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Abstract
Suppose q = p

r, where p is a prime congruent to 3 or 5 modulo 8 and r is odd or q = 2r for 
any r. Then every closed smooth PSL(2, q) manifold has a strongly algebraic model.
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1 Introduction

Seifert [21, Satz 3] showed that an oriented closed smooth manifold Mm ⊂ ℝ
m+𝜖 with 

� = 1, 2 can be deformed through an arbitrary small isotopy into the real branch of an alge-
braic manifold. Nash [19] generalized Seifert’s result and also asked whether every closed 
smooth manifold can be isotoped to a nonsingular real algebraic variety. This was con-
firmed by Tognoli [23]. The approach quickly evolved [1, 18] into showing that the mani-
fold together with a classifying map of its tangent bundle can be deformed into a nonsingu-
lar variety and an entire rational map. Then Benedetti and Tognoli [2] showed that a closed 
smooth manifold is diffeomorphic to a nonsingular real algebraic variety X, so that all vec-
tor bundles over X are classified by entire rational maps.

Let G be a compact Lie group. If a closed smooth G manifold M is equivariantly dif-
feomorphic to a nonsingular real algebraic G variety X then we say that M is algebraically 
realized and that X is an algebraic model of M . If all G vector bundles over X are classified, 
up to equivariant homotopy, by entire rational maps, then we call X a strongly algebraic 
model. For more detailed definitions see Sect. 2. Existing results motivate
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Conjecture 1.1 [12, p. 32] Let G be a compact Lie group. Then every closed smooth G 
manifold has a strongly algebraic model.

In support of the conjecture we show:

Theorem 1.2 Let q = pr , where p is a prime congruent to ±3 mod 8 and r is odd or q = 2r 
for any r. Then every closed smooth PSL(2, q) manifold has a strongly algebraic model.

Equivariant history: Basic techniques in real algebraic transformation groups were 
developed in [10, 12]. In Sect. 6 we collect the algebraic realization results that are used 
in this paper. Closed smooth G manifolds have strongly algebraic models if G is cyclic 
[9, 13, 14], or if the Sylow 2 subgroup of G is cyclic [8], or if the group is a product of an 
elementary abelian 2 group and an odd order group [12]. In this paper we are discussing 
an infinite family of groups whose Sylow 2 subgroup is ℤ2 × ℤ2 . We also have results for 
compact Lie groups of positive dimension, see Theorem 6.3 and Proposition 6.4. In [11] 
we also showed the existence and uniqueness of an equivariant real algebraic structure on a 
homogeneous space. For a more extensive history see [8].

Organization: In Sect.  2 we provide careful definitions of the terms we use and the 
canonical real algebraic structure on a Grassmannian. In Sect. 3 we summarize everything 
that we need about PSL(2, q) . In Sect. 4 we set up the strategy for, and in Sect. 5 carry out 
the proof of Theorem 1.2. The proof makes use of topological tools that are collected and 
proved in Sect. 6. In Sect. 7 we analyze the blow–up process in detail and carefully work 
out how it removes fixed point sets. In Sect. 8, as an example, we sketch the partial order of 
the isomorphism classes of subgroups of PSL(2, p2k+1) in case p is congruent to 5 modulo 
8.

Thanks: The authors would like to thank R. Freese and R. Solomon for help with the 
group theory. They also thank the referee, whose insightful suggestions helped to improve 
the paper.

2  Definitions, conventions, and background material

2.1  G manifolds

We allow G manifolds to have components of different dimension. Under this convention, 
if G acts smoothly on a manifold M , the fixed point set MG is going to be a smooth sub-
manifold of M.

2.2  Real algebraic varieties and entire rational maps

Let G be a compact Lie group and Ω an orthogonal representation of G.

Definition 2.1 A real algebraic G variety is a G invariant, common set of zeros of a finite 
set of polynomials p1,..., pm ∶ Ω → ℝ:

V = {x ∈ Ω ∣ p1(x) = ⋯ = pm(x) = 0}.
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We do not require varieties to be irreducible. Unless stated otherwise, we use the Euclidean 
topology on varieties. The action of G on V is the restriction of the action on Ω.

Definition 2.2 [25, 3, p. 59] The variety V ⊂ ℝ
n is said to be nonsingular at x ∈ V  if there 

are polynomials q1,… , qs ∶ ℝ
n
→ ℝ which vanish on V and a Zariski open neighborhood 

U of x in ℝn such that 

(1) V ∩ U = U ∩ q−1
1
(0) ∩⋯ ∩ q−1

s
(0) , and

(2) the gradients (∇qi)x are linearly independent for i = 1,… , s.

We say that V is nonsingular if V is nonsingular at each point x ∈ V  and all connected 
components of V have the same dimension.

