

Algebraic realization for projective special linear actions

Karl Heinz Dovermann1 · Vincent Giambalvo1,2

Received: 26 February 2020 / Accepted: 18 March 2021 / Published online: 17 May 2021 © The Author(s), under exclusive licence to Mathematisches Seminar der Universität Hamburg 2021

Abstract

Suppose $q = p^r$, where p is a prime congruent to 3 or 5 modulo 8 and r is odd or $q = 2^r$ for any r . Then every closed smooth $PSL(2, q)$ manifold has a strongly algebraic model.

Keywords Algebraic models · Equivariant bordism

Mathematics Subject Classifcation Primary 14P25 · 57S15 · Secondary 57S25

1 Introduction

Seifert [\[21,](#page-13-0) Satz 3] showed that an oriented closed smooth manifold $M^m \subset \mathbb{R}^{m+\epsilon}$ with $\epsilon = 1, 2$ can be deformed through an arbitrary small isotopy into the real branch of an algebraic manifold. Nash [[19](#page-13-1)] generalized Seifert's result and also asked whether every closed smooth manifold can be isotoped to a nonsingular real algebraic variety. This was con-firmed by Tognoli [\[23\]](#page-13-2). The approach quickly evolved $[1, 18]$ $[1, 18]$ $[1, 18]$ into showing that the manifold together with a classifying map of its tangent bundle can be deformed into a nonsingular variety and an entire rational map. Then Benedetti and Tognoli [[2](#page-13-5)] showed that a closed smooth manifold is difeomorphic to a nonsingular real algebraic variety *X*, so that all vector bundles over *X* are classifed by entire rational maps.

Let *G* be a compact Lie group. If a closed smooth *G* manifold *M* is equivariantly diffeomorphic to a nonsingular real algebraic *G* variety *X* then we say that *M* is *algebraically realized* and that *X* is an *algebraic model* of *M*. If all *G* vector bundles over *X* are classifed, up to equivariant homotopy, by entire rational maps, then we call *X* a *strongly algebraic model*. For more detailed defnitions see Sect. [2](#page-1-0). Existing results motivate

Communicated by Vicente Cortés.

Vincent Giambalvo vince37@hawaii.edu

 \boxtimes Karl Heinz Dovermann heiner@math.hawaii.edu

¹ Department of Mathematics, University of Hawaii, Honolulu, HI 96822, USA

² University of Connecticut, Storrs, CT 06269, USA

Conjecture 1.1 [[12](#page-13-6), *p*. 32] *Let G be a compact Lie group*. *Then every closed smooth G manifold has a strongly algebraic model*.

In support of the conjecture we show:

Theorem 1.2 *Let* $q = p^r$, *where* p *is a prime congruent to* ± 3 mod 8 *and r is odd or* $q = 2^r$ *for any r*. *Then every closed smooth* PSL(2, *q*) *manifold has a strongly algebraic model*.

Equivariant history: Basic techniques in real algebraic transformation groups were developed in [\[10,](#page-13-7) [12\]](#page-13-6). In Sect. [6](#page-7-0) we collect the algebraic realization results that are used in this paper. Closed smooth *G* manifolds have strongly algebraic models if *G* is cyclic [[9,](#page-13-8) [13](#page-13-9), [14\]](#page-13-10), or if the Sylow 2 subgroup of *G* is cyclic [[8](#page-13-11)], or if the group is a product of an elementary abelian 2 group and an odd order group [\[12](#page-13-6)]. In this paper we are discussing an infinite family of groups whose Sylow 2 subgroup is $\mathbb{Z}_2 \times \mathbb{Z}_2$. We also have results for compact Lie groups of positive dimension, see Theorem [6.3](#page-7-1) and Proposition [6.4](#page-8-0). In [[11](#page-13-12)] we also showed the existence and uniqueness of an equivariant real algebraic structure on a homogeneous space. For a more extensive history see [[8\]](#page-13-11).

Organization: In Sect. [2](#page-1-0) we provide careful definitions of the terms we use and the canonical real algebraic structure on a Grassmannian. In Sect. [3](#page-3-0) we summarize everything that we need about $PSL(2, q)$. In Sect. [4](#page-4-0) we set up the strategy for, and in Sect. [5](#page-5-0) carry out the proof of Theorem [1.2](#page-1-1). The proof makes use of topological tools that are collected and proved in Sect. [6](#page-7-0). In Sect. [7](#page-9-0) we analyze the blow–up process in detail and carefully work out how it removes fxed point sets. In Sect. [8](#page-12-0), as an example, we sketch the partial order of the isomorphism classes of subgroups of $PSL(2, p^{2k+1})$ in case p is congruent to 5 modulo 8.

Thanks: The authors would like to thank R. Freese and R. Solomon for help with the group theory. They also thank the referee, whose insightful suggestions helped to improve the paper.

2 Defnitions, conventions, and background material

2.1 *G* **manifolds**

We allow *G* manifolds to have components of diferent dimension. Under this convention, if *G* acts smoothly on a manifold *M*, the fixed point set M ^{*G*} is going to be a smooth submanifold of *M*.

2.2 Real algebraic varieties and entire rational maps

Let *G* be a compact Lie group and Ω an orthogonal representation of *G*.

Definition 2.1 A *real algebraic G variety* is a *G* invariant, common set of zeros of a finite set of polynomials $p_1, ..., p_m : \Omega \to \mathbb{R}$:

$$
V = \{x \in \Omega \mid p_1(x) = \dots = p_m(x) = 0\}.
$$

We do not require varieties to be irreducible. Unless stated otherwise, we use the Euclidean topology on varieties. The action of *G* on *V* is the restriction of the action on $Ω$.

Definition 2.2 [\[25,](#page-13-13) [3](#page-13-14), p. 59] The variety $V \subset \mathbb{R}^n$ is said to be nonsingular at $x \in V$ if there are polynomials $q_1, \ldots, q_s : \mathbb{R}^n \to \mathbb{R}$ which vanish on *V* and a Zariski open neighborhood *U* of *x* in \mathbb{R}^n such that

(1) *V* ∩ *U* = *U* ∩ $q_1^{-1}(0)$ ∩ … ∩ $q_s^{-1}(0)$, and

(2) the gradients $(\nabla q_i)_x$ are linearly independent for $i = 1, ..., s$.

