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Abstract
In 1900, at the international congress of mathematicians, Hilbert claimed that the Riemann 
zeta function �(s) is not the solution of any algebraic ordinary differential equations on its 
region of analyticity. In 2015, Van Gorder (J Number Theory 147:778–788, 2015) consid-
ered the question of whether �(s) satisfies a non-algebraic differential equation and showed 
that it formally satisfies an infinite order linear differential equation. Recently, Prado and 
Klinger-Logan (J Number Theory 217:422–442, 2020) extended Van Gorder’s result to 
show that the Hurwitz zeta function �(s, a) is also formally satisfies a similar differential 
equation 

But unfortunately in the same paper they proved that the operator T applied to Hurwitz 
zeta function �(s, a) does not converge at any point in the complex plane ℂ . In this paper, 
by defining Ta

p
 , a p-adic analogue of Van Gorder’s operator T,  we establish an analogue of 

Prado and Klinger-Logan’s differential equation satisfied by �p,E(s, a) which is the p-adic 
analogue of the Hurwitz-type Euler zeta functions 

In contrast with the complex case, due to the non-archimedean property, the operator Ta
p
 

applied to the p-adic Hurwitz-type Euler zeta function �p,E(s, a) is convergent p-adically in 

T

[
�(s, a) −

1

as

]
=

1

(s − 1)as−1
.

�E(s, a) =

∞∑

n=0

(−1)n

(n + a)s
.
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the area of s ∈ ℤp with s ≠ 1 and a ∈ K with |a|p > 1, where K is any finite extension of ℚp 
with ramification index over ℚp less than p − 1.

Keywords p-adic Hurwitz-type Euler zeta function · Differential equation
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1 Introduction

Throughout this paper we shall use the following notations.

The Riemann zeta function �(s) is defined as

it can be analytically continued to the whole complex plane except for a single pole at s = 1 
with residue 1. In 1900, at the international congress of mathematicians, David Hilbert [5] 
claimed that �(s) is not the solution of any algebraic ordinary differential equations on its 
region of analyticity. In 2015, Van Gorder [19] considered the question of whether �(s) sat-
isfies a non-algebraic differential equation and showed that it formally satisfies an infinite 
order linear differential equation. In fact, he established the differential equation

formally, where

and

for Dk
s
∶=

�k

�sk
.

For 0 < a ≤ 1 , Re(s) > 1 , in 1882 Hurwitz [4] defined the partial zeta functions

ℂ − the field of complex numbers.

p − an odd rational prime number.

ℤp − the ring of p-adic integers.

ℚp − the field of fractions of ℤp.

ℂp − the completion of a fixed algebraic closure ℚp of ℚp.

(1.1)𝜁(s) =

∞∑

n=1

1

ns
, Re(s) > 1,

(1.2)T[�(s) − 1] =
1

s − 1

(1.3)T =

∞∑

n=0

Ln

Ln ∶= pn(s) exp(nD),

pn(s) ∶=

�
1 if n = 0

1

(n+1)!

∏n−1

j=0
(s + j) if n > 0,

exp(nD) ∶= id +

∞�

k=1

nk

k!
Dk

s
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which generalized (1.1). As (1.1), this function can also be analytically continued to a 
meromorphic function in the complex plane with a simple pole at s = 1 . Recently, Prado 
and Klinger-Logan [15] extended Van Gorder’s result to show that the Hurwitz zeta func-
tion �(s, a) also formally satisfies a similar differential equation

for s ∈ ℂ satisfying s + n ≠ 1 for all n ∈ ℤ≥0, where T is the Van Gorder’s operator defined 
as in (1.3) (see [15, Corollary 4]). But unfortunately, in the same paper they proved that

the operator T applied to Hurwitz zeta function, does not converge at any point in the com-
plex plane ℂ (see [15, Theorem 8]). Then they defined a generalized operator G instead 
of T. That is, let M be the collection of meromorphic functions on ℂ and f ∈ M , define 
G ∶ M → M by

Under this linear operator, we have a convergent difference equation

But it needs to mention that G is not a differential operator.
For Re(s) > 0 , the Euler zeta function (also called alternative series or Dirichlet eta 

function) is defined by

This function can be analytically continued to the complex plane without any pole. For 
Re(s) > 0 , (1.1) and (1.8) are connected by the following equation

By Weil’s history [21, p. 273–276] (also see a survey by Goss [3, Sect. 2]), Euler used (1.8) 
to “prove”

which leads to the functional equation of �(s).
For s ∈ ℂ and a ≠ 0,−1,−2,… , the Hurwitz-type Euler zeta function is defined as 

the Hurwitz zeta function (1.4) twisted by (−1)n

(1.4)�(s, a) =

∞∑

n=0

1

(n + a)s
,

(1.5)T
[
�(s, a) −

1

as

]
=

1

(s − 1)as−1

T
[
�(s, a) −

1

as

]
=

∞∑

n=0

pn(s) exp(nD)
[
�(s, a) −

1

as

]
,

(1.6)G[f ](s) =

∞∑

n=0

pn(s)f (s + n).

(1.7)G
[
�(s, a) −

1

as

]
=

1

(s − 1)as−1
.

(1.8)�E(s) =

∞∑

n=1

(−1)n−1

ns
.

(1.9)�E(s) = (1 − 21−s)�(s).

(1.10)
�E(1 − s)

�E(s)
=

−Γ(s)(2s − 1)cos(�s∕2)

(2s−1 − 1)�s
,
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This function can also be analytically continued to the complex plane without any pole. It 
represents a partial zeta function of cyclotomic fields in one version of Stark’s conjectures 
in algebraic number theory (see [11, p. 4249, (6.13)]). Recently, several interesting prop-
erties for the function �E(s, a) have been studied, including its Fourier expansion and sev-
eral integral representations [7], special values and power series expansions [6], convexity 
properties [2], etc.

In [10], using the fermionic p-adic integral (see (2.6) below), we defined �p,E(s, a), the 
p-adic analogue of Hurwitz-type