Let V ⊆ ℝ
n and W ⊆ ℝ

m be real algebraic varieties. A map f ∶ V → W  is said to be 
regular if it extends to a map F ∶ ℝ

n
→ ℝ

m such that each of its coordinates Fi is a 
polynomial. We say that f is entire rational if there are regular maps p ∶ ℝ

n
→ ℝ

m and 
q ∶ ℝ

n
→ ℝ , such that f = p∕q on V and q does not vanish anywhere on V.

The ideas of regular and entire rational functions generalize naturally to the equiv-
ariant setting.

2.3  Canonical algebraic structure on the Grassmannians

Let Ξ be an orthogonal representation of G. Then End
ℝ
(Ξ) is a real representation of G 

with the action given by

Let d be a natural number. We set

Here L∗ denotes the adjoint of L. If Ξ is of dimension n and one chooses an orthonor-
mal basis of Ξ , then End

ℝ
(Ξ) is canonically identified with the set of n × n matrices, 

and L∗ = Lt . This description specifies G
ℝ
(Ξ, d) and E

ℝ
(Ξ, d) as real algebraic G varie-

ties. These varieties are nonsingular. The map in (2.3) is projection on the first factor, and 
�
ℝ
(Ξ, d) is an equivariant vector bundle.

Proposition 2.3 The variety G
ℝ
(Ξ, d) is the Grassmannian consisting of real subspaces of 

Ξ of dimension d.

Proof A proof is given in [3, §3.4]. There is a bijection between subspaces of Ξ and orthog-
onal projections. To a projection one associates its image.   ◻

G × End
ℝ
(Ξ) → End

ℝ
(Ξ) with (g,L) ↦ gLg−1.

(2.1)G
ℝ
(Ξ, d) ={L ∈ End

ℝ
(Ξ) ∣ L2 = L, L∗ = L, traceL = d}

(2.2)E
ℝ
(Ξ, d) ={(L, u) ∈ End

ℝ
(Ξ) × Ξ ∣ L ∈ G

ℝ
(Ξ, d), Lu = u}

(2.3)�
ℝ
(Ξ, d) =

(
p ∶ E

ℝ
(Ξ, d) → G

ℝ
(Ξ, d)

)
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2.4  Strongly algebraic vector bundles

In our setting the preferred concept of a vector bundle is the one of a strongly algebraic 
vector bundle.

Definition 2.4 A strongly algebraic G vector bundle over a real algebraic G variety is a 
bundle whose classifying map to G

ℝ
(Ξ, d) is equivariantly homotopic to an entire rational 

map.

Expressed differently, a vector bundle over a variety X is strongly algebraic if it is iso-
morphic to the pullback of the universal algebraic bundle �

ℝ
(Ξ, d) in (2.3) under an entire 

rational map.

2.5  Algebraic models

Because nonsingular varieties have a specific dimension, we have to adjust our definition 
of algebraic model from the introduction for manifold that have components of different 
dimension. If M is a closed smooth manifold and M(d) is the union of all components of 
dimension d, then M is the disjoint union of the M(d) . An algebraic model of M is a variety 
X that is the union of nonsingular varieties X(d) , so that each M(d) is diffeomorphic to X(d) . 
We say that X is a strongly algebraic model of M if all vector bundles over X are strongly 
algebraic. The ideas generalize naturally to the equivariant setting.

3  Group theory

Suppose q = pr and p is a prime. Recall that SL(2, q) is the group of 2 × 2 matrices of 
determinant 1, with coefficients in the finite field with q elements. This group has order 
(q − 1)q(q + 1) . Its center, the subgroup generated by −Id , has order 2, except of course in 
characteristic 2, where is has order 1. The projective special linear group PSL(2, q) is the 
quotient of SL(2, q) by its center, and so has half the order of SL(2, q) if q is odd. Accord-
ingly we set d = 2 if p is odd and d = 1 if p = 2.

L. E. Dickson [6] classified the maximal proper subgroups of PSL(2, q) . Actually, he 
credits older sources. As a comprehensive source for our needs we quote Dickson’s theo-
rem from [15, Theorem 6.5.1], see also [17, II.8.27]. We write Cm for the cyclic group of 
order M and D2m for the dihedral group of order 2 M.

Theorem 3.1 Suppose q = pr where p is an odd prime, p ≡ ±3 mod 8 and r odd, or q = 2r 
for any r. Let d be as above and q > 5 . Then the order of PSL(2, q) is (q3 − q)∕d and any 
proper subgroup of PSL(2, q) is isomorphic to a subgroup of one of the following groups: 

(1) Dihedral groups of order 2(q − 1)∕d and 2(q + 1)∕d.
(2) Borel subgroups B of PSL(2, q) of order q(q − 1)∕d . More explicitly, any Sylow p sub-

group of PSL(2, q) is of the form (Cp)
r , and B is a semi–direct product of (Cp)

r and a 
cyclic group of order (q − 1)∕2.
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(3) The alternating group A5 , if 5 divides the order of PSL(2, q).
(4) The alternating group A4.
(5) The groups PSL(2, ps) where s is a proper divisor of r.

