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Abstract We classify the Seifert fibrations of lens spaces where the base orbifold is non-
orientable. This is an addendum to our earlier paper ‘Seifert fibrations of lens spaces’. We 
correct Lemma 4.1 of that paper and fill the gap in the classification that resulted from the 
erroneous lemma.
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Introduction

The aim of this note is to determine the 3-dimensional lens spaces that admit a Seifert 
fibration over a non-orientable base orbifold, and to classify these fibrations.

In our earlier paper [2] we presented an algorithm for finding all Seifert fibrations of any 
given lens space. When the base orbifold is non-orientable, we claimed in [2, Lemma 4.1] that 
the base is topologically ℝP2 (which is correct), and that there are no singular fibres (which 
turns out to be false). As was kindly pointed out to us by Tye Lidman (jointly with Liam Wat-
son and Robert DeYeso), the lens spaces L(4n, 2n ± 1) admit, for n ≥ 2 , a Seifert fibration 
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with one singular fibre over ℝP2 . As we shall see in Proposition 3.1, these are the only Seifert 
fibrations over non-orientable bases missing from the classification in [2].

The results of [2] concerning Seifert fibrations of lens spaces over orientable bases are not 
affected by the gap in [2, Lemma 4.1].

We follow the notations and conventions of [2] as regards Seifert invariants. We assume 
that the reader has a copy of that paper at hand. The only new notation is Σ(n1,… , nk) for a 
2-dimensional orbifold whose underlying topological surface is Σ , with k orbifold points of 
order n1,… , nk , respectively.

The base of the fibration

Here we correct Lemma 4.1 from [2].

Lemma 2.1  If a lens space admits a Seifert fibration over a non-orientable base, the base is 
ℝP2 (as a topological surface), and there is at most one singular fibre. In other words, the 
base orbifold is ℝP2(n) for some n ∈ ℕ = {1, 2,…}.

Proof  The argument in [2] for showing that the base has finite cyclic fundamental group 
and hence is topologically ℝP2 is correct. Also, the orbifold fundamental group of the 
base orbifold is a quotient of the fundamental group of the total space [2, Section 2.3], and 
hence must likewise be finite cyclic in our situation.

The orbifold fundamental group of ℝP2(n1,… , nk) admits the presentation

The error in [2] occurred in our claim that this group is abelian if and only if ni = 1 for all 
i = 1,… , k . This is plainly wrong, as shown by the isomorphism

To prove the lemma, it suffices to establish the following claim. 	�

Claim  The orbifold fundamental group of ℝP2(n1,… , nk) is finite if and only if at most one 
ni is greater than 1.

The ‘if’ direction is given by the example above. For the ‘only if’ direction we observe 
that �orb

1

(
ℝP2(n1, n2)

)
 is a quotient group of �orb

1

(
ℝP2(n1, n2,… , nk)

)
 , obtained by divid-

ing out the normal subgroup generated by q3,… , qk . Therefore, it suffices to show that 
�orb
1

(
ℝP2(n1, n2)

)
 is not finite for n1, n2 > 1.

One way to argue is as follows. By [6, Theorem 2.3], the orbifold ℝP2(n1, n2) is good, i.e. 
it is covered by a manifold, and then by [6, Theorem 2.5] it is in fact finitely covered by a com-
pact smooth surface. The Euler characteristic of ℝP2(n1, n2) equals, by [6, page 427],

which is non-positive for n1, n2 > 1 . By its definition, the Euler characteristic is multipli-
cative under finite coverings, so ℝP2(n1, n2) is covered by a compact smooth surface of 

�orb
1

�
ℝP2(n1,… , nk)

�
≅ ⟨a, q1,… , qk � q

n1
1
,… , q

nk
k
, q1 ⋯ qka

2⟩.

�orb
1

�
ℝP2(n)

�
≅ ⟨a, q � qn, qa2⟩ ≅ ⟨a � a2n⟩ ≅ ℤ2n.

�
(
ℝP2(n1, n2)

)
= 1 −

(
1 −

1

n1

)
−
(
1 −

1

n2

)
= −1 +

1

n1
+

1

n2
,
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non-positive Euler characteristic, hence by ℝ2 , and so the orbifold fundamental group is 
infinite.

