2 in [43], it suffices to assume that M is weakly 1-com-
plete and E is Nakano positive outside a compact subset of M ⧵ |D| as long as |D| is compact.
2  That lim

⟶

𝜇

Hn,0(M,E⊗ [D]𝜇) → Hn,0(M ⧵ |D|,E) is dense in Hn,0(M ⧵ |D|,E) is also contained, although it 

is not stated in the statement, in the proof of Theorem 0.1.
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In order to extend Theorem 0.1 to cover Ueda’s case, we shall first recall Hörmander’s 
theorem with a modification of an approximation argument (cf. Lemma 1.1) to deduce the 
finite-dimensionality and harmonic representation. Although the result itself is essentially 
included in [23], the method contains a new technique which will be explored further in the 
spirit of [46] (cf. Theorems 2.1–2.3).

The main goal of the present paper is to show the following.

Theorem 0.2  Let (X, g) be a complete Hermitian manifold of dimension n and let (E, h) be 
a holomorphic Hermitian vector bundle over X such that (X, g, E, h) is q-elliptic at infinity 
(see Sect. 1). Assume that X is equipped with a positive C∞ exhaustion function Φ satisfying

and

(For the definition of (⋅)q see Sect. 1.) Then the following (a) and (b) hold.

(a)	 The E-valued L2 𝜕̄-cohomology group Hn,k

(2),Φ
(X,E) of X with respect to (g, he−Φ) is 

mapped for all k ≥ q bijectively onto Hn,k(X,E) by the homomorphism induced from 
the inclusion. Moreover, the map Hn,q−1

(2),Φ
(X,E) → Hn,q−1(X,E) has a dense image.

(b)	 If moreover

holds for some 𝜖 > 0, then the L2 cohomology groups Hn,k

(2),� logΦ
(X,E) are isomorphic 

to Hn,k(X,E) for k ≥ q if � is sufficiently large, and the map

has a dense image. Here � runs through ℕ.

The proof of Theorem 0.2 is based on a method of approximation which will be intro-
duced in the proof of Theorem 1.1 (cf. Lemma 1.1). Theorem 1.1 is substantially due to 
Hörmander [23] so that nothing is new in the statement itself. But a new trick is added in 
the proof to conclude some part more directly. Its general principle will be summarized in 
Theorem 4.1.

By using a similar method, Theorem 0.1 will be generalized as follows.

Theorem 0.3  Let M be a weakly 1-complete manifold of dimension n, let E → M be a holo-
morphic vector bundle and let D be an effective divisor with compact support. Assume 
that [D]||D| is semipositive and E|M⧵K is Nakano positive for some compact subset K of 
M ⧵ |D|. Then multiplication by a canonical section of [D] induces isomorphisms between 
Hn,k(M,E⊗ [D]𝜇−1) and Hn,k(M,E⊗ [D]𝜇) (k ≥ 1) for sufficiently large �. In particular

sup {Φ(x);(𝜕𝜕̄Φ)q(x) < 0} < ∞

lim
c→∞

inf {(𝜕𝜕̄Φ −Φ−1
𝜕Φ𝜕̄Φ)q(x);Φ(x) > c} ≥ 0.

(0.1)lim
c→∞

inf{Φ(x)1+𝜖(𝜕𝜕̄ logΦ)q(x);Φ(x) > c} ≥ 0

lim
⟶

�

H
n,q−1

(2),� logΦ
(X,E) → Hn,q−1(X,E)

Hk(M,OM(KM ⊗ E⊗ [D]𝜇)) → Hk(|D|,OD(KM ⊗ E⊗ [D]𝜇))
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is surjective for sufficiently large � and for all k. Moreover, if D is a pseudoconcave divisor 
of order >1 (see Sect. 5 for the definition), then

hold for sufficiently large � and the set of meromorphic sections of KM ⊗ E with poles (at 
most) along |D| is dense in H0(M ⧵ |D|,OM(KM ⊗ E)).

Corollary 0.1  Let M be a connected compact complex manifold. If there exist an effective 
divisor D ≠ 0 on M and a holomorphic line bundle B → M such that [D]||D| is semipositive 
and B||D| is positive. Then M is a Moishezon manifold.

Corollary 0.1 was proved in [43] under a stronger assumption that [D] is semipositive 
on M.

Corollary 0.2  Let M be a connected weakly 1-complete Kähler manifold, let (E,  h) be a 
Nakano semipositive vector bundle over M and let D(≠ 0) be a pseudoconcave divisor on 
M of order >1 such that |D| is compact and the curvature form of h is Nakano positive on 
M ⧵ K for some compact set K ⊂ M ⧵ |D|. Then Hn,k(M,E⊗ [D]𝜇) = 0 (k ≥ 1) for suffi-
ciently large �.

Corollary 0.2 extends vanishing theorems by Grauert and Riemenschneider [18, 19]. 
We note that Takegoshi [54] has shown a vanishing theorem on weakly 1-complete 
Kähler manifolds saying in particular that Hn,k(M,E) = 0 (k ≥ 1) holds in the situation 
of Corollary 0.2 for D = 0.

For the question arising from Ueda’s theory, the following is an answer.

Theorem 0.4  Let S be a compact complex surface and let C ⊂ S be a complex curve such 
that deg([C]|C) ≥ 0. Then, for any holomorphic vector bundle E → S such that E|C is posi-
tive, there exists a positive number �0 such that

canonically if � ≥ �0. In particular, the maps

are surjective if � ≥ �0. If moreover the embedding C ↪ S is of finite type, then

holds for sufficiently large � and the set of meromorphic sections of KS ⊗ E with poles 
along C is dense in H0(S ⧵ C,O(KS ⊗ E)).

Corollary 0.3  Let S be a connected compact complex surface, let C ⊂ S be a smooth com-
plex curve of finite type and let L → S be a holomorphic line bundle such that L|C is posi-
tive. Then L is big. Moreover the following holds.

1.	 If deg(L|C) ≥ 1, then for sufficiently large m one can find

Hn,k(M,E⊗ [D]𝜇) ≅ Hn,k(M ⧵ |D|,E), k ≥ 1

Hk(S,OS(KS ⊗ E⊗ [C]𝜇−1)) ≅ Hk(S,OS(KS ⊗ E⊗ [C]𝜇))

H0(S,OS(KS ⊗ E⊗ [C]𝜇)) → H0(C,OC(KS ⊗ E⊗ [C]𝜇)) (k = 0, 1)

H2,k(S,E⊗ [C]𝜇) ≅ H2,k(S ⧵ C,E) (k = 1, 2)

84



Variants of Hörmander’s theorem on q-convex manifolds by a…

1 3

	   s0, s1, s2, s3, s4, s5 ∈ H0(S,KS ⊗ L⊗ [C]m) such that
⋂5

k=0
s−1
k
(0) ∩ C is a finite set 

and (s0 ∶ s1 ∶ s2 ∶ s3 ∶ s4 ∶ s5) embeds S ⧵ (C ∪
⋂5

k=0
s−1
k
(0)) into ℂℙ5.