The groups listed in (1)–(5) are their own normalizers in PSL(2, q) and any Sylow 2 sub-
group of PSL(2, q) is elementary abelian.

If p = 2 , then the very last assertion repeats (2). If p is odd, then any Sylow 2 subgroup 
is of order 4. A result of Frobenius implies that a cyclic Sylow 2 subgroup would have a 
normal 2 complementary subgroup. That is a contradiction as PSL(2, q) for q ≥ 5 is simple. 
We assume that q > 5 to avoid some exceptional cases. This does no harm because we have 
proved our main result already in case q ≤ 5.

4  Preparation and strategy

Let G be a group. Unless otherwise stated, we assume from now on that G is finite. The 
set of subgroups of G is partially ordered by inclusion, with G as the unique maximal ele-
ment and the trivial group as the unique minimal element. If H is a subgroup of G then we 
denote by [H] the class of all subgroups of G isomorphic to H, and by (H) the class of all 
subgroups of G conjugate to H. The partial order on the set of subgroups of G induces a 
partial order on the set of isomorphism classes. This requires G to be finite.

Suppose M is a closed smooth G manifold. Given x in M , its isotropy group is 
Gx = {g ∈ G ∣ gx = x} . Then Ggx = gGxg

−1 . For H ⊆ G we set

A point x ∈ M belongs to MH if x is left fixed by all h ∈ H , and x belongs to M[H] if x is left 
fixed by all h ∈ H� for some H� ∈ [H] . The H fixed point set MH is an NGH manifold. The 
set M[H] is G invariant.

Notation 4.1 Let M be a closed smooth G manifold. 

(1) If A is a G invariant submanifold, then B(M, A) denotes the blow–up of M along A. For 
details of the construction, see Sect. 7.

(2) Suppose H a subgroup of G. Denote by RH the union of all components of MH that are 
of codimension zero in M , and by R[H] the union of all components of MH′ that are of 
codimension zero in M , where H′ ranges over all H� ∈ [H] . The components of RH are 
also components of M.

(3) With H understood, we set M = M ⧵ R[H].

Definition 4.2 Let Y be a closed smooth G manifold and H a nontrivial subgroup of G. We 
say that we can successfully remove the H fixed point set if 

(1) The blow–up Ŷ = B
(
Y , Y

[H]
)
 exists.

(2) ŶH = � and [ YL = � ⟹ ŶL = � ] for all subgroups L of G.
(3) Ŷ  having a strongly algebraic model implies that Y has a strongly algebraic model.

(4.1)
MH = {x ∈ M ∣ Gx ⊇ H}

M[H] = {x ∈ M ∣ Gx ⊇ H� ∈ [H]} =
⋃

H�∈[H]

MH�
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It goes without saying that when we remove the H fixed point set we also remove the 
fixed point set for groups isomorphic to H. In addition, if H is not a maximal isotropy group 
of the action, then removing the H fixed point set may remove, as a bonus, the K fixed point 
set for some K ⊃ H at the same time. There is no need to repeat the word successful.

The point of Definition 4.2 is that a successful blow–up reduces the strongly algebraic 
realization problem for Y to the one of Ŷ  , and the latter problem may be easier to answer 
because ŶL is nonempty for fewer subgroups of G than for Y. In Sect. 7 we will show

Proposition 4.3 Let Y be a closed smooth G manifold and H a nontrivial subgroup of G. 
We can successfully remove the H fixed point set if the following conditions are met: 

(1) YH�

∩ YH��

= � whenever H� ≠ H�� ∈ [H].
(2) H does not have an index 2 subgroup.
(3) The NGH manifolds RH and Y

H have strongly algebraic models.

We want to find a finite sequence H0 , H1 , ..., Hk−1 of subgroups of G that, for any given 
G manifold M , provides us with a sequence of G manifolds

We will make sure that in each step the Hj fixed point set is removed successfully. This 
implies that whenever Mk has a strongly algebraic model, then so does the manifold 
M = M0 that we started out with. If we can remove the fixed point set for all groups that are 
not 2 groups, then our next result tells us that Mk , and with this M , has a strongly algebraic 
model.

Proposition 4.4 Suppose G = PSL(2, q) is as in Theorem  1.2. If M is a closed smooth 
PSL(2, q) manifold, all of whose isotropy groups are 2 groups, then M has a strongly alge-
braic model.