The classification of good vs. bad orbifolds as described in [6] rests on the existence of 
universal covering orbifolds and the construction of proper coverings for the orbifolds not on 
the list of bad ones. For ℝP2(n1, n2) , n1, n2 > 1 , we can explicitly exhibit an infinite tower 
of proper coverings to give a direct proof that �orb

1

(
ℝP2(n1, n2)

)
 is not finite. Consider 

S2(n1, n1, n2, n2) , with the orbifold points of order ni arranged in antipodal position on the 
round 2-sphere, i = 1, 2 . The quotient under the antipodal map then gives a 2-fold covering

Next, we consider S2(n2,… , n2) with 2n1 ≥ 4 orbifold points of order n2 arranged sym-
metrically along an equator. The quotient under the rotation about the poles through an 
angle 2�∕n1 defines an n1-fold covering

In the same fashion, we construct an n2-fold covering

Since n2(2n1 − 2) ≥ 4 , we can continue ad infinitum. This again proves the claim (and the 
lemma). 	� ◻

Thus, we are left with classifying the Seifert fibrations with base ℝP2(n) , n ∈ ℕ , and total 
space equal to some lens space.

Lens spaces fibring over ℝP2(n)

The case n = 1 is dealt with in [2, Proposition 4.2]: the total space can be L(4, 1) or L(4, 3), 
and either of these admits a unique Seifert fibration over ℝP2.

Let M be a lens space that admits a Seifert fibration over ℝP2(n) , n ≥ 2 . Using the equiva-
lences of Seifert invariants described in [2, Section 2.2], we may absorb any non-singular fibre 
of type (1, b), contributing to the Euler class of the bundle, into the invariants of the singular 
fibre, and hence write the Seifert fibration of M in the notation of [2] as

Then the fundamental group of M has the presentation, by [2, Section 2.3],

The inverse of the first relation is a−1h−1a = h , and hence we have a−2ha2 = h . It follows 
that the presentation is equivalent to

S2(n1, n1, n2, n2) ⟶ ℝP2(n1, n2).

S2(n2,… , n2
⏟⏞⏞⏟⏞⏞⏟

2n1

) ⟶ S2(n1, n1, n2, n2).

S2(n2,… , n2
⏟⏞⏞⏟⏞⏞⏟
n2(2n1−2)

) ⟶ S2(n2,… , n2
⏟⏞⏞⏟⏞⏞⏟

2n1

).

M = M
(
−1;(n, �)

)
.

�1(M) ≅ ⟨a, q, h � a−1ha = h−1, [h, q], qnh� , qa2⟩.

�1(M) ≅ ⟨a, h � a−1ha = h−1, a2n = h�⟩.
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The first relation implies a−1h�a = h−� ; the second, a−1h�a = h� . With the resulting (super-
fluous) relation h2� = 1 , we recognise the presentation of �1(M) by a result of Hölder, 
cf. [3, Lemma 2.1], as that of a metacyclic group

Indeed, we may assume 𝛽 > 0 in the presentation of �1(M) , possibly after replacing the 
generator h by h−1 , if necessary. Then, in the notation of [3, Lemma 2.1], one has to set 
x = a , y = h , as well as k = 2n , l = � , m = 2� , and n = 2� − 1 ; then the divisibility condi-
tions m|(nk − 1) and m|l(n − 1) are satisfied. The normal subgroup of order 2� is generated 
by h. Every element of �1(M) can be written uniquely in the form akh� with 0 ≤ k ≤ 2n − 1 
and 0 ≤ � ≤ 2� − 1 , and the projection to ℤ2n is given by akh� ↦ k.

Here is the main result of this note.

Proposition 3.1  The only lens spaces that admit a Seifert fibration over ℝP2(n) , n ≥ 1 , are 
L(4n, 2n ± 1) , and these Seifert fibrations are unique.

Proof  We are going to show that the Seifert manifold M
(
−1;(n, �)

)
 is a lens space if and 

only if � = ±1 , and that there is an orientation-preserving diffeomorphism

The ‘only if’ part follows from the presentation of �1(M) , which is that of a cyclic group 
only if a commutes with h, which forces h2 = 1 and hence � = ±1.

For the ‘if’ part it suffices to exhibit an explicit Seifert fibration of L(4n, 2n ∓ 1) over 
ℝP2(n) . Recall that the positive Hopf fibration of the 3-sphere is the map

The map

defines an element of SO(4) , and it sends the Hopf fibres, i.e. the orbits of the S1-action

to Hopf fibres, reversing their orientation. The square of A+ is

which obviously defines a free ℤ2n-action on S3 . This induces a ℤn-action (sic!) on the 
quotient S3∕S1 = ℂP1 with two fixed points at [1 : 0] and [0 : 1] and quotient S2(n, n) , so we 
have a Seifert fibration

In turn, A+ induces a ℤ2-action on S2(n, n) . This action is free. Indeed, if the class of (z0
1
, z0

2
) 

in S2(n, n) = (S3∕ℤ2n)∕S
1 = (S3∕S1)∕ℤn were fixed by A+ , there would be an odd integer k 

and an angle � ∈ ℝ∕2�ℤ such that Ak
+
(z0

1
, z0

2
) = �(z0

1
, z0

2
) . But

ℤ2� ↣ �1(M) ↠ ℤ2n.