We say that *V* is nonsingular if *V* is nonsingular at each point $x \in V$ and all connected components of *V* have the same dimension.

Let *V* ⊆ ℝ^{*n*} and *W* ⊆ ℝ^{*m*} be real algebraic varieties. A map *f* : *V* → *W* is said to be *regular* if it extends to a map $F : \mathbb{R}^n \to \mathbb{R}^m$ such that each of its coordinates F_i is a polynomial. We say that *f* is *entire rational* if there are regular maps $p : \mathbb{R}^n \to \mathbb{R}^m$ and $q : \mathbb{R}^n \to \mathbb{R}$, such that $f = p/q$ on *V* and *q* does not vanish anywhere on *V*.

The ideas of regular and entire rational functions generalize naturally to the equivariant setting.

2.3 Canonical algebraic structure on the Grassmannians

Let Ξ be an orthogonal representation of *G*. Then End_ℝ(Ξ) is a real representation of *G* with the action given by

$$
G \times \text{End}_{\mathbb{R}}(\Xi) \to \text{End}_{\mathbb{R}}(\Xi) \quad \text{with} \quad (g, L) \mapsto gLg^{-1}.
$$

Let *d* be a natural number. We set

$$
G_{\mathbb{R}}(\Xi, d) = \{ L \in \text{End}_{\mathbb{R}}(\Xi) \mid L^2 = L, L^* = L, \text{trace} L = d \}
$$
 (2.1)

$$
E_{\mathbb{R}}(\Xi, d) = \{(L, u) \in \operatorname{End}_{\mathbb{R}}(\Xi) \times \Xi \mid L \in G_{\mathbb{R}}(\Xi, d), \ L u = u\}
$$
\n
$$
(2.2)
$$

$$
\gamma_{\mathbb{R}}(\Xi, d) = (p : E_{\mathbb{R}}(\Xi, d) \to G_{\mathbb{R}}(\Xi, d))
$$
\n(2.3)

Here L^* denotes the adjoint of L . If Ξ is of dimension *n* and one chooses an orthonormal basis of Ξ, then End_ℝ(Ξ) is canonically identified with the set of $n \times n$ matrices, and $L^* = L^t$. This description specifies $G_{\mathbb{R}}(\Xi, d)$ and $E_{\mathbb{R}}(\Xi, d)$ as real algebraic *G* varieties. These varieties are nonsingular. The map in ([2.3](#page-2-0)) is projection on the frst factor, and $\gamma_{\mathbb{R}}(\Xi, d)$ is an equivariant vector bundle.

Proposition 2.3 *The variety* $G_{\mathbb{R}}(\Xi, d)$ *is the Grassmannian consisting of real subspaces of* Ξ *of dimension d*.

Proof A proof is given in [[3,](#page-13-14) §3.4]. There is a bijection between subspaces of Ξ and orthogonal projections. To a projection one associates its image. $□$

2.4 Strongly algebraic vector bundles

In our setting the preferred concept of a vector bundle is the one of a strongly algebraic vector bundle.

Defnition 2.4 A *strongly algebraic G vector bundle* over a real algebraic *G* variety is a bundle whose classifying map to $G_{\mathbb{R}}(\Xi, d)$ is equivariantly homotopic to an entire rational map.

Expressed differently, a vector bundle over a variety X is strongly algebraic if it is isomorphic to the pullback of the universal algebraic bundle $\gamma_{\mathbb{R}}(\Xi, d)$ in ([2.3\)](#page-2-0) under an entire rational map.

2.5 Algebraic models

Because nonsingular varieties have a specifc dimension, we have to adjust our defnition of algebraic model from the introduction for manifold that have components of diferent dimension. If *M* is a closed smooth manifold and $M_{(d)}$ is the union of all components of dimension *d*, then *M* is the disjoint union of the $M_{(d)}$. An algebraic model of *M* is a variety *X* that is the union of nonsingular varieties $X_{(d)}$, so that each $M_{(d)}$ is diffeomorphic to $X_{(d)}$. We say that *X* is a strongly algebraic model of *M* if all vector bundles over *X* are strongly algebraic. The ideas generalize naturally to the equivariant setting.

3 Group theory

Suppose $q = p^r$ and *p* is a prime. Recall that SL(2, *q*) is the group of 2×2 matrices of determinant 1, with coefficients in the finite field with q elements. This group has order $(q-1)q(q+1)$. Its center, the subgroup generated by −Id, has order 2, except of course in characteristic 2, where is has order 1. The projective special linear group $PSL(2, q)$ is the quotient of $SL(2, q)$ by its center, and so has half the order of $SL(2, q)$ if *q* is odd. Accordingly we set $d = 2$ if p is odd and $d = 1$ if $p = 2$.

L. E. Dickson [[6](#page-13-15)] classified the maximal proper subgroups of $PSL(2, q)$. Actually, he credits older sources. As a comprehensive source for our needs we quote Dickson's theorem from $[15,$ $[15,$ $[15,$ Theorem 6.5.1], see also $[17,$ $[17,$ II.8.27]. We write C_m for the cyclic group of order *M* and D_{2m} for the dihedral group of order 2*M*.

Theorem 3.1 *Suppose* $q = p^r$ *where p is an odd prime,* $p \equiv \pm 3 \mod 8$ *and r odd, or* $q = 2^r$ *for any r. Let d be as above and* $q > 5$ *. Then the order of PSL(2, <i>q*) *is* $(q^3 - q)/d$ *and any proper subgroup of* PSL(2, *q*) *is isomorphic to a subgroup of one of the following groups*:

- (1) *Dihedral groups of order* $2(q 1)/d$ *and* $2(q + 1)/d$.
- (2) *Borel subgroups B of* PSL(2, *q*) *of order q*(*q* − 1)∕*d*. *More explicitly*, *any Sylow p subgroup of* $PSL(2, q)$ *is of the form* $(C_p)^r$ *, and B is a semi-direct product of* $(C_p)^r$ *and a cyclic group of order* $(q - 1)/2$.
- (3) *The alternating group* A_5 *, if* 5 *divides the order of* $PSL(2, q)$ *.*
- (4) *The alternating group* A_4 .
- (5) *The groups* $PSL(2, p^s)$ *where s is a proper divisor of r.*

The groups listed in (1) –(5) are their own normalizers in PSL(2, *q*) and any Sylow 2 subgroup of PSL(2, *q*) is elementary abelian.