Proof The assertion follows from Proposition 6.7 and Proposition 6.8 using that any Sylow 
2 subgroup of PSL(2, q) is a 2 torus, see Theorem 3.1.   ◻

5  Proof of Theorem 1.2

Let G = PSL(2, q) be as in Theorem 1.2 and M a closed smooth G manifold. Assume that 
q > 5 . We may do so because the theorem has been proven already for PSL(2, 2) = S3 , 
PSL(2, 3) = A4 and PSL(2, 4) = PSL(2, 5) = A5 , see [7, 8].

We will find a sequence H0 , ..., Hk−1 of subgroups of PSL(2, q) that leads to a blow–up 
sequence as in (4.2), so that the isotropy groups for the final manifold Mk are all 2 groups. 
Then Proposition 4.4 tells us that this final manifold Mk has a strongly algebraic model. 
This will be done in three multi–step phases. At each step we make sure that Mj+1 having 
a strongly algebraic model implies that Mj has a strongly algebraic model as well. Hence 
M = M0 itself has a strongly algebraic model and the theorem is proved.

In Sect. 8 we sketch the partially ordered set of isomorphism classes of subgroups of 
PSL(2, q) when p ≡ 5 mod 8 . This may help some readers.

(4.2)M0 = M, M1 = B
(
M0,M

[H0]

0

)
,… , Mk = B

(
Mk−1,M

[Hk−1]

k−1

)
.
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Phase 1: At this time we will eliminate as isotropy group all subgroups of G of the form 
PSL(2, ps) as well as A5 (if present) and A4.

Compatibly with the partial order we can order the groups, and with it their isomor-
phism types, linearly:

where j ranges over the divisors of r.
Let H be any of the groups in (5.1) and Y a closed smooth G = PSL(2, pr) manifold with 

YL = � for all [L] > [H] . Then H is a maximal isotropy group of the action of PSL(2, pr) on 
Y. Any x ∈ YH�

∩ YH�� for H� ≠ H�� ∈ [H] would have an isotropy group that contains H′ 
and H′′ , contradicting the maximality assumption of H as an isotropy group. No such x can 
exist, and we verified (1) in Proposition 4.3. Condition (2) in the proposition holds because 
none of the groups in (5.1) has an index 2 subgroup.

Each of the groups is (5.1) is its own normalizer (see Theorem 4.3) and the action of 
NGH on Y

H and RH is trivial. Proposition 6.4 tells us that the NGH manifolds Y
H and RH 

have strongly algebraic models. We verified (3) in Proposition 4.3.
Having verified all assumption of Proposition 4.3, we deduce that we can successfully 

remove the H fixed point set.
Applying above process repeatedly we find a sequence M0 , ..., Mi as in (4.2) so that 

MH
i
= � for all H as in (5.1). If Mi has a strongly algebraic model, then so does M = M0.

Phase 2: Suppose p is odd. We state a proposition that allows us to stepwise and suc-
cessfully remove the fixed point set for all subgroups of PSL(2, pr) whose order is divisible 
by p. Its proof is given in Sect. 6.3. This step is not needed when p = 2.

Proposition 5.1 Let Y be a closed smooth G = PSL(2, q) manifold, where q = pr > 5 
and p is a prime congruent to 3 or 5 modulo 8. Assume that YΓ = � for all Γ as in Theo-
rem 3.1 (3)–(5). Suppose H ⊂ G is a nontrivial p group, and there is no Γ whose order is 
divisible by a higher power of p than the order of H with YΓ ≠ � . Then we can successfully 
remove the H fixed point set from Y.

We linearly order the isomorphism classes of the nontrivial p subgroups of PSL(2, q)

Proposition 5.1 says that if the Hj fixed point set of Y is empty up to a certain point, then 
we can successfully remove the fixed point set for the groups in [Hj+1] , the next class. Note 
that at the same time we remove the fixed point sets for groups that contain groups isomor-
phic to Hj+1 that are not p groups.

We do it repeatedly. This extends the sequence of manifolds from the first phase to 
M0,…Mi,Mi+1 … ,Mi+k , where MΓ

i+k
= � for all groups Γ as in Theorem 3.1 (3)–(5) and 

any Γ of an order divisible by p. Furthermore, if Mi+k has a strongly algebraic model, then 
so does M = M0.

Phase 3: Finally we remove the remaining fixed point sets for groups that are not 2 
groups. We apply the following proposition repeatedly. For its proof see Sect. 6.3.

Proposition 5.2 Let q be as in Theorem 3.1 and Y a closed smooth G = PSL(2, q) manifold. 
Assume that YΓ = � for all Γ as in Theorem 3.1 (3)–(5) and, if p is odd, all Γ whose order 
is divisible by p. Suppose H ⊂ G is a nontrivial odd order cyclic subgroup of D2(q−1)∕d 
or of D2(q+1)∕d (see Theorem 3.1 (1)) and there is no strictly larger order odd order cyclic 

(5.1)PSL(2, pr) > ⋯ > PSL(2, pj) > ⋯ > PSL(2, p) ≥ A5 > A4,

(5.2)[Hi] > [Hi+1] > ⋯ > [Hi+k].
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subgroup Γ of D2(q−1)∕d or of D2(q+1)∕d so that YΓ ≠ � . Then we can successfully remove 
the H fixed point set from Y.