2.	 If deg(L|C) ≥ 2, then for sufficiently large m one can find
	   s0, s1, s2, s3, s4, s5 ∈ H0(S,KS ⊗ L⊗ [C]m) with 

⋂5

k=0
s−1
k
(0) ∩ C = � such that 

(s0 ∶ s1 ∶ s2 ∶ s3 ∶ s4 ∶ s5) embeds S ⧵ (C ∪
⋂5

k=0
s−1
k
(0)) into ℂℙ5.

3.	 I f  deg(L|C) ≥ 3,  t h e n  fo r  s u f f i c i e n t l y  l a rge  m  o n e  c a n  f i n d 
s0, s1, s2, s3, s4, s5 ∈ H0(S,KS ⊗ L⊗ [C]m) such that (s0 ∶ s1 ∶ s2 ∶ s3 ∶ s4 ∶ s5) embeds 
S ⧵

⋂5

k=0
s−1
k
(0) into ℂℙ5.

Corollary 0.4  A connected compact complex surface is projective algebraic if and only if it 
contains a smooth curve of genus ≥ 2 with semipositive normal bundle.

Since S is projective algebraic in the situation of Corollary 0.3 (Chow-Kodaira’s theo-
rem), it is naturally expected that the assertion has an algebraic proof.

2 � Hörmander’s theorem revisited

As a preliminary to the proof of Theorem 0.2, we shall recall Hörmander’s isomorphism 
and approximation theorem (Theorem 3.4.9 in [23]) with a little modification in the pres-
entation and proof. Since its background materials are not so popular as they used to be, 
we shall recall them briefly at first for the convenience of the reader who are not so familar 
with the L2 method in the sheaf theory.

In complex geometry, the sheaf cohomology groups are the most important biholomor-
phic invariants of complex analytic spaces. There are many formulas described in terms 
of the dimension of cohomology groups. In some circumstances, analytic sheaf cohomol-
ogy classes are natual generalization of holomorphic functions (cf. [25, 42]). Andreotti 
and Grauert [3] established finiteness theorems for the sheaf cohomology on the spaces 
with certain convexity or concavity properties. Among other things, they generalized 
Oka-Cartan’s theory on the existence and approximation for holomorphic functions, from 
Stein spaces to q-convex spaces. The 1-convex case was settled earlier by Grauert [15] by 
extending the method of Oka [47] for the domains over ℂn to complex manifolds. Let us 
recall that a real-valued C2 function � on a complex manifold X of dimension n is called 
q-convex on K ⊂ X if its Levi form (or complex Hessian) 𝜕𝜕̄𝜑 has everywhere at least 
n − q + 1 positive eigenvalues on K, where the eigenvalues of 𝜕𝜕̄𝜑 are defined with respect 
to any Hermitian metric on the manifold. A complex manifold X of dimension n is called 
q-convex if X is equipped with a q-convex exhaustion function, i.e. if there exists a func-
tion � ∶ X → ℝ of class C2 such that its sublevel sets Xc ∶= {x ∈ X;𝜑(x) < c} are relatively 
compact and � is q-convex on X ⧵ Xc0

 for some c0 . X is said to be weakly q-complete (resp. 
weakly q-convex) if there exists a C∞ exhaustion function whose Levi form has at most 
q − 1 negative eigenvalues everywhere on X (resp. outside a compact subset of X). It is 
obvious that q-convex manifolds are weakly q-complete. It is also quite easy to see that 
weakly q-convex manifolds are weakly q-complete. For simplicity, given a q-convex mani-
fold (X,�) we shall assume that � is of class C∞ . q-convexity is naturally generalized to 
complex spaces. Modifications of Stein spaces along compact subsets are characterized by 
Grauert as 1-convex spaces (cf. [15, 16, 31]). Interesting examples of q-convex manifolds 
are the complements of compact complex submanifolds with positive normal bundles in 
compact complex manifolds (cf. [17, 45]).
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By Dolbeault’s isomorphism theorem, the sheaf cohomology group of a paracompact 
complex manifold with coefficients in a locally free analytic sheaf is canonically isomor-
phic to the 𝜕̄-cohomology group with coefficients in a holomorphic vector bundle. Accord-
ingly, it is a natural question to represent analytic cohomology classes by harmonic forms 
in various geometric situations. Kodaira’s vanishing theorem for positive line bundles over 
compact manifolds arose in this context (cf. [26]). Let us recall that the method of Kodaira 
is based on Hodge’s theorem on the harmonic representatives of cohomology classes and a 
variant of Bochner’s technique on the Laplace-Beltrami operator. It was extended by Aki-
zuki and Nakano [2] who showed that the 𝜕̄-cohomology groups Hp,q(X,B) vanish for all p 
and q with p + q > n if X is compact and B is a holomorphic Hermitian line bundle over X 
whose curvature form is positive. For noncompact manifolds, Andreotti and Vesentini [5, 
6] first generalized Kodaira’s method to prove basic existence theorems on Stein manifolds. 
The point in this sophistication is an observation that the solvability of the 𝜕̄-equation with 
L2 norm estimate follows from an estimate for the 𝜕̄-operator and its adjoint 𝜕̄∗ acting on the 
set of compactly supported C∞ bundle-valued differential forms, if the L2 norms are meas-
ured with respect to a complete Hermitian metric.

Hörmander [23] strengthened this approach independently by establishing an isomor-
phism between the 𝜕̄-cohomology and the L2 𝜕̄-cohomology on smoothly bounded domains 
and extended it to q-convex manifolds by approximation, which is essentially the original 
form of Theorem 1.1 below. The formulation is modified here in order to make the presen-
tation of its refinements easier.

Theorem 1.1  Let (X,�) be a q-convex manifold of dimension n such that � is q-convex on 
X ⧵ X0 and let E → X be a holomorphic vector bundle with a C∞ fiber metric h. Then the 
following assertions hold.