M
(
−1;(n,±1)

)
≅ L(4n, 2n ∓ 1).

ℂ
2 ⊃ S3 ⟶ S2 = ℂP1

(z1, z2) ⟼ [z1 ∶ z2].

A+ ∶ (z1, z2) ⟼ (e�i∕2nz2, e
−�i∕2nz1)

�(z1, z2) = (ei�z1, e
i�z2), � ∈ ℝ∕2�ℤ,

A2
+
∶ (z1, z2) ⟶ (e�i∕nz1, e

−�i∕nz2),

S3∕ℤ2n ⟶ S2(n, n).
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so the fixed point condition would imply

Substituting these two equations into each other, we find

which would yield the contradiction that 2n divides k. In particular, A+ generates a free 
action ℤ4n on S3 , and we have a Seifert fibration

Next we consider the free ℤ4n-action on S3 generated by

This yields the quotient L(4n, 2n − 1) . We now want to show that A+ and A2n−1 are conju-
gate in SO(4) , which proves the existence of a Seifert fibration L(4n, 2n − 1) → ℝP(n).

In quaternionic notation z1 + z2j =∶ a0 + a1i + a2j + a3k =∶ a ∈ S3 ⊂ ℍ , the maps A+ 
and A2n−1 take the form

and

With Φ ∈ SO(4) defined by

we have Φ◦A+ = A2n−1◦Φ.
In order to find a Seifert fibration L(4n, 2n + 1) → ℝP2(n) , consider the conjugation 

A− of A+ by the orientation-reversing diffeomorphism (z1, z2) ↦ (z1, z2) of S3 . Then argue 
analogously, or observe that the quotient of S3 under this conjugated ℤ4n-action generated 
by A− is L(4n, 2n − 1) with reversed orientation, which is L(4n, 2n + 1) , cf. [2, Section 3.2].

Since the M
(
−1;(n,±1)

)
 are the only Seifert fibrations over ℝP2(n) with total space hav-

ing a finite cyclic fundamental group, each of the lens spaces L(4n, 2n ± 1) has a unique 
Seifert fibration over ℝP2(n).

The correct identification of the signs in the diffeomorphism 
M
(
−1;(n,±1)

)
≅ L(4n, 2n ∓ 1) (as oriented manifolds) follows from [2, Theorem 4.4] and 

[4, Theorem 5.1]. 	� ◻

Remark 3.2 

(1)	 As in [2] one can find a conjugating map Φ that conjugates A+ and A− simultaneously 
to the standard action giving the quotient L(4n, 2n ∓ 1).

(2)	 Without explicit computation, one knows from [6] that A+ must be conjugate in SO(4) 
to a map of the form 

Ak
+
(z0

1
, z0

2
) = (ek�i∕2nz

0

2
, e−k�i∕2nz

0

1
) for k odd,

ek�i∕2nz
0

2
= ei�z0

1
and e−k�i∕2nz

0

1
= ei�z0

2
for some � ∈ ℝ∕2�ℤ.

z0
1
= ek�i∕nz0

1
and z0

2
= e−k�i∕nz0

2
,

S3∕ℤ4n ⟶ ℝP2(n).

A2n−1 ∶ (z1, z2) ⟼ (e�i∕2nz1, e
�i(2n−1)∕2nz2).

A+(a) = − sin(�∕2n) ka + cos(�∕2n) kai

A2n−1(a) = sin(�∕2n) ia − cos(�∕2n) iai.

Φ(a) =
1 + i − j − k

2
a
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for some q̃ ∈ {1,… , 4n − 1} coprime to 4n. Since trace(Aq̃) = trace(A+) = 0 , we 
must have cos(𝜋q̃∕2n) = − cos(𝜋∕2n) , that is, q̃ = 2n ± 1 . This gives a Seifert fibra-
tion of one of L(4n, 2n ± 1) over ℝP2(n) , and one then concludes as before.

(3)	 A lens space that Seifert fibres over ℝP2(n) can be decomposed into a Seifert fibration 
over D2(n) and an S1-bundle over the Möbius band. Since the lens space is orientable, 
the latter bundle restricts over the soul of the Möbius band to the S1-fibration of the 
Klein bottle over S1 . As shown by Bredon–Wood [1], the only lens spaces that contain 
embedded Klein bottles are the L(4n, 2n ± 1) . For an explicit description of a Klein 
bottle in L(4, 1) see [5].
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