Linearly order the isomorphism classes of the nontrivial odd order cyclic subgroups of 
C(q−1)∕2 and C(q+1)∕2.

Proposition  5.2 says that if the C�(j) fixed point set of Y is empty up to a certain point, 
then we can successfully remove the fixed point set for the next group. This extends the 
sequence of manifolds from the first two phases to

The only isotropy groups of Mi+k+s are 2 groups and if Mi+k has a strongly algebraic model, 
then so does M = M0.

As explained at the outset of the proof, our last observation completes the proof of 
Theorem 1.2.

6  Topological tools

6.1  Propagation and induction

Our next two propositions explain how strongly algebraic realization interacts with the 
operations of disjoint union and blow–up.

Proposition 6.1 [12, Proposition 2.7] Let M , M1 and M2 be closed smooth G manifolds and 
M = M1 ⊔M2 . Then any of the manifolds has a strongly algebraic model if the other two 
do.

Proposition 6.2 [14, Proposition 3.1] Suppose M is a closed smooth G manifold and A a 
closed G invariant submanifold. If A and B(M, A), the blow–up of M along A, have strongly 
algebraic models, then so does M.

We review induction. Suppose N is a closed subgroup of G and X is a smooth N mani-
fold then

The balanced product G ×N X consists of equivalence classes [g, x] of pairs (g, x) ∈ G × X , 
where (g, x) ∼ (gh−1, hx) whenever h ∈ N.

If X is a smooth N manifold, then IndG
N
X is a smooth G manifold [5, Chapter VI]. In the 

real algebraic setting we have:

Theorem 6.3 [12, Proposition 2.8] Suppose G is a compact Lie group and N a closed sub-
group. If X is a strongly algebraic model of an N manifold M , then IndG

N
X is a strongly 

algebraic model of the G manifold IndG
N
M.

See also [10, Section 3], [20, Corollary 1.4], [11, Corollary 7.3], and [24].

(5.3)[C𝛼(1)] > ⋯ > [C𝛼(s)]

M0,…Mi,Mi+1,… ,Mi+k,Mi+k+1,… ,Mi+k+s.

(6.1)Ind
G
N
X = G ×N X.
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6.2  Strongly algebraic realization results

Under certain assumptions we know that a closed smooth G manifold has a strongly alge-
braic model. We list cases that we make use of.

Proposition 6.4 [12, Theorem A] Let G be a compact Lie group and M a closed smooth 
G manifold. If the action is semifree (the only isotropy groups of the action are the trivial 
group {1} and the group G itself), then M has a strongly algebraic model.

The proposition covers actions that are either free or trivial.

Proposition 6.5 [8, Theorem 1.3] Suppose G has a cyclic Sylow 2 subgroup. Then every 
closed smooth G manifold has a strongly algebraic model.

Proposition 6.6 [7, Theorem 1.2] Suppose G = D2q is a dihedral group of order 2q, and q 
is not divisible by 4. Then every closed smooth G manifold has a strongly algebraic model.

A classical result of Stong [22, Lemma 13.3] implies:

Proposition 6.7 [8, Proposition 2.2] Suppose G is a finite group and G2 a Sylow 2 subgroup. 
Closed smooth G manifolds, all of whose isotropy groups are 2 groups, have strongly alge-
braic models if all closed smooth G2 manifolds have strongly algebraic models.

Proposition 6.8 [12, Theorem B] Suppose G is the product of a 2 torus and an odd order 
group. Then every closed smooth G manifold has a strongly algebraic model.

The last two propositions were used in the proof of Proposition 4.4.

6.3  Proof of Proposition 5.1 and 5.2

We catch up with the proofs of two propositions that we employed earlier.

Proof of Proposition  5.1 We verify the assumptions of Proposition  4.3 for the p group 
H ⊂ G , which will then imply our assertion. We assume that YH ≠ ∅ because otherwise 
the assertion is vacuous.

Working towards a contradiction, we suppose that Γ = Gx is the isotropy group of some 
x ∈ YH�

∩ YH�� where H� ≠ H�� ∈ [H] . This group Γ must be contained in a proper sub-
group of PSL(2, q) , it is an isotropy group, and its order is divisible by p. By assumption it 
is not one of the groups in Theorem 3.1 (3)–(5). We conclude that Γ ⊂ B , where B is as in 
Theorem 3.1 (2). Normality of any Sylow p subgroup (Cp)

r of PSL(2, q) in B implies that 
both H′ and H′′ are subgroups of (Cp)

r . This would mean that the order of Gx is divisible 
by too high a power of p. Thus, as anticipated, YH�

∩ YH��

= � . We verified (1) in Proposi-
tion 4.3. The group H is of odd order, so that (2) in Proposition 4.3 holds trivially.