1.	 There exist a complete Hermitian metric g on X, a C∞ increasing function � ∶ ℝ → ℝ 
and a constant c0 > 0 such that, for any C∞ function � ∶ X → ℝ and for any k ≥ q, the 
inequality

holds for any E-valued C∞ (n,  k)-form u on X whose support is compact and con-
tained in X ⧵ X0. Here ‖ ⋅ ‖ denotes the L2 norm measured by g and he−�(�)−� , (𝜕𝜕̄𝜓)q 
is defined by (𝜕𝜕̄𝜓)q(x) =

∑q

j=1
ej(x) for the eigenvalues e1(x) ≤ e2(x) ≤ ⋯ ≤ en(x) of 

𝜕𝜕̄𝜓 with respect to g at x, and (⋅, ⋅) stands for the inner product associated to ‖ ⋅ ‖.
2.	 If (1.1) holds for all the above u and �  with respect to (X,�,E, g, h, �) , 

then dimHn,k(X,E) < ∞ for k ≥ q. Moreover, the L2 𝜕̄-cohomology groups 
H

n,k

(2)
(X,E)(= H

n,k

(2)
(X,E)

�,� ) with respect to (g, he−�(�)−� ) are finite dimensional for all 
k ≥ q if (𝜕𝜕̄𝜓)q ≥ c − c0 holds on X ⧵ X0 for some positive number c. Furthermore, if � sat-
isfies infX⧵X0

(𝜕𝜕̄𝜆(𝜑))q > 0, then the homomorphism Hn,k

(2)
(X,E)

��,0 → Hn,k(X,E) (k ≥ q) 
induced from the inclusion is bijective for sufficiently large � and the homomorphism

has a dense image.
3.	 If 0 is not a critical value of �, then the L2 𝜕̄-cohomology groups Hn,k

(2)
(X0,E) of X0 with 

respect to the restrictions of the metrics g and h to X0 and E|X0
 are finite dimensional for 

(1.1)c0‖u‖2 + ((𝜕𝜕̄𝜓)qu, u) ≤ ‖𝜕̄u‖2 + ‖𝜕̄∗u‖2

lim
⟶

�

H
n,q−1

(2)
(X,E)

��,0 → Hn.q−1(X,E)
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k ≥ q. Moreover, the restriction homomorphism Hn,k(X,E) → H
n,k

(2)
(X0,E) is bijective if 

k ≥ q and has a dense image if k = q − 1.

Here the part (1) was added in order to describe the decisive consequence of the calcu-
lation in Kodaira’s method. For the detail of its derivation from the q-convexity assump-
tion, see [9, 11, 37, 44] as well as [7, 23, 58]. The estimate (1.1) is particularly important in 
order to state the assumptions of the refinements of Theorem 1.1. We shall use the defini-
tion of (𝜕𝜕̄𝜓)q by naturally extending it to Θq for any Hermitian form Θ along the fibers of 
holomorphic tangent bundle of M. We shall say that (X, g, E, h) is q-elliptic at infinity if 
there exists a compact set K ⊂ X and c0 > 0 such that (1.1) for k ≥ q with � = 0 holds for 
any compactly supported C∞ E-valued (n, k)-form u with suppu ⊂ X ⧵ K and � as above. 
If (1.1) holds in the form of Theorem 1.1 with respect to (X,�,E, g, h, �) , we shall also say 
shortly that (X,�,E, g, h, �) is q-elliptic modulo X0

3. We shall call c0 a q-ellipticity con-
stant of (X,�,E, g, h, �)).

It may not be too exaggerating to say that the origin of (2) is Abel’s theorem on the con-
vergence of the Taylor series of holomorphic functions. More apparently, (3) is a cohomo-
logical counterpart of Oka-Weil’s generalization of Runge’s approximation theorem.

We could have removed from (3) the regularity assumption on �X0 in view of [9, 11, 37, 
44], but the original form is kept here for simplicity.

The following is a direct consequence of Theorem 1.1 (combined with the Serre dual-
ity). The proof may well be skipped because it is routine and the result is not used in the 
sequel. However, the observation was actually the prototype of Theorem 0.1. (See Corol-
lary 3.2, too.)

Theorem  1.2  Let M be a compact complex manifold of dimension n and let A ⊂ M be 
a closed complex submanifold of codimension q whose normal bundle is positive in the 
sense of Griffiths (see [22] for the definition). Then, for any holomorphic vector bundle 
E → M , dimHn,k(M ⧵ A,E) < ∞ for k ≥ q and there exists a positive integer �0 such that 
Hj(M,E⊗I

𝜇

A
) ≅ Hj(M,E⊗I

𝜇0

A
) for all j ≤ n − q and � ≥ �0. Here IA denotes the ideal 

sheaf of A and E is identified with the associated sheaf of the germs of its holomorphic 
sections.

The crucial part of the proof of Theorem 1.1 is done by contradiction whose original 
form was presented as the proof of 3) (cf.Proposition 3.4.5 in [23]). Since we shall modify 
this argument to prove 2), let us outline the original proof of 3) for the convenience of the 
reader.

Outline of the proof of 3): That dimH
n,k

(2)
(X0,E) < ∞ for k ≥ q follows from an esti-

mate similar to (1.1) that holds for compactly supported E-valued C∞ forms on 
X0 ⧵ K for some compact set K ⊂ X0 satisfying the boundary condition for 𝜕̄∗ , based 
on the fact that a Hilbert space with relatively compact unit ball must be finite dimen-
sional (cf. [23],  Theorem  3.3.1)4. To prove the injectivity of the restriction homomor-
phism Hn,k(X,E) → Hn,k(X0,E) (k ≥ q) , it suffices to show that the homomorphisms 

3  In [5–7, 58], E is said to be Wp,q-elliptic if there exist metrics g and h such that (1.1) holds for some c0 
with X0 = ∅ and � = 0 for C∞ compactly supported E-valued (p, q)-forms u on X. The estimate still holds 
for u lying in the domains of 𝜕̄ and 𝜕̄∗ , provided that g is complete.
4  That �X0 is smooth is used here to derive a formula by integration by parts and to let an approximation 
argument needed here to work.
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Hn,k(X,E)
��◦�,0 → Hn,k(X0,E) are injective for sufficiently large � for any C∞ convex 

increasing function � satisfying �|(−∞,0] = 0 and 𝜌|(0,∞) > 0 . This assertion immediately 
follows from the existence of C > 0 and �0 ∈ ℕ such that

holds for E-valued (n, k)-forms u in Dom𝜕̄ ∩ Dom𝜕̄
∗ with respect to (g, he−��(�(�))) for all 

k ≥ q and � ≥ �0 , provided that u|X0
 is orthogonal to the kernels of 𝜕̄ and its adjoint on X0 . 

Existence of C and �0 is a direct consequence of the argument by contradiction.
Surjectivity of Hn,k(X,E) → Hn,k(X0,E) k ≥ q and the denseness of the image of 

Hn,q−1(X,E) → Hn,q−1(X0,E) follows also from the above estimate. 	�  ◻

Although we shall give an alternate proof for the part 2), there is no control for those � 
which satisfy Hn,k

(2)
(X,E)

��,0 ≅ Hn,k(X,E) (k ≥ q) . In fact, existence of such � is approved 
only after a limiting argument. Of course the bound for � depends on the geometry of 
(X, g, E, h) inside X0 , but we do not know precisely how they do. Nevertheless, we shall 
show later that the L2 𝜕̄-cohomology with respect to (g, he−�) coincides with the ordinary 𝜕̄
-cohomology if (X, g, E, h) is q-elliptic at infinity and � satisfies certain growth condition 
besides the q-convexity.