If $p = 2$, then the very last assertion repeats (2). If p is odd, then any Sylow 2 subgroup is of order 4. A result of Frobenius implies that a cyclic Sylow 2 subgroup would have a normal 2 complementary subgroup. That is a contradiction as $PSL(2, q)$ for $q \geq 5$ is simple. We assume that $q > 5$ to avoid some exceptional cases. This does no harm because we have proved our main result already in case $q \leq 5$.

4 Preparation and strategy

Let *G* be a group. Unless otherwise stated, we assume from now on that *G* is fnite. The set of subgroups of *G* is partially ordered by inclusion, with *G* as the unique maximal element and the trivial group as the unique minimal element. If *H* is a subgroup of *G* then we denote by [*H*] the class of all subgroups of *G* isomorphic to *H*, and by (*H*) the class of all subgroups of *G* conjugate to *H*. The partial order on the set of subgroups of *G* induces a partial order on the set of isomorphism classes. This requires *G* to be fnite.

Suppose *M* is a closed smooth *G* manifold. Given *x* in *M*, its isotropy group is *G_x* = {*g* ∈ *G* | *gx* = *x*}. Then $G_{gx} = gG_x g^{-1}$. For $H ⊆ G$ we set

$$
M^{H} = \{x \in M \mid G_x \supseteq H\}
$$

$$
M^{[H]} = \{x \in M \mid G_x \supseteq H' \in [H]\} = \bigcup_{H' \in [H]} M^{H'}
$$
(4.1)

A point *x* ∈ *M* belongs to *M^H* if *x* is left fixed by all *h* ∈ *H*, and *x* belongs to *M*^[*H*] if *x* is left fixed by all $h \in H'$ for some $H' \in [H]$. The *H* fixed point set M^H is an N_GH manifold. The set *M*[*H*] is *G* invariant.

Notation 4.1 Let *M* be a closed smooth *G* manifold.

- (1) If *A* is a *G* invariant submanifold, then *B*(*M*, *A*) denotes the blow–up of *M* along *A*. For details of the construction, see Sect. [7.](#page-9-0)
- (2) Suppose *H* a subgroup of *G*. Denote by R^H the union of all components of M^H that are of codimension zero in *M*, and by $R^{[H]}$ the union of all components of $M^{H'}$ that are of codimension zero in *M*, where *H'* ranges over all $H' \in [H]$. The components of R^H are also components of *M*.
- (3) With *H* understood, we set $\overline{M} = M \setminus R^{[H]}$.

Defnition 4.2 Let *Y* be a closed smooth *G* manifold and *H* a nontrivial subgroup of *G*. We say that we can *successfully remove the H fxed point set* if

- (1) The blow–up $\hat{Y} = B(\overline{Y}, \overline{Y}^{[H]})$ exists.
- (2) $\hat{Y}^H = \emptyset$ and $[Y^L = \emptyset \implies \hat{Y}^{\hat{L}} = \emptyset]$ for all subgroups *L* of *G*.
- (3) \hat{Y} having a strongly algebraic model implies that \hat{Y} has a strongly algebraic model.

It goes without saying that when we remove the *H* fxed point set we also remove the fxed point set for groups isomorphic to *H*. In addition, if *H* is not a maximal isotropy group of the action, then removing the *H* fxed point set may remove, as a bonus, the *K* fxed point set for some $K \supset H$ at the same time. There is no need to repeat the word successful.

The point of Defnition [4.2](#page-4-1) is that a successful blow–up reduces the strongly algebraic realization problem for *Y* to the one of \hat{Y} , and the latter problem may be easier to answer because \hat{Y}^L is nonempty for fewer subgroups of *G* than for *Y*. In Sect. [7](#page-9-0) we will show

Proposition 4.3 *Let Y be a closed smooth G manifold and H a nontrivial subgroup of G*. *We can successfully remove the H fxed point set if the following conditions are met*:

- (1) $Y^{H'} \cap Y^{H''} = \emptyset$ whenever $H' \neq H'' \in [H].$
- (2) *H does not have an index* 2 *subgroup*.
- (3) *The* N_GH manifolds R^H and \overline{Y}^H have strongly algebraic models.

We want to find a finite sequence $H_0, H_1, ..., H_{k-1}$ of subgroups of *G* that, for any given *G* manifold *M*, provides us with a sequence of *G* manifolds

$$
M_0 = M, M_1 = B\left(\overline{M}_0, \overline{M}_0^{[H_0]}\right), \dots, M_k = B\left(\overline{M}_{k-1}, \overline{M}_{k-1}^{[H_{k-1}]}\right). \tag{4.2}
$$

We will make sure that in each step the H_j fixed point set is removed successfully. This implies that whenever M_k has a strongly algebraic model, then so does the manifold $M = M₀$ that we started out with. If we can remove the fixed point set for all groups that are not 2 groups, then our next result tells us that M_k , and with this M , has a strongly algebraic model.

Proposition 4.4 *Suppose* $G = \text{PSL}(2,q)$ *is as in Theorem [1.2](#page-1-1). If M is a closed smooth* PSL(2, *q*) *manifold*, *all of whose isotropy groups are* 2 *groups*, *then M has a strongly algebraic model*.

Proof The assertion follows from Proposition [6.7](#page-8-1) and Proposition [6.8](#page-8-2) using that any Sylow 2 subgroup of $PSL(2, q)$ is a 2 torus, see Theorem [3.1](#page-3-1).

5 Proof of Theorem [1.2](#page-1-1)

Let $G = PSL(2, q)$ be as in Theorem [1.2](#page-1-1) and M a closed smooth G manifold. Assume that $q > 5$. We may do so because the theorem has been proven already for $PSL(2, 2) = S_3$, $PSL(2, 3) = A_4$ and $PSL(2, 4) = PSL(2, 5) = A_5$, see [\[7](#page-13-18), [8\]](#page-13-11).

We will find a sequence H_0 , ..., H_{k-1} of subgroups of PSL(2, *q*) that leads to a blow–up sequence as in (4.2) (4.2) , so that the isotropy groups for the final manifold M_k are all 2 groups. Then Proposition [4.4](#page-5-2) tells us that this final manifold M_k has a strongly algebraic model. This will be done in three multi–step phases. At each step we make sure that M_{j+1} having a strongly algebraic model implies that M_j has a strongly algebraic model as well. Hence $M = M_0$ itself has a strongly algebraic model and the theorem is proved.