Finally we verify that the NGH manifolds YH and RH have strongly algebraic models. 
We know that H is a subset of some isotropy group, and because the groups in Theo-
rem 3.1 (3)–(5) have been excluded, H and NGH are subgroups of a Borel subgroup B as in 
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Theorem 3.1 (2). We know that 4 does not divide the order of B, and neither does it divide 
the order of NGH . The Sylow 2 subgroup of NGH is C2 or trivial. It follows from Proposi-
tion 6.5 that, as NGH manifolds, Y

H and RH have strongly algebraic models. With this we 
verified (3) in Proposition 4.3, and the proof of Proposition 5.1 is complete.   ◻

Proof of Proposition  5.2 Suppose H is a nontrivial odd order cyclic subgroup of 
C(q±1)∕d ⊂ D2(q±1)∕d , see Theorem 3.1 (1). We verify the assumptions of Proposition 4.3.

Anticipating a contradiction, we suppose that Γ = Gx is the isotropy group of some 
x ∈ YH�

∩ YH�� where H� ≠ H�� ∈ [H] . By assumption, Γ is not one of the groups in 
Theorem  3.1  (3)–(5), and, in case p is odd, the order of Γ is not divisible by p. Then 
H�,H�� ⊂ Γ ⊆ D2(q±1)∕d . The two odd order cyclic subgroups H′ and H′′ of C(q±1)∕d must be 
the same. This contradicts our assumption and verifies (1) in Proposition 4.3. Assumption 
(2) in Proposition 4.3 holds trivially because H is of odd order.

We verify the third assumption in Proposition 4.3. Because H ⊆ D2(q±1)∕d and D2(q±1)∕d 
is a maximal proper subgroup of PSL(2, q) we deduce that NGH ⊆ D2(q±1)∕d . The order of 
NGH will not be divisible by 8. It follows from Proposition 6.5 if NGH is cyclic and from 
Proposition 6.6 if NGH is dihedral that the NGH manifolds Y

H and RH have strongly alge-
braic models.

We completed the verification of the assumptions of Proposition 4.3 and conclude that 
we can successfully remove the H fixed point set from Y.   ◻

7  Blow‑ups

Suppose Y is a closed smooth G manifold and A a G invariant closed smooth submani-
fold. We describe the construction of the blow–up B(Y,  A) of Y along A, see [16, pp. 
175–176] and [22, p.41]. Let � = �(A,Y) be the normal bundle of A in Y and ℝ the prod-
uct bundle with fibre ℝ over a space understood from context. Taking fibrewise projective 
spaces gives us the (total space of the) projective bundle ℝP(𝜈 ⊕ℝ) . The lines 0⊕ℝ in 
each fibre define a canonical section in ℝP(𝜈 ⊕ℝ) that we denote by A. By construction 
𝜈(A,ℝP(𝜈 ⊕ℝ)) ≅ 𝜈(A,Y) . The identification, restricted to the disk bundles, provides us 
with a diffeomorphism of tubular neighborhoods UY and UP of A in Y and ℝP(𝜈 ⊕ℝ) . 
Removing the interiors of the tubular neighborhoods and identifying the spaces along the 
boundary is the blow–up of Y along A:

Alternatively, we can construct

where the attaching map 𝜑 ∶ D(𝜈) × {0, 1} →

(
Y ⊔ℝP(𝜈 ⊕ℝ)

)
× {1} identifies the top 

and bottom edge of D(�) × [0, 1] with closed tubular neighborhoods of A in Y × {1} and A 
in ℝP(𝜈 ⊕ℝ) × {1} . The smooth G manifold W (after rounding corners) provides a bord-
ism between Y ⊔ℝP(𝜈 ⊕ℝ) and B(Y, A).

Throughout we will blow up fixed point sets of a subgroup H of G, and its translates. 
Our next two observations follow immediately from the definition of the blow–up.

(7.1)B(Y ,A) =

(
Y ⧵

◦

UY

)
∪S(𝜈)

(
ℝP(𝜈 ⊕ℝ) ⧵

◦

UP

)
.

(7.2)W =
(
(Y ⊔ℝP(𝜈 ⊕ℝ)) × [0, 1]

)
∪𝜑

(
D(𝜈) × [0, 1]

)
,
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Proposition 7.1 Let Y be a closed smooth G manifold and H a subgroup of G. The blow–up 
B
(
Y , Y [H]

)
 exists if Y [H] is a submanifold of Y.