Proof of Theorem 1.1  We shall only prove the part (2) here by an argument whose crucial 
part (i.e. Lemma 1.1) does not seem to be in the literature. 	�  ◻

By the q-ellipticity modulo X0 , one can find 𝜖 > 0 and C > 0 such that, for any C∞ func-
tion � satisfying (𝜕𝜕̄𝜓)q ≥ 0 everhwhere,

holds for any C∞ E-valued (n,  k)-form u on X with compact support, if k ≥ q . Here | ⋅ | 
denotes the pointwise length with respect to (g, h) and dVg denotes the volume form of 
g. Hence, by the completeness of g and Rellich’s lemma, Hörmander’s criterion (see 
Theorem1.1.2∼Theorem  1.1.4 in [23]) implies that dimH

n,k

(2)
(X,E) < ∞ for k ≥ q . That 

dimHn,k(X,E) < ∞ (k ≥ q) can be seen similarly as in [36, Proof of Theorem 1, 10]. For 
the convenience of the reader we shall recall the argument below.

Given any sequence of 𝜕̄-closed locally square integrable E-valued (n,  k)-forms um 
(m = 1, 2,…) on X, one can find a C∞ convex increasing function � on (−∞, sup�) such 
that um are all square integrable with respect to the metrics g and he−�(�(�)) . In particular, the 
image of Hn,k

(2)
(X,E)

�,� → Hn,k(X,E) contains the linear span of {um} if � = �(�(�)) . Since 
dimHn,k(X,E)

𝜆,𝜏(𝜆(𝜑)) < ∞ , this implies that Hn,k(X,E) must be finite dimensional for k ≥ q . 
In particular, we can choose � so that the map Hn,k

(2)
(X,E)

�,�(�(�)) → Hn,k(X,E) is surjective.
From now on we assume that � was chosen in such a way that

holds for all � ≥ 1 . By (1.3) it makes sense for a square integrable E-valued (n, k)-form 
u with respect to (g, he−��(�)) to be orthogonal to a given form on X with respect to 
(g, he−�(�)−�(�(�))) . By using �(�(�)) as an auxiliary weight, we shall show that the maps 
H

n,k

(2)
(X,E)

��,0 → Hn,k(X,E) are bijective for sufficiently large � . For that we shall show at 
first the following.

‖u‖ ≤ C(‖𝜕̄u‖ + ‖𝜕̄∗u‖)

(1.2)‖u‖2 ≤ C

�
‖𝜕̄u‖2 + ‖𝜕̄∗u‖2 + �X−𝜖

e−𝜆(𝜑)−𝜓 �u�2dVg

�

(1.3)lim
t→sup�

�(�(t))

��(t)
= ∞
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Lemma 1.1  Let the situation be as above and let d = sup � ∈ (−∞,+∞]. Then, for any 
convex increasing function � on (−∞, d) and for any sequence �m ∈ ℕ (m = 1, 2,…) with 
lim
m→∞

�m = ∞ , there exist a subsequence �mj
 (j = 1, 2,…), a strictly increasing sequence tj 

of real numbers with limj→∞ tj = d and a sequence of convex increasing functions �j satis-
fying �j(t) = �(t) for t ≤ tj and ��

j
(t) = �mj

 for t ≥ tj+1, such that there exist a constant C > 0 
and j0 ∈ ℕ for which the estimate

holds with respect to (g, he−�(�)−�j(�(�))) for any locally square integrable E-valued (n, k)-
form u with k ≥ q lying in the domains of 𝜕̄ and 𝜕̄∗, provided that j ≥ j0 and u is orthogonal 
to the space Ker𝜕̄ ∩ Ker𝜕̄∗ with respect to (g, he−�(�)−�(�(�))).

Proof  In the above situation, one can find a subsequence �mj
 of �m , an increasing sequence 

of convex increasing functions �j and increasing sequences of positive numbers tj and Aj 
such that limj→∞ tj = d, (𝜕𝜕̄𝜆(𝜑))q > 0 on X ⧵ Xt1

 , �j(t) = �(t) for t < tj , �j(tj) = �(tj) and 
�j(t) = �mj

t + Aj for t > tj+1.
In this circumstance, suppose that there exist no C and j0 as above. Then one can find a 

subsequence of �mj
 , say �mjr

 (r = 1, 2,…) and E-valued (n, k)-forms ur such that ‖ur‖ = 1 , 
‖𝜕̄ur‖ <

1

r
 and ‖𝜕̄∗ur‖ <

1

r
 hold with respect to (g, he−�(�)−�jr (�(�))) and that 

ur⊥(Ker𝜕̄ ∩ Ker𝜕̄∗) hold with respect to (g, he−�(�)−�(�(�))) . Then one can find a locally 
strongly convergent subsequence of ur with respect to (g, he−�(�)−�(�(�))) whose limit is not 
zero because of (1.2) but obviously belongs to Ker𝜕̄ ∩ Ker𝜕̄∗ ∩ (Ker𝜕̄ ∩ Ker𝜕̄∗)⊥ = {0} , 
which is a contradiction. 	�  ◻

Lemma 1.1 implies that the map Hn,k

(2)
(X,E)

��,0 → Hn,k(X,E) (k ≥ q) is injective for suf-
ficiently large � . The surjectivity will follow from the denseness of the images of

for k ≥ q − 1 . But this also follows from Lemma 1.1 because the map

is surjective for all k ≥ 0 , where � runs through the convex increasing functions on ℝ . This 
completes the proof of the part 2) of Theorem 1.1. 	�  ◻

Let us recall that the L2 𝜕̄-cohomology groups are canonically isomorphic to the spaces 
of L2 harmonic forms if the images of the operator 𝜕̄ are closed. We recall also that, since 𝜕̄ 
is a closed operator, the image of 𝜕̄ is closed if the L2 𝜕̄-cohomology group is finite dimen-
sional. So Theorem 1.1 essentially deals with harmonic representation and approximation. 
Since the geometric structures of X and E are reflected in the algebra of differential opera-
tors on X through curvature and symmetry, so that in the harmonic forms as well, Theo-
rem 1.1 is not only a quantitative reformulation of the Andreotti-Grauert theory but also 
has a rich potential applicability in complex geometry. Noncompact variants of the Hodge 
theory and Kodaira’s embedding theorem may be regarded as prototypes of such applica-
tions (cf. [29, 7, 9, 34–37, 39, 40, 41, 46] and [53]). In the next section we shall recall a 
result in [46] which is a refinement of Theorem 1.1 meant for that purpose.

(1.4)‖u‖ ≤ C(‖𝜕̄u‖ + ‖𝜕̄∗u‖)

lim
⟶

�

H
n,k

(2)
(X,E)

��,0 → Hn,k(X,E)

lim
⟶

�

H
n,k

(2)
(X,E)

�,�(�) → Hn,k(X,E)
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3 � Generalizations of a precise harmonic representation

The main result of [46] is much more specific than Theorem 1.1 and stated as follows.