In Sect. [8](#page-12-0) we sketch the partially ordered set of isomorphism classes of subgroups of PSL(2, *q*) when $p \equiv 5 \mod 8$. This may help some readers.

Phase 1: At this time we will eliminate as isotropy group all subgroups of *G* of the form $PSL(2, p^s)$ as well as $A₅$ (if present) and $A₄$.

Compatibly with the partial order we can order the groups, and with it their isomorphism types, linearly:

$$
\mathrm{PSL}(2,p^r) > \dots > \mathrm{PSL}(2,p^j) > \dots > \mathrm{PSL}(2,p) \ge A_5 > A_4,\tag{5.1}
$$

where *j* ranges over the divisors of *r*.

Let *H* be any of the groups in ([5.1](#page-6-0)) and *Y* a closed smooth $G = PSL(2, p^r)$ manifold with $Y^L = \emptyset$ for all $[L] > [H]$. Then *H* is a maximal isotropy group of the action of PSL(2, *p^r*) on *Y*. Any $x \in Y^{H'} \cap Y^{H''}$ for $H' \neq H'' \in [H]$ would have an isotropy group that contains *H'* and H'' , contradicting the maximality assumption of H as an isotropy group. No such x can exist, and we verified (1) in Proposition [4.3](#page-5-3). Condition (2) in the proposition holds because none of the groups in (5.1) (5.1) has an index 2 subgroup.

Each of the groups is (5.1) is its own normalizer (see Theorem [4.3\)](#page-5-3) and the action of N_GH on \overline{Y}^H and R^H is trivial. Proposition [6.4](#page-8-0) tells us that the N_GH manifolds \overline{Y}^H and R^H have strongly algebraic models. We verified (3) in Proposition [4.3.](#page-5-3)

Having verifed all assumption of Proposition [4.3](#page-5-3), we deduce that we can successfully remove the *H* fxed point set.

Applying above process repeatedly we find a sequence M_0 , ..., M_i as in ([4.2](#page-5-1)) so that $M_i^H = \emptyset$ for all *H* as in [\(5.1](#page-6-0)). If M_i has a strongly algebraic model, then so does $M = M_0$.

Phase 2: Suppose *p* is odd. We state a proposition that allows us to stepwise and successfully remove the fixed point set for all subgroups of $PSL(2, p^r)$ whose order is divisible by *p*. Its proof is given in Sect. [6.3](#page-8-3). This step is not needed when $p = 2$.

Proposition 5.1 Let Y be a closed smooth $G = \text{PSL}(2,q)$ manifold, where $q = p^r > 5$ *and p is a prime congruent to 3 or 5 modulo 8. Assume that* $Y^{\Gamma} = \emptyset$ *for all* Γ *as in Theorem* [3.1](#page-3-1) (3)–(5). *Suppose H* \subset *G is a nontrivial p group, and there is no* Γ *whose order is divisible by a higher power of p than the order of H with* $Y^{\Gamma} \neq \emptyset$. *Then we can successfully remove the H fxed point set from Y*.

We linearly order the isomorphism classes of the nontrivial *p* subgroups of $PSL(2, q)$

$$
[Hi] > [Hi+1] > \dots > [Hi+k].
$$
\n(5.2)

Proposition [5.1](#page-6-1) says that if the H_j fixed point set of *Y* is empty up to a certain point, then we can successfully remove the fixed point set for the groups in $[H_{i+1}]$, the next class. Note that at the same time we remove the fxed point sets for groups that contain groups isomorphic to H_{i+1} that are not p groups.

We do it repeatedly. This extends the sequence of manifolds from the frst phase to $M_0, \ldots, M_i, M_{i+1}, \ldots, M_{i+k}$, where $M_{i+k}^{\Gamma} = \emptyset$ for all groups Γ as in Theorem [3.1](#page-3-1) (3)–(5) and any Γ of an order divisible by *p*. Furthermore, if M_{i+k} has a strongly algebraic model, then so does $M = M_0$.

Phase 3: Finally we remove the remaining fixed point sets for groups that are not 2 groups. We apply the following proposition repeatedly. For its proof see Sect. [6.3.](#page-8-3)

Proposition 5.2 *Let q be as in Theorem* [3.1](#page-3-1) *and Y a closed smooth* $G = \text{PSL}(2, q)$ *manifold. Assume that* $Y^{\Gamma} = \emptyset$ *for all* Γ *as in Theorem* [3.1](#page-3-1) (3)–(5) *and, if p is odd, all* Γ *whose order is divisible by p. Suppose H* \subset *G is a nontrivial odd order cyclic subgroup of* $D_{2(q-1)/d}$ *or of* $D_{2(a+1)/d}$ *(see Theorem [3.1](#page-3-1) (1)) and there is no strictly larger order odd order cyclic*

subgroup Γ *of* $D_{2(q-1)/d}$ *or of* $D_{2(q+1)/d}$ *so that* $Y^{\Gamma} \neq \emptyset$ *. Then we can successfully remove the H fxed point set from Y*.

Linearly order the isomorphism classes of the nontrivial odd order cyclic subgroups of *C*_{(*q*−1)/2} and *C*_{(*q*+1)/2}.

$$
[C_{\alpha(1)}] > \dots > [C_{\alpha(s)}]
$$
\n(5.3)

Proposition [5.2](#page-6-2) says that if the $C_{\alpha(j)}$ fixed point set of *Y* is empty up to a certain point, then we can successfully remove the fxed point set for the next group. This extends the sequence of manifolds from the frst two phases to

$$
M_0, \ldots M_i, M_{i+1}, \ldots, M_{i+k}, M_{i+k+1}, \ldots, M_{i+k+s}
$$

The only isotropy groups of M_{i+k+s} are 2 groups and if M_{i+k} has a strongly algebraic model, then so does $M = M_0$.

As explained at the outset of the proof, our last observation completes the proof of Theorem [1.2](#page-1-1).

6 Topological tools

6.1 Propagation and induction

Our next two propositions explain how strongly algebraic realization interacts with the operations of disjoint union and blow–up.