Proposition 7.2 If Y is a closed smooth G manifold and A a G invariant submanifold of 
codimension 0, then Y = B(Y ,A).

The last proposition is the reason for setting aside R[H] in the blow–up and for treating it 
separately in Proposition 4.3 (3).

We denote the conjugacy class of H ⊆ G by (H). In analogy to (4.1) we set 
Y (H) = {x ∈ Y ∣ Gx ⊇ H� ∈ (H)} . The obvious question raised by Proposition  7.1 is 
answered by :

Proposition 7.3 Suppose Y is a closed smooth G manifold and H is a subgroup of G. If 
YH�

∩ YH��

= � whenever H� ≠ H�� ∈ (H) , then Y (H) is a submanifold of Y. In particular:

The balanced product notation was introduced in (6.1). Our argument will be a modifi-
cation of one given in [5, 5.9 Theorem]. The ideas go back to [4, Chapter XII]. We do not 
need to assume that G is finite.

Proof Note that YH is a submanifold of Y, see [5]. By definition Y (H) is the union of the 
submanifolds YH′ , where H′ varies over H� ∈ (H) . We assumed that the YH′ are disjoint for 
different conjugates. Hence the union of the YH′ is a submanifold of Y.

We show that the map � ∶ G ×NGH
YH

→ Y (H) , defined by setting �[g, y] = gy , is an 
equivariant homeomorphism. The map is clearly continuous, equivariant, and surjective. 
Its restriction �|:

is bijective.
To show injectivity it suffices to show, if g ∉ NGH and y ∈ YH , then �[g, y] = gy ∉ YH . 

Assume to the contrary, that gy ∈ YH . Then Gy ⊇ H and Ggy = gGyg
−1 ⊇ H . The latter 

implies that Gy ⊇ g−1Hg and y ∈ YH ∩ Yg−1Hg = � , which is a contradiction. Hence � is 
injective and the proof is complete.   ◻

Example 7.4 Let us give an example. It explains the need to distinguish between subgroups 
with nonempty fixed point set and isotropy groups. Set G = C6 . Let X = S2 ⊂ ℝ

3 . Let a 
generator of G act on X as a rotation by 2�∕6 = �∕3 around the z axis. Then XG = XC3 
consists of the north and south pole of the sphere. The set of isotropy groups of X is 
Iso(X) = {{1},G}.

Set X̂ = B(X,XC3 ) . That means that at each pole of X we are taking a connected sum 
with ℙ = ℝP(Ω⊕ℝ) . Here Ω ≅ ℝ

2 denotes the tangent representation at either pole. One 
may check that ℙG = ℙ

C3 consists of a single point. Forming the connected sum removes 
the G and C3 fixed point set. On the other hand, ℙC2 consists of a point and a circle. The 
points cancel out in the blow–up, and instead we inherit two circles as C2 fixed point set 
of X̂ . We see that Iso(X̂) = {{1},C2} . We may say that the blow–up removed the C3 fixed 
point set. It also removed C6 as an isotropy group. No more supergroup to C3 is an isotropy 
group. In return, we have a new isotropy group, C2.

Y (H) ≈ G ×NGH
YH .

G ×NGH
YH ⊇ NGH ×NGH

YH ≈ YH
𝜑|
⟶ YH ⊂ Y (H)
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Proof of Proposition 4.3 We need to verify the conditions for the successful removal of the 
H fixed point set as formulated in Definition 4.2.

For the blow–up Ŷ = B
(
Y , Y

[H]
)
 to exist, we need to see that Y

[H] is a submanifold of Y  . 
This follows from Proposition 7.3 for Y

(H) . The isomorphism class [H] of H is a disjoint 
union of various conjugacy classes (H�) with H� ∈ [H] , and Y

[H] is a disjoint union of the 
Y
(H�) for these H′ . This makes Y

[H] into a submanifold of Y  , so that (1) in Definition 4.2 is 
satisfied.

Let is show: ŶL ≠ ∅ ⟹ Y
L
≠ ∅ . As in (7.1) we write

Because Y1 is Y  with a tube around the H fixed point set removed, it follows that YH
1
= � 

and if YL = � , then YL
1
= � . For the latter we write YL

1
≠ ∅ ⟹ YL ≠ ∅.

Now look at Y2 . Consider y ∈ Y2 in the fibre ℝP(𝜈x ⊕ℝ) of ℝP(𝜈 ⊕ℝ) above x ∈ Y
H

 . 
Expressed in homogeneous coordinates we have y = [v, t] . By construction v ≠ 0 and cor-
responds to a point v� ∈ Y  near x. If t ≠ 0 , then the isotropy group of y, v, and v′ are the 
same. Given such a point y ∈ ŶL for some group L we have v� ∈ Y

L
.