Theorem 2.1  Let (X,�) be a q-convex manifold of dimension n and let (E, h) be a Hermi-
tian holomorphic vector bundle on X whose curvature form is identically zero outside some 
compact set. Assume that X admits a complete Hermitian metric g which is Kählerian out-
side a compact set, that the eigenvalues �1(x) ≥ ⋯ ≥ �n(x) of 𝜕𝜕̄𝜑 at x ∈ X with respect to 
g satisfy lim

d→∞
supX⧵Xd

�1 = 1 and lim
d→∞

infX⧵Xd
�n−q+1 = 1 and that the least eigenvalue of 

𝜕𝜕̄𝜑 − 8𝜕𝜑𝜕̄𝜑 on X ⧵ Xd is estimated from below by −1

100n
 as d → ∞. Then

hold for j + k ≥ n + q.

The proof of Theorem 2.1 is similar as that of Theorem 1.1. The point is that, express-
ing in our terminology here, replacing � by � − d if necessary for some d ∈ ℝ , 
(X,𝜑,E⊗ (

⋀j
T∗
X
)⊗ K∗

X
, g, h⊗ g(j) ⊗ detg, 𝜆) is q-elliptic modulo X0 for some bounded 

increasing function � , where T∗
X
 denotes the holomorphic cotangent bundle of X, K∗

X
 denotes 

the dual bundle of KX and g(j) denotes the fiber metric of 
⋀j

T∗
X
 of X induced from g. This fol-

lows from the assumption on 𝜕𝜕̄𝜑 − 8𝜕𝜑𝜕̄𝜑 and those on g and h near the infinity, by virtue 
of a calculation found by Donnelly and Fefferman [12]. For the detail, see [46].

Note that the condition on � is satisfied in many cases. For instance, one can take the loga-
rithm of the Bergman kernel as � on bounded domains in ℂn which are strictly pseudoconvex 
or homogeneous (cf. [12] and [24]). Recently it turned out that Theorem 2.1 has an interest-
ing application to the Chern forms on strongly pseudoconvex CR manifolds (cf. [55]).

We are going to present some variants of Theorem 1.1 which lie between Theorem 1.1 
and Theorem 2.1, in the sense that the situation is less general than Theorem 1.1 but the 
fiber metrics he−��(�) for unbounded � are also taken into account. First of all we shall 
refine Theorem 1.1 to the following.

Theorem 2.2  Let (X,�,E, h) be as in Theorem 1.1, let g be a complete Hermitian metric 
on X and let � ∶ ℝ → ℝ be a C∞ increasing function such that (X,�,E, g, h, �) is q-ellip-
tic modulo X0. Assume moreover that c1 ∶= infX⧵X0

(𝜕𝜕̄𝜆(𝜑))q > 0 and that there exists a 
sequence of bounded increasing functions �

�
 (� ∈ ℕ) and a positive number � such that 

�
�
 converges locally uniformly to � and (𝜕𝜕̄𝜅

𝜇
(𝜑))q(x) ≥ (𝛿 − 1)(c0 + c1) for all x ∈ X and 

� ∈ ℕ. Then, for any b ≥ 0, the E-valued L2 𝜕̄-cohomology groups Hn,k

(2)
(X,E)b of X with 

respect to g and he−(1+b)�(�) satisfy the following.

	 (i)	 dimH
n,k

(2)
(X,E)b < ∞ and Hn,k

(2)
(X,E)b ≅ Hn,k(X,E) for all k ≥ q.

	 (ii)	 The homomorphism Hn,q−1

(2)
(X,E)b → Hn,q−1(X,E) has a dense image.

	 (iii)	 If 0 is not a critical value of �, the restriction homomorphisms 
H

n,k

(2)
(X,E)b ⟶ Hn,k(X0,E) are isomorphisms for all k ≥ q and the image of 

H
n,q−1

(2)
(X,E)b → Hn,q−1(X0,E) is dense.

The proof of Theorem 2.2 is a simplified modification of that of Theorem 1.1 in the 
spirit of Theorem 2.1. The role of �j will be played by a family of bounded functions.

dimH
j,k

(2)
(X,E) < ∞ and Hj,k(X,E) ≅ H

j,k

(2)
(X,E)
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Proof of Theorem  2.2  By the q-ellipticity of (X,�,E, g, h, �) modulo X0 , that 
dimH

n,k

(2)
(X,E)0 < ∞ for k ≥ q is contained in Theorem  1.1. We shall show that 

H
n,k

(2)
(X,E)0 ≅ Hn,k(X,E) for all k ≥ q . For that, let us take �

�
 as in the assumption. Since �

�
 

are bounded, the L2 cohomology groups Hn,k

(2)
(X,E)

�,�
�
(�) are isomorphic to each other for 

all � . Moreover one knows from (1) of Theorem 1.1 that for all � the estimate

with respect to (g, he−�(�)−��(�)) holds for any compactly supported C∞ E-valued (n, k)-form 
u with k ≥ q on X satisfying suppu ⊂ X ⧵ X0 . Hence, similarly as in Theorem 1.1.2, there 
exist estimates of type (1.4) for the orthocomplement of the space of harmonic forms on 
X with respect to (g, he−2�(�)) . Hence the map Hn,k

(2)
(X,E)0 → H

n,k

(2)
(X,E)1(= H

n,k

(2)
(X,E)2�,0) 

is injective. Similarly one has the injectivity of Hn,k

(2)
(X,E)0 → H

n,k

(2)
(X,E)b for all b ≥ 0 and 

k ≥ q.
To prove the surjectivity and ii), let k ≥ q and take any locally square integrable 𝜕̄

-closed E-valued (n, k − 1)-form on X, say v, and any compact set K ⊂ X . Then one can 
find d > 0 such that K ⊂ Xd . Replacing � by � − d if necessary, we may assume that d = 0 
in advance. By Theorem 1.1, it suffices to approximate v by assuming that v is square inte-
grable with respect to (g, he−�0�(�)) for some �0 ≥ 1 . In this situation, one can solve the 
𝜕̄-equation 𝜕̄u = 𝜕̄𝜒(𝜑) ∧ v for a C∞ function � ∶ ℝ → [0, 1] satisfying supp𝜒 ⊂ (−∞, 1] 
and �|(−∞,0] = 1 with uniform (in � ) L2 norm estimates with respect to (g, he−�0�(�)−��(�)) , 
for sufficiently large �.

Hence, given any 𝜖 > 0 , one can choose � so that there exists a locally square integrable  
E-valued (n, k − 1)-form u

�
 on X satisfying 𝜕̄(𝜒(𝜑)v − u

𝜇
) = 0 and ∫

X
e−𝜆(𝜑)−𝜅𝜇(𝜑)|u

𝜇
|2dVg < 𝜖 . 