Proposition 6.1 [\[12,](#page-13-6) *Proposition* 2.7] *Let M*, *M*1 *and M*2 *be closed smooth G manifolds and M* = *M*¹ *⊔ M*2. *Then any of the manifolds has a strongly algebraic model if the other two do*.

Proposition 6.2 [[14](#page-13-10), *Proposition* 3.1] *Suppose M is a closed smooth G manifold and A a closed G invariant submanifold*. *If A and B*(*M*, *A*), *the blow–up of M along A*, *have strongly algebraic models*, *then so does M*.

We review induction. Suppose *N* is a closed subgroup of *G* and *X* is a smooth *N* manifold then

$$
\operatorname{Ind}_{N}^{G} X = G \times_{N} X. \tag{6.1}
$$

The balanced product $G \times_N X$ consists of equivalence classes [g, x] of pairs $(g, x) \in G \times X$, where (g, x) ∼ (gh^{-1}, hx) whenever $h \in N$.

If *X* is a smooth *N* manifold, then $\text{Ind}_{N}^{G}X$ is a smooth *G* manifold [\[5,](#page-13-19) Chapter VI]. In the real algebraic setting we have:

Theorem 6.3 [\[12,](#page-13-6) *Proposition* 2.8] *Suppose G is a compact Lie group and N a closed subgroup. If X* is a strongly algebraic model of an *N* manifold *M*, then $\text{Ind}_{N}^{G}X$ is a strongly algebraic model of the G manifold $\text{Ind}_{N}^{G}M$.

See also [\[10,](#page-13-7) Section 3], [[20](#page-13-20), Corollary 1.4], [\[11,](#page-13-12) Corollary 7.3], and [\[24\]](#page-13-21).

 $\circled{2}$ Springer

6.2 Strongly algebraic realization results

Under certain assumptions we know that a closed smooth *G* manifold has a strongly algebraic model. We list cases that we make use of.

Proposition 6.4 [\[12,](#page-13-6) *Theorem A*] *Let G be a compact Lie group and M a closed smooth G manifold*. *If the action is semifree* (*the only isotropy groups of the action are the trivial group* {1} *and the group G itself*), *then M has a strongly algebraic model*.

The proposition covers actions that are either free or trivial.

Proposition 6.5 [\[8,](#page-13-11) *Theorem* 1.3] *Suppose G has a cyclic Sylow* 2 *subgroup*. *Then every closed smooth G manifold has a strongly algebraic model*.

Proposition 6.6 [[7](#page-13-18), Theorem 1.2] Suppose $G = D_{2a}$ is a dihedral group of order 2q, and q *is not divisible by* 4. *Then every closed smooth G manifold has a strongly algebraic model*.

A classical result of Stong [\[22,](#page-13-22) Lemma 13.3] implies:

Proposition 6.7 [\[8,](#page-13-11) *Proposition* 2.2] *Suppose G is a fnite group and G*2 *a Sylow* 2 *subgroup*. *Closed smooth G manifolds*, *all of whose isotropy groups are* 2 *groups*, *have strongly algebraic models if all closed smooth G*2 *manifolds have strongly algebraic models*.

Proposition 6.8 [[12](#page-13-6), *Theorem B*] *Suppose G is the product of a* 2 *torus and an odd order group*. *Then every closed smooth G manifold has a strongly algebraic model*.

The last two propositions were used in the proof of Proposition [4.4.](#page-5-2)

6.3 Proof of Proposition [5.1](#page-6-1) and [5.2](#page-6-2)

We catch up with the proofs of two propositions that we employed earlier.

Proof of Proposition 5.1 We verify the assumptions of Proposition [4.3](#page-5-3) for the *p* group *H* ⊂ *G*, which will then imply our assertion. We assume that $Y^H \neq \emptyset$ because otherwise the assertion is vacuous.

Working towards a contradiction, we suppose that $\Gamma = G_x$ is the isotropy group of some $x \in Y^{H'} \cap Y^{H''}$ where $H' \neq H'' \in [H]$. This group Γ must be contained in a proper subgroup of PSL(2, *q*), it is an isotropy group, and its order is divisible by *p*. By assumption it is not one of the groups in Theorem [3.1](#page-3-1) (3)–(5). We conclude that $\Gamma \subset B$, where *B* is as in Theorem [3.1](#page-3-1) (2). Normality of any Sylow *p* subgroup $(C_p)^r$ of PSL(2, *q*) in *B* implies that both *H'* and *H''* are subgroups of $(C_p)^r$. This would mean that the order of G_x is divisible by too high a power of *p*. Thus, as anticipated, $Y^{H'} \cap Y^{H''} = \emptyset$. We verified (1) in Proposition 4.3 . The group H is of odd order, so that (2) in Proposition 4.3 holds trivially.

Finally we verify that the N_GH manifolds Y^H and R^H have strongly algebraic models. We know that *H* is a subset of some isotropy group, and because the groups in Theo-rem [3.1](#page-3-1) (3)–(5) have been excluded, *H* and N_GH are subgroups of a Borel subgroup *B* as in Theorem [3.1](#page-3-1) (2). We know that 4 does not divide the order of *B*, and neither does it divide the order of N_GH . The Sylow 2 subgroup of N_GH is C_2 or trivial. It follows from Proposi-tion [6.5](#page-8-4) that, as N_GH manifolds, \overline{Y}^H and R^H have strongly algebraic models. With this we verified (3) in Proposition [4.3](#page-5-3), and the proof of Proposition [5.1](#page-6-1) is complete. \square

Proof of Proposition 5.2 Suppose *H* is a nontrivial odd order cyclic subgroup of $C_{(q\pm1)/d}$ ⊂ $D_{2(q\pm1)/d}$, see Theorem [3.1](#page-3-1) (1). We verify the assumptions of Proposition [4.3](#page-5-3).

Anticipating a contradiction, we suppose that $\Gamma = G_x$ is the isotropy group of some $x \in Y^{H'} \cap Y^{H''}$ where $H' \neq H'' \in [H]$. By assumption, Γ is not one of the groups in Theorem [3.1](#page-3-1) (3)–(5), and, in case *p* is odd, the order of Γ is not divisible by *p*. Then *H'*, *H''* ⊂ Γ ⊆ *D*_{2(*q*±1)/*d*}. The two odd order cyclic subgroups *H'* and *H''* of $C_{(q\pm1)/d}$ must be the same. This contradicts our assumption and verifes (1) in Proposition [4.3.](#page-5-3) Assumption (2) in Proposition [4.3](#page-5-3) holds trivially because *H* is of odd order.