If t = 0 then the isotropy group Gy of y is the group that leaves the line through v invari-
ant, and it it necessarily a subgroup of Gx , the group that leave the fibre invariant. Given 
any L and a point y = [v, 0] ∈ YL

2
 we have that x ∈ Y

L
 . Formally, YL

2
≠ ∅ ⟹ YL ≠ ∅.

Combining the above: ŶL ≠ � ⟹ YL
1
≠ � ∨ YL

2
≠ � ⟹ Y

L
≠ � , which is the second 

part of (2).
We show the first part of (2), that ŶH = � . By construction, as we mentioned before, 

YH
1
= � . Let us look at Y2 . Note that �x , the fibre of �(YH , Y) over x, is a representation of 

Γ = Gx . Let y = [z, t] ∈ Y2 . We expressed y in homogeneous coordinates. There are three 
types of points in Y2 , z or t can be zero, but not both.

The first kind, points with z = 0 , have been removed in the blow–up process.
Secondly, if z and t are both nonzero, then Gy = Γz . Under the identification of the nor-

mal bundle � with the normal tube UY , z corresponds to a point ẑ  in Y  near (but not equal 
to) x. In particular Gẑ ⫋ H , and y will not be a point in YH

2
.

Finally, consider points of the form y = [z, 0] . We construct a contradiction to the 
assumption that y ∈ YH

2
 . We know that Γz ≠ H because z ≠ 0 is in the normal slice to the H 

fixed point set. Thus H has to leave the line y invariant without fixing it. The kernel of such 
a linear action on a real line is an index 2 subgroup, which H does not have. Any such point 
y = [z, 0] ∉ YH

2

Combining these three cases we see, as asserted, that ŶH = �.
To verify condition (3) in Definition  4.2 we need to show that Y

[H] and R[H] have 
strongly algebraic models. We assumed that RH and Y

H have strongly algebraic models. 
Denote the conjugacy class of H ⊆ G by (H), and set

The assumption that YH�

∩ YH��

= � for H� ≠ H�� ∈ (H) implies the diffeomorphisms ≈ 
in the above, see Proposition 7.3. According to Theorem 6.3, Y

(H) and R(H) have strongly 
algebraic models. We get Y

[H] and R[H] from Y
(H) and R(H) by varying the conjugacy 

classes (H) within the isomorphism class [H] and taking the disjoint union of the spaces. 

�Y = Y1 ∪ Y2 where Y1 = Y ⧵
◦

U
Y

and Y2 = ℝP(𝜈 ⊕ℝ) ⧵
◦

UP.

Y
(H)

∶={y ∈ Y ∣ Gy ⊇ H� ∈ (H)} ≈ G ×NGH
Y
H

R(H) ∶=
⨆

H�∈(H)

RH�

≈ G ×NGH
RH
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Proposition 6.1 tells us that Y
[H] and R[H] have strongly algebraic models. This completes 

the verification of the third and final assertion in Definition 4.2.
In retrospect one may draw attention to the trivial special case when Y [H] = R[H] and 

Y
[H]

= � . Then the H fixed point set is removed by setting it aside. It is removed from Y, 
see Notation 4.1 (3).   ◻

8  Partially ordered isomorphism class of subgroups of PSL(2,q)

For q = p2n+1 and p ≡ 5 mod 8 we sketch the partially ordered set of isomorphism 
classes of subgroups of PSL(2, q) . We omit square brackets that indicate isomorphism 
classes.

Here are some remarks for understanding the diagram: 

(1) In case p is 3 modulo 8, the Borel subgroup B in PSL(2, q) will be of odd order, and C2 
is not a subgroup of B. The roles of C� and C� are interchanged.

(2) The names of the groups are as earlier in this section. The subscripts indicate the order 
of the groups, and �(j) = pj(pj − 1)∕2 , �(j) = (pj − 1)∕2 , �(j) = (pj − 1) , �(j) = (pj + 1) , 
and �(j) = (pj + 1)∕2.

(3) Solid lines indicate a subgroup relation, dashed ones that there is a family of similar 
groups in between the end points of the line.

(4) The group A5 occurs only if 5 divides the order of PSL(2, pk) . Then A5 ⊆ PSL(2, p) . If 
p = 5 then A5 should be identified with PSL(2, 5).



28 K. H. Dovermann, V. Giambalvo 

1 3

(5) There are lines missing from A4 to a C3 , which will be either a subgroup of C�(1) or C�(1) , 
depending on the value of p. For the same reason, lines from A5 , if present, are missing.

(6) Along the line from PSL(2, p) to PSL(2, pk) there is one group for every divisor of k. Along 
the line from C�(1) to C�(k) there is a partially ordered set of subgroups of C�(k) , and C�(1) 
may not even be the smallest group. A corresponding remark applies to C�.
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