Therefore the image of the map Hn,k−1

(2)
(X,E)

�0−1
→ Hn,k−1(X,E) is dense, so that one even-

tually arrives at the denseness of the image of Hn,k−1

(2)
(X,E)0 → Hn,k−1(X,E) , too. Thus we 

obtain ii) in particular and i) holds since it is true for sufficiently large b. iii) follows from 
Theorem 1.1.3 because of i) and ii). 	�  ◻

By the way, it is quite easy to see that the method in the proof of Proposition 3.4.5 in 
[23], as was outlined after Theorem 1.2, can be applied to show the following.

Theorem 2.3  Let (X,�) , (E, h), g and � be as in Theorem 2.2. Assume moreover that there 
exists an increasing sequence of C∞ bounded increasing functions �

�
 on ℝ such that 

�
�
|(−∞,0] ≡ 0 , lim

�→∞
�
�
(t) = ∞ for all t > 0 and that the eigenvalues of 𝜅��

𝜇
(𝜑)𝜕𝜑𝜕̄𝜑 with 

respect to g are bounded from below by a constant which does not depend on �. Then the 
conclusions (i) ∼ (iii) of Theorem 2.2 hold.

The proof may well be left to the reader.

4 � A comparison theorem

Now we shall examine the setting where X = M ⧵ |D| for some compact complex manifold 
M and an effective divisor D on M. We assume that E extends to a holomorphic vector bun-
dle over M, which we shall denote also by E by an abuse of notation.

(2.1)𝛿c0‖u‖2 ≤ ‖𝜕̄u‖2 + ‖𝜕̄∗u‖2
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As a preliminary to Theorem 0.2 and Theorem 0.3, we observe that one can deduce the 
following comparison theorem from Theorem 1.1.

Theorem 3.1  Let M be a compact complex manifold of dimension n and let D be an effec-
tive divisor on M such that the complement of its support |D| admits a C∞ exhaustion func-
tion Φ satisfying the following conditions (1) and (2). 

1.	 Φ + log |s| is a bounded function on M ⧵ |D| for a canonical section s of [D] where |s| 
denotes the length of s with respect to some fiber metric of [D].

2.	 lim inf
x→|D|

(𝜕𝜕̄Φ)q(x) > 0 holds with respect to some Hermitian metric on M.

Then there exists a neighborhood W of |D| such that, for any holomorphic vector bundle 
E → M, there exists a positive integer �0 such that the natural restriction homomorphisms

and

are bijective for k ≥ q and � ≥ �0.

Proof  Let Φ ∶ M ⧵ |D| → ℝ be a C∞ exhaustion function satisfying (1) and (2) with 
respect to a Hermitian metric gM on M. Since |D| is analytic and of codimension one, there 
exists a complete Hermitian metric on M ⧵ |D| of the form gM + 𝜕𝜕̄𝜅 for some bounded C∞ 
function � on M ⧵ |D| such that the eigenvalues �1 ≤ �2 ≤ ⋯ ≤ �n of 𝜕𝜕̄𝜅 with respect to gM 
satisfy lim

x→|D|
�j(x) = 0 for 1 ≤ j ≤ n − 1 and lim

x→|D|
�n(x) = ∞ . (One may put � =

1

log log |s|−1 
near |D| for instance.) Hence, since lim inf

x→|D|
(𝜕𝜕̄Φ)q(x) > 0 by the assumption, for any Her-

mitian holomorphic vector bundle (E, hE) over M one can find m > 0 such that 
(M ⧵ |D|, gM + 𝜖

2
𝜕𝜕̄𝜅,E, hEe

−m(Φ+𝜖𝜅)) is q-elliptic at infinity if � is a sufficiently small posi-
tive number. Hence the conclusions (3.1) and (3.2) are obtained from (2) and (3) of Theo-
rem  1.1, respectively, by letting � = m(Φ + ��) , g = gM + 𝜖

2
𝜕𝜕̄𝜅 , h = hEe

−m(Φ+��) and 
�(t) = t , by taking into account the equivalence between the Čech cohomology and 𝜕̄-coho-
mology with L2 conditions as in [39] and [28]. 	� ◻

Corollary 3.1  In the above situation, the natural restriction homomorphism

is surjective for j ≥ q − 1 and � ≥ �0 + 1.

Corollary 3.2  Let M be as above and let A ⊂ M be a closed complex submanifold of codi-
mension q whose normal bundle is positive in the sense of Griffiths. Let 𝜋 ∶ M̃ → M be the 
blow up along A and put D = �

−1(A). Then, for any holomorphic vector bundle E → M̃, 
one can find �0 such that

is bijective if j ≥ q and � ≥ �0.

(3.1)Hn,k(M,E⊗ [D]𝜇) ⟶ Hn,k(M ⧵ |D|,E)

(3.2)Hn,k(M ⧵ |D|,E) ⟶ Hn,k(M ⧵W,E)

Hj(M,E⊗ [D]𝜇) ⟶ Hj(|D|,E⊗ [D]𝜇))

Hj(M̃,E⊗ [D]𝜇) ⟶ Hj(M̃ ⧵ D,E)
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We note that the case D = 0 ( |D| = ∅ ) is trivially allowed in the above statements. On 
the other hand, if D ≠ 0 one has the following because (1) and (2) are obviously satis-
fied for D ≠ 0 if q = n . Recall that M ⧵ |D| has then the vanishing top cohomology for all 
coherent analytic sheaves since it is n-complete by Greene-Wu’s theorem in [20] (see also 
[38] and [10]).

Corollary 3.3  For any connected complex manifold M of dimension n, for any holomorphic 
vector bundle E → M and for any effective divisor D ≠ 0 on M, Hn,n(M,E⊗ [D]𝜇) = 0 
holds for sufficiently large �.

Remark 3.3  In the case where M is projective algebraic, Theorem 3.1 is essentially con-
tained in Okonek’s generalization in [48] of Serre’s GAGA principle in [51]. See also 
([49],  Lemma 15). Corollary 3.3 is a special case of a vanishing theorem of Griffiths 
obtained in [21] by a different method, up to the existence of a fiber metric of [D] whose 
scalar curvature is everywhere positive, which is quite elementary .

5 � Proof of Theorem 0.2

Proof of a)  Since (X, g, E, h) is q-elliptic at infinity and Φ is a C∞ exhaustion function on X 
satisfying

we may assume in advance that (X,Φ,E, g, h, �(t) = t) is q-elliptic modulo X0 . For any 
� ∈ ℕ we put k

�
(t) = t for t < 𝜇 and

Then k
�
 is of class C1,

at x ∈ X if Φ(x) < 𝜇 and

at x ∈ X if Φ(x) > 𝜇.
Hence it is easy to see that

holds, since

sup {Φ(x);(𝜕𝜕̄Φ)q(x) < 0} < ∞,

k
�
(t) = −2� log

(
1

t
+

1

�

)
− 2� log

�

2
+ � for t ≥ �.