We verify the third assumption in Proposition [4.3.](#page-5-3) Because $H \subseteq D_{2(q\pm 1)/d}$ and $D_{2(q\pm 1)/d}$ is a maximal proper subgroup of PSL(2, *q*) we deduce that $N_GH \subseteq D_{2(q\pm1)/d}$. The order of N_GH will not be divisible by 8. It follows from Proposition $6.5 \text{ if } N_GH$ $6.5 \text{ if } N_GH$ is cyclic and from Proposition [6.6](#page-8-5) if N_GH is dihedral that the N_GH manifolds \overline{Y}^H and \overline{R}^H have strongly algebraic models.

We completed the verifcation of the assumptions of Proposition [4.3](#page-5-3) and conclude that we can successfully remove the *H* fixed point set from *Y*. \square

7 Blow‑ups

Suppose *Y* is a closed smooth *G* manifold and *A* a *G* invariant closed smooth submanifold. We describe the construction of the blow–up $B(Y, A)$ of *Y* along *A*, see [[16](#page-13-23), pp. 175–176] and [[22](#page-13-22), p.41]. Let $v = v(A, Y)$ be the normal bundle of A in Y and ℝ the product bundle with fibre ℝ over a space understood from context. Taking fibrewise projective spaces gives us the (total space of the) projective bundle ℝ*P*($\nu \oplus \mathbb{R}$). The lines 0 $\oplus \mathbb{R}$ in each fibre define a canonical section in $\mathbb{R}P(\nu \oplus \mathbb{R})$ that we denote by A. By construction $\nu(A, \mathbb{R}P(\nu \oplus \mathbb{R})) \cong \nu(A, Y)$. The identification, restricted to the disk bundles, provides us with a diffeomorphism of tubular neighborhoods U_Y and U_P of *A* in *Y* and $\mathbb{R}P(\nu \oplus \mathbb{R})$. Removing the interiors of the tubular neighborhoods and identifying the spaces along the boundary is the *blow–up of Y along A*:

$$
B(Y, A) = \left(Y \setminus \overset{\circ}{U}_Y\right) \cup_{S(\nu)} \left(\mathbb{R}P(\nu \oplus \mathbb{R}) \setminus \overset{\circ}{U}_P\right). \tag{7.1}
$$

Alternatively, we can construct

$$
W = \left((Y \sqcup \mathbb{R}P(\nu \oplus \underline{\mathbb{R}})) \times [0, 1] \right) \cup_{\varphi} \left(D(\nu) \times [0, 1] \right),\tag{7.2}
$$

where the attaching map $\varphi : D(v) \times \{0, 1\} \to (Y \sqcup \mathbb{R}P(v \oplus \underline{\mathbb{R}})) \times \{1\}$ identifies the top and bottom edge of $D(v) \times [0, 1]$ with closed tubular neighborhoods of *A* in $Y \times \{1\}$ and *A* in $\mathbb{R}P(v \oplus \mathbb{R}) \times \{1\}$. The smooth *G* manifold *W* (after rounding corners) provides a bordism between $Y \sqcup \mathbb{R}P(\nu \oplus \mathbb{R})$ and $B(Y, A)$.

Throughout we will blow up fxed point sets of a subgroup *H* of *G*, and its translates. Our next two observations follow immediately from the defnition of the blow–up.

Proposition 7.1 *Let Y be a closed smooth G manifold and H a subgroup of G*. *The blow–up* $B\bigl(Y, Y^{[H]}\bigr)$ exists if $Y^{[H]}$ is a submanifold of Y .

Proposition 7.2 *If Y is a closed smooth G manifold and A a G invariant submanifold of codimension* 0, *then* $Y = B(Y, A)$.

The last proposition is the reason for setting aside $R^{[H]}$ in the blow–up and for treating it separately in Proposition [4.3](#page-5-3) (3).

We denote the conjugacy class of $H \subseteq G$ by (*H*). In analogy to [\(4.1](#page-4-2)) we set $Y^{(H)} = \{x \in Y \mid G_x \supseteq H' \in (H)\}\$. The obvious question raised by Proposition [7.1](#page-10-0) is answered by :

Proposition 7.3 *Suppose Y is a closed smooth G manifold and H is a subgroup of G*. *If* $Y^{H'} \cap Y^{H''} = \emptyset$ whenever $H' \neq H'' \in (H)$, then $Y^{(H)}$ is a submanifold of Y. In particular:

$$
Y^{(H)} \approx G \times_{N_G H} Y^H.
$$

The balanced product notation was introduced in (6.1) (6.1) . Our argument will be a modifi-cation of one given in [[5](#page-13-19), 5.9 Theorem]. The ideas go back to $[4,$ $[4,$ Chapter XII]. We do not need to assume that *G* is fnite.

Proof Note that Y^H is a submanifold of *Y*, see [\[5\]](#page-13-19). By definition $Y^{(H)}$ is the union of the submanifolds $Y^{H'}$, where *H'* varies over $H' \in (H)$. We assumed that the $Y^{H'}$ are disjoint for diferent conjugates. Hence the union of the *Y^H*′ is a submanifold of *Y*.

We show that the map φ : $G \times_{N_G H} Y^H \to Y^{(H)}$, defined by setting $\varphi[g, y] = gy$, is an equivariant homeomorphism. The map is clearly continuous, equivariant, and surjective. Its restriction φ ²:

$$
G\times_{N_GH} Y^H\supseteq N_GH\times_{N_GH} Y^H\approx Y^H\stackrel{\varphi_\parallel}{\longrightarrow} Y^H\subset Y^{(H)}
$$

is bijective.