(𝜕𝜕̄k
𝜇
(Φ))q = (𝜕𝜕̄Φ)q ≥ 0

𝜕𝜕̄k
𝜇
(Φ) =

2𝜇2

𝜇Φ +Φ2

{
𝜕𝜕̄Φ −

(
1

𝜇 + Φ
+

1

Φ

)
𝜕Φ𝜕̄Φ

}

(
=

2𝜇2

𝜇Φ +Φ2

(
𝜕𝜕̄Φ −

𝜇 + 2Φ

𝜇Φ +Φ2
𝜕Φ𝜕̄Φ

))

lim inf
𝜇→∞

{𝜕𝜕̄(2Φ + k
𝜇
(Φ))q(x);Φ(x) > 𝜇} ≥ 0
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by assumption. Therefore, since (X,Φ − �0,E, g, he
−�(Φ+k

�
(Φ)), t) becomes q-elliptic modulo 

X0 for all � ≥ �0 for sufficiently large �0 and for all � ∈ [0,
1

2
] with a common q-ellipticity 

constant, the approximation argument works similarly as in Lemma 1.1 and Theorem 2.2.i 
to show that the map Hn,k

(2),Φ
(X,E) → H

n,k

(2),(1+Γ)Φ
(X,E) (k ≥ q) is bijective for any Γ ∈ [0, 1] 

and that so is Hn,k

(2),aΦ
(X,E) → H

n,k

(2),(1+Γ)aΦ
(X,E) (k ≥ q) a fortiori for any Γ ∈ [0, 1] and 

a > 1.
Hence, eventually one has H

n,k

(2),Φ
(X,E) ≅ Hn,k(X,E) (k ≥ q) , since 

H
n,k

(2),aΦ
(X,E) ≅ Hn,k(X,E) (k ≥ q) holds for sufficiently large a by Theo-

rem  1.1.2. We note that sup {Φ(x);(𝜕𝜕̄Φ)q(x) < 0} < ∞ cannot be weakened to 
limc→∞ inf {(𝜕𝜕̄Φ)q(x);Φ(x) > c} ≥ 0 at the last point. The denseness of the image of 
H

n,q−1

(2),Φ
(X,E) in Hn,q−1(X,E) holds by a similar reason. 	�  ◻

Proof of b)  By a), it suffices to show that

holds for sufficiently large � . For that we set

for t < 𝜇 and

for t ≥ � . Then, by the assumption (0.1), the approximation argument works similarly as 
above to conclude that Hn,k

(2),� logΦ
(X,E) are isomorphic to Hn,k

(2),Φ
(X,E)(≅ Hn,k(X,E)) for 

k ≥ q if � is sufficiently large and the map

has a dense image. 	�  ◻

That’s all, at least at the moment, for the generality of isomorphism and approximation 
by the technique of infinitely many weights originated from Proposition 3.4.5 in [23]. A 
new aspect of the method of approximation by infinitely many weights is summarized 
as follows if one does not stick so much to the precise control of the weights for the har-
monic representation. The proof may well be left to the reader as a quite easy exercise.

Theorem 4.1  Let (X, g) be a complete Hermitian manifold of dimension n and let (E, h) 
be a Hermitian holomorphic vector bundle such that (X, g, E, h) is q-elliptic at infinity for 
some q ∈ ℕ and there exists a C∞ exhaustion function � ∶ X → ℝ satisfying

Then dimH
n,k

(2),𝜇𝜑
(X,E) < ∞ (k ≥ q) for all � ≥ 0 and there exists a strictly convex increas-

ing function � ∶ ℝ → ℝ with lim
t→∞

�
�(t) = ∞ such that dimH

n,k

(2),𝜆(𝜑)
(X,E) < ∞ (k ≥ q), the 

maps

lim inf
c→∞

{(𝜕𝜕̄Φ −Φ−1
𝜕Φ𝜕̄Φ)q(x);Φ(x) > c)} ≥ 0

H
n,k

(2),� logΦ
(X,E) ≅ H

n,k

(2),Φ
(X,E) (k ≥ q)

�
�
(t) = t

�
�
(t) = � log t − � log� + �

lim
⟶

�

H
n,q−1

(2),� logΦ
(X,E) → Hn,q−1(X,E)(= H

n,q−1

(2),Φ
(X,E))

lim
c→∞

inf{(𝜕𝜕̄𝜑)q(x);𝜑(x) > c} ≥ 0.
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are bijective for sufficiently large � and the map

has a dense image. If

then one can choose � so that Hn,k

(2),�(�)
(X,E) ≅ Hn,k(X,E) (k ≥ q) and the map

has a dense image.

We shall proceed to apply Theorem 0.2 by restricting ourselves to geometrically special 
cases.

6 � Extension, comparison and vanishing on weakly 1‑complete 
manifolds

In this section, we shall prove Theorem  0.3 and Theorem  0.4 after recalling the basic 
notion of (semi-) positivity for vector bundles and introducing the notion of pseudoconcav-
ity of effective divisors.

From now on, let M be a weakly 1-complete manifold of dimension n equipped with 
a C∞ plurisubharmonic exhaustion function � and let (E, h) be a Hermitian holomorphic 
vector bundle over M. We also fix a Hermitian metric gM on M. We recall that the curva-
ture form of h, denoted by Θh , is defined as the (E∗

⊗ E)-valued (1, 1)-form whose exte-
rior multiplication from the left hand side coincides with (𝜕h + 𝜕̄)2 , where �h is defined as 
h−1◦�◦h by identifying h with a map transforming E-valued forms to E

∗
-valued ones. By 

identifying h◦Θh with a section of (TM ⊗ E)∗ ⊗ (TM ⊗ E)∗ , it is naturally regarded as a 
Hermitian form on the fibers of TM ⊗ E . (E, h) is said to be Nakano positive (resp. Nakano 
semipositive) if hΘh is fiberwise positive (resp. semipositive) in this sense. By an abuse of 
language, we shall also say that Θh is Nakano positive (resp. Nakano semipositive) in this 
case. Nakano will not be referred to if the rank of E or the dimension of M is one.

For any (complex) analytic set A ⊂ M , we say that E|A is Nakano (semi-) positive if E 
admits a fiber metric h̃ such that h̃Θh̃ is (semi-) positive on the fibers of TA ⊗ E , where TA 
denotes the set of Zariski tangent vectors of A.

Let us recall that an effective divisor on M is by definition a locally finite formal 
linear combination 

∑
mjDj of irreducible analytic sets Dj ⊂ M of codimension one with 

positive integral coefficients mj . By an abuse of language, 0 is admitted to be effec-
tive. 

⋃
j Dj is called the support of D and denoted by |D|. It is easy to see that M ⧵ |D| is 

weakly 1-complete if the line bundle [D] associated to D is seimipositive. In fact, let-
ting b be a fiber metric of [D] whose curvature form is semipositive on M, letting s be 
a canonical section of [D] and letting |s|b be the pointwise length of s with respect to b, 

H
n,k

(2),��
(X,E) → H

n,k

(2),�(�)
(X,E) (k ≥ q)

lim
⟶

�

H
n,q−1

(2),��
(X,E) → H

n,q−1

(2),�(�)
(X,E)

lim
c→∞

inf{(𝜕𝜕̄𝜑)q(x);𝜑(x) > c} > 0,

H
n,q−1

(2),�(�)
(X,E) → Hn,q−1(X,E)
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− log |s|b + �(�) will become a plurisubharmonic exhaustion function on M ⧵ |D| for a 
sufficiently rapidly growing convex increasing function �.

In what follows we shall restrict ourselves to the case where |D| is nonempty and 
compact. Instead of the semipositivity of [D] we shall only assume that [D]||D| is semi-
positive. In this situation it is easy to see that

holds for any 𝜖 > 0 with respect to the metric g ∶= gM + 𝜕𝜕̄(e𝜌 +
𝛿

log((log |s|b)2+1)
) for some 

𝛿 > 0 and for some fiber metric b of [D]. For any positive number a, we shall say that D is 
pseudoconcave of order a if there exists a fiber metric b̃ (= b̃(a)) of [D] and a neighbor-
hood U of |D| such that |s|−a

b̃
 is plurisubharmonic on U ⧵ |D| . |s|−a

b̃
 will be called then a 

canonical exhaustion of order a.
Since

holds for any positive C∞ function Φ , (5.1) implies that for any canonical exhaustion Ψ of 
order a < 2,

holds with respect to g.

Proof of Theorem  0.3  By the assumption on E, we may assume that gM is Kählerian on 
a neighborhood of |D| and outside a compact subset of M. By such a choice of gM , it is 
routine that one can find a fiber metric h of E and positive numbers C and � in such a way 
that (M ⧵ |D|, g,E, he−�(log(log |s|b+C)))−1 ) is 1-elliptic at infinity. Moreover, since M is weakly 
1-complete and E|M⧵K is Nakano positive for some compact set K ⊂ M , one may choose h 
in advance so that

canonically for all � ≥ 0 and k ≥ 0 (see the proof of Theorem 1.1 and the remark at the end 
of the proof of Theorem 3.1). Note that � can be chosen arbitarily small. On the other hand, 
by (5.1), which holds for � = log |s|−1

b
 , one can infer from Theorem 4.1 that the sequence 

dimHn,k(M,E⊗ [D]𝜇) (� = 1, 2,…) stabilizes for sufficiently large � . This is the end of 
the proof of the first part of the assertion.

To see the validity of the second part, instead of Theorem  4.1 we appeal to Theo-
rem 0.2 by setting Φ = |s|−a

b
 for some 1 < a < 2 and some fiber metric b of [D] so that Φ 

is plurisubharmonic. Then as we have seen above, Φ satisfies the assumptions of Theo-
rem 0.2.a for q = 1 . Moreover, (0.1) holds for q = 1 because of (5.1). Hence the desired 
conclusion is an immediate consequence of Theorem 0.2.b. 	�  ◻

We note that the second assertion in Theorem 0.3 contains something new about the 𝜕̄
-cohomology of weakly 1-complete manifolds. For instance, let M be a weakly 1-complete 
Kähler manifold of dimension n and let E → M be a holomorphic vector bundle which 
admits a fiber metric whose curvature form is Nakano positive outside a compact subset 
say K of M. In this situation, Takegoshi [54] showed that Hn,k(M,E) = 0 for k ≥ 1 . If there 

(5.1)lim inf
x→|D|

(|s|−2+𝜖
b

𝜕𝜕̄ log |s|−1
b
)1(x) ≥ 0

𝜕𝜕̄Φ = Φ𝜕𝜕̄ logΦ +Φ−1
𝜕Φ𝜕̄Φ

lim inf
x→|D|

(𝜕𝜕̄Ψ − Ψ−1
𝜕Ψ𝜕̄Ψ)1(x) ≥ 0

H
n,k

(2),−2𝜇 log |s|b
(M ⧵ |D|,E) ≅ Hn,k(M,E⊗ [D]𝜇)
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exists a compact nonzero effective divisor D on M ⧵ K which is pseudoconcave of order 
>1, then although we do not know whether or not E⊗ [D]𝜇 has the positivity property out-
side some compact set of M, we have Hn,k(M,E⊗ [D]𝜇) = 0 (k ≥ 1) for sufficiently large 
� . Indeed, since Hn,k(M ⧵ |D|,E) = 0 (k ≥ 1) holds by Takegoshi’s theorem by the Nakano 
positivity of E|M⧵K and the weakly 1-completeness of M ⧵ |D| , by the comparison assertion 
of Theorem 0.3 one has Corollary 0.2.

Definition 5.1  An effective divisor D is said to be of finite type � if [D]||D| is topologically 
trivial and [D]|A is not equivalent to any unitary flat line bundle, where A = (|D|,OM∕I

�+1
|D| ).

Ueda proved the following in ([57], §3).

Lemma 5.1  If D is of finite type � and |D| is a compact smooth curve, then �D is pseudoc-
oncave of order a for any a > 1.

Combining Lemma 5.1 with Theorem 0.3, we obtain Theorem 0.4.

Remark 5.2  Given a compact complex curve C smoothly embedded into a complex surface 
S, in [57] it is also proved that [C] is not semipositive if C is of finite type (cf. [57], Theo-
rem 2). If C ⋅ C = 0 and C is not of finite type, it is not known whether or not [C] is semi-
positive. Nevertheless, if S is compact and [C] is semipositive, the curvature form of [C] 
must degenerate everywhere, by virtue of Siu’s solution [52] of Grauert-Riemenschneider’s 
conjecture. Hence, as was recently shown by Koike in [27], [C] is U(1)-flat on a neighbor-
hood of C.

7 � Supplementary remarks

In the context of the Levi problem, the L2 method on q-convex manifolds has been applied 
to show basic function theoretic properties of their cycle spaces (cf. [33, 42]). In the same 
vein, Theorem 3.1 can be applied to prove their algebraicity in the following form.

Theorem  6.1  Let M be a compact Kähler manifold of dimension n and let A ⊂ M be a 
closed complex submanifold of codimension q whose normal bundle is positive in the sense 
of Griffiths. Then the Barlet space of (q − 1)-dimensional cycles in M ⧵ A is holomorphi-
cally convex. Moreover, its irreducible components are equivalent to affine algebraic varie-
ties up to modifications along compact sets.

We recall that the study of embeddings with positive normal bundles was motivated 
by the rigidity problem, of Nirenberg and Spencer [32], which goes as follows: Given 
a germ of embedding A ⊂ M (dimA ≥ 2) with positive normal bundle, is M determined 
by a finite neighborhood of A? Griffiths [21] answerted this question affirmatively, pro-
vided that the normal bundle of A in M is sufficiently positive. Theorem 6.1 is contained 
in Fujiki’s result in [13] if q = n . If q = 1 , it is contained essentially in [15] and stated 
more explicitly in [18]. See also [4, 33] and [8].
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