To show injectivity it suffices to show, if $g \notin N_GH$ and $y \in Y^H$, then $\varphi[g, y] = gy \notin Y^H$. Assume to the contrary, that $gy \in Y^H$. Then $G_y \supseteq H$ and $G_{gy} = gG_yg^{-1} \supseteq H$. The latter implies that G_y 2 $g^{-1}Hg$ and $y \in Y^H \cap Y^{g^{-1}Hg} = \emptyset$, which is a contradiction. Hence φ is injective and the proof is complete. \Box

Example 7.4 Let us give an example. It explains the need to distinguish between subgroups with nonempty fixed point set and isotropy groups. Set $G = C_6$. Let $X = S^2 \subset \mathbb{R}^3$. Let a generator of *G* act on *X* as a rotation by $2\pi/6 = \pi/3$ around the *z* axis. Then $X^G = X^{C_3}$ consists of the north and south pole of the sphere. The set of isotropy groups of *X* is $Iso(X) = \{ \{1\}, G \}.$

Set $\hat{X} = B(X, X^{C_3})$. That means that at each pole of X we are taking a connected sum with $\mathbb{P} = \mathbb{R}P(\Omega \oplus \mathbb{R})$. Here $\Omega \cong \mathbb{R}^2$ denotes the tangent representation at either pole. One may check that $\mathbb{P}^G = \mathbb{P}^{C_3}$ consists of a single point. Forming the connected sum removes the *G* and C_3 fixed point set. On the other hand, \mathbb{P}^{C_2} consists of a point and a circle. The points cancel out in the blow–up, and instead we inherit two circles as C_2 fixed point set of \hat{X} . We see that Iso(\hat{X}) = {{1}, C_2 }. We may say that the blow–up removed the C_3 fixed point set. It also removed C_6 as an isotropy group. No more supergroup to C_3 is an isotropy group. In return, we have a new isotropy group, C_2 .

Proof of Proposition 4.3 We need to verify the conditions for the successful removal of the *H* fixed point set as formulated in Definition [4.2.](#page-4-1)

For the blow–up $\hat{Y} = B(\overline{Y}, \overline{Y}^{[H]})$ to exist, we need to see that $\overline{Y}^{[H]}$ is a submanifold of \overline{Y} . This follows from Proposition [7.3](#page-10-1) for $\overline{Y}^{(H)}$. The isomorphism class [*H*] of *H* is a disjoint union of various conjugacy classes (H') with $H' \in [H]$, and $\overline{Y}^{[H]}$ is a disjoint union of the $\overline{Y}^{(H')}$ for these *H'*. This makes $\overline{Y}^{[H]}$ into a submanifold of \overline{Y} , so that (1) in Definition [4.2](#page-4-1) is satisfed.

Let is show: $\hat{Y}^L \neq \emptyset$ $\implies \overline{Y}^L \neq \emptyset$. As in [\(7.1](#page-9-1)) we write

$$
\widehat{Y} = Y_1 \cup Y_2
$$
 where $Y_1 = \overline{Y} \setminus \bigcup_{\overline{Y}}^{\circ}$ and $Y_2 = \mathbb{R}P(\nu \oplus \underline{\mathbb{R}}) \setminus \bigcup_{\overline{Y}}^{\circ}$

Because Y_1 is *Y* with a tube around the *H* fixed point set removed, it follows that $Y_1^H = \emptyset$ and if $Y^L = \emptyset$, then $Y_1^L = \emptyset$. For the latter we write $Y_1^L \neq \emptyset \implies Y^L \neq \emptyset$.

Now look at *Y*₂. Consider $y \in Y_2$ in the fibre $\mathbb{R}P(v_x \oplus \mathbb{R})$ of $\mathbb{R}P(v \oplus \mathbb{R})$ above $x \in \overline{Y}^H$. Expressed in homogeneous coordinates we have $y = [v, t]$. By construction $v \neq 0$ and corresponds to a point $v' \in Y$ near *x*. If $t \neq 0$, then the isotropy group of *y*, *v*, and *v'* are the same. Given such a point $y \in \hat{Y}^L$ for some group *L* we have $v' \in \overline{Y}^L$.

If $t = 0$ then the isotropy group G_y of y is the group that leaves the line through v invariant, and it it necessarily a subgroup of G_x , the group that leave the fibre invariant. Given any *L* and a point $y = [v, 0] \in Y_2^L$ we have that $x \in Y^L$. Formally, $Y_L^L \neq \emptyset \implies Y^L \neq \emptyset$.

Combining the above: $\hat{Y}^L \neq \hat{\emptyset} \implies Y_1^L \neq \emptyset \lor Y_2^L \neq \emptyset \implies Y \neq \emptyset$, which is the second part of (2).

We show the first part of (2), that $\hat{Y}^H = \emptyset$. By construction, as we mentioned before, $Y_1^H = \emptyset$. Let us look at Y_2 . Note that V_x , the fibre of $V(Y^H, Y)$ over *x*, is a representation of $\Gamma = G_x$. Let $y = [z, t] \in Y_2$. We expressed y in homogeneous coordinates. There are three types of points in Y_2 , Z or t can be zero, but not both.

The first kind, points with $z = 0$, have been removed in the blow–up process.

Secondly, if *z* and *t* are both nonzero, then $G_y = \Gamma_z$. Under the identification of the normal bundle *v* with the normal tube U_y , *z* corresponds to a point \hat{z} in \overline{Y} near (but not equal to) *x*. In particular $G_2 \subsetneq H$, and *y* will not be a point in Y_2^H .

Finally, consider points of the form $y = [z, 0]$. We construct a contradiction to the assumption that $y \in Y_2^H$. We know that $\Gamma_z \neq H$ because $z \neq 0$ is in the normal slice to the *H* fxed point set. Thus *H* has to leave the line *y* invariant without fxing it. The kernel of such a linear action on a real line is an index 2 subgroup, which *H* does not have. Any such point *y* = [*z*, 0] ∉ Y_2^H

Combining these three cases we see, as asserted, that $\hat{Y}^H = \emptyset$.

To verify condition (3) in Definition [4.2](#page-4-1) we need to show that $\overline{Y}^{[H]}$ and $R^{[H]}$ have strongly algebraic models. We assumed that R^H and \overline{Y}^H have strongly algebraic models. Denote the conjugacy class of $H \subseteq G$ by (H) , and set

$$
\overline{Y}^{(H)} := \{ y \in \overline{Y} \mid G_y \supseteq H' \in (H) \} \approx G \times_{N_G H} \overline{Y}^H
$$

$$
R^{(H)} := \bigsqcup_{H' \in (H)} R^{H'} \approx G \times_{N_G H} R^H
$$

The assumption that $Y^{H'} \cap Y^{H''} = \emptyset$ for $H' \neq H'' \in (H)$ implies the diffeomorphisms \approx in the above, see Proposition [7.3.](#page-10-1) According to Theorem [6.3](#page-7-1), $\overline{Y}^{(H)}$ and $R^{(H)}$ have strongly algebraic models. We get $\overline{Y}^{[H]}$ and $R^{[H]}$ from $\overline{Y}^{(H)}$ and $R^{(H)}$ by varying the conjugacy classes (*H*) within the isomorphism class [*H*] and taking the disjoint union of the spaces. Proposition [6.1](#page-7-3) tells us that $\overline{\gamma}^{[H]}$ and $R^{[H]}$ have strongly algebraic models. This completes the verifcation of the third and fnal assertion in Defnition [4.2](#page-4-1).

In retrospect one may draw attention to the trivial special case when $Y^{[H]} = R^{[H]}$ and $\overline{Y}^{[H]}$ $= \emptyset$. Then the *H* fixed point set is removed by setting it aside. It is removed from *Y*, see Notation [4.1](#page-4-3) (3). \Box

8 Partially ordered isomorphism class of subgroups of PSL(**2, q**)

For $q = p^{2n+1}$ and $p \equiv 5 \mod 8$ we sketch the partially ordered set of isomorphism classes of subgroups of $PSL(2, q)$. We omit square brackets that indicate isomorphism classes.

Here are some remarks for understanding the diagram:

- (1) In case *p* is 3 modulo 8, the Borel subgroup *B* in PSL(2, *q*) will be of odd order, and C_2 is not a subgroup of *B*. The roles of C_{β} and C_{ϵ} are interchanged.
- (2) The names of the groups are as earlier in this section. The subscripts indicate the order of the groups, and $α(j) = p^{j}(p^{j} - 1)/2$, $β(j) = (p^{j} - 1)/2$, $γ(j) = (p^{j} - 1)$, $δ(j) = (p^{j} + 1)$, and $\epsilon(j) = (p^j + 1)/2$.
- (3) Solid lines indicate a subgroup relation, dashed ones that there is a family of similar groups in between the end points of the line.
- (4) The group A_5 occurs only if 5 divides the order of PSL(2, p^k). Then $A_5 \subseteq PSL(2, p)$. If $p = 5$ then A_5 should be identified with PSL(2, 5).
- (5) There are lines missing from A_4 to a C_3 , which will be either a subgroup of $C_{\beta(1)}$ or $C_{\epsilon(1)}$, depending on the value of p . For the same reason, lines from A_5 , if present, are missing.
- (6) Along the line from $PSL(2, p)$ to $PSL(2, p^k)$ there is one group for every divisor of *k*. Along the line from $C_{\beta(1)}$ to $C_{\beta(k)}$ there is a partially ordered set of subgroups of $C_{\beta(k)}$, and $C_{\beta(1)}$ may not even be the smallest group. A corresponding remark applies to C_c .

References

- 1. Akbulut, S., King, H.C.: The topology of real algebraic sets with isolated singularities. Ann. Math. **113**(3), 425–446 (1981)
- 2. Benedetti, R., Tognoli, A.: On real algebraic vector bundles. Bull. Sci. Math. **104**(1), 89–112 (1980)
- 3. Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle. 12. Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer, Berlin (1987)
- 4. Borel, A.: Seminar on transformation groups. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No. 46. Princeton University Press, Princeton, NJ (1960)
- 5. Bredon, G.E.: Introduction to Compact Transformation Groups. Pure and Applied Mathematics, vol. 46. Academic Press, New York (1972)
- 6. Dickson, L.E.: Linear Groups with an Exposition of the Galois Field Theory. Dover Publications, New York (1958)
- 7. Dovermann, K.H.: Strongly algebraic realization of dihedral group actions. Pac. J. Math. **305**(2), 563–576 (2020)
- 8. Dovermann, K.H., Flores, D.J., Giambalvo, V.: Algebraic realization of actions of some fnite groups. Manuscr. Math. (2020)
- 9. Dovermann, K.H., Hanson, J., Little, R.D.: Examples of algebraically realized maps. Geom. Dedicata **186**, 1–25 (2017)
- 10. Dovermann, K.H., Masuda, M.: Algebraic realization of manifolds with group actions. Adv. Math. **113**(2), 304–338 (1995)
- 11. Dovermann, K.H., Masuda, M.: Uniqueness questions in real algebraic transformation groups. Topol. Appl. **119**(2), 147–166 (2002)
- 12. Dovermann, K.H., Masuda, M., Suh, D.Y.: Algebraic realization of equivariant vector bundles. J. Reine Angew. Math. **448**, 31–64 (1994)
- 13. Dovermann, K.H., Wasserman, A.G.: Algebraic realization for cyclic group actions with one isotropy type. Transform. Groups **25**(2), 483–515 (2020)
- 14. Dovermann, K.H., Wasserman, A.: Algebraic realization of cyclic group actions. Preprint (2008)
- 15. Gorenstein, D., Lyons, R., Solomon, R.: The classifcation of the fnite simple groups. Number 3. 40. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1998)
- 16. Hirzebruch, F.: Topological Methods in Algebraic Geometry. Grundlehren der mathematischen Wissenschaften, vol. 131. Springer, Berlin (1966)
- 17. Huppert, B.: Endliche Gruppen I. Grundlehren der mathematischen Wisssenschaften, vol. 134. Springer, Berlin (1967)
- 18. Ivanov, N.V.: Approximation of smooth manifolds by real algebraic sets. Uspekhi Mat. Nauk. **37**(1), 3–52 (1982)
- 19. Nash, J.: Real algebraic manifolds. Ann. Math. **56**, 405–421 (1952)
- 20. Schwarz, G.: Algebraic quotients of compact group actions. J. Algebra **244**(2), 365–378 (2001)
- 21. Seifert, H.: Algebraische Approximation von Mannigfaltigkeiten. Math. Z. **41**, 1–17 (1936)
- 22. Stong, R.E.: Unoriented bordism and actions of fnite groups. Memoirs of the American Mathematical Society **103** (1970)
- 23. Tognoli, A.: Su una congettura di Nash. Ann. Scuola Norm. Sup. Pisa Cl. Sci. **27**, 167–185 (1973)
- 24. Wasserman, A.G.: Extending algebraic actions. Rev. Mat. Complut. **12**(2), 463–474 (1999)
- 25. Whitney, H.: Elementary structure of real algebraic varieties. Ann. Math. **66**, 545–556 (1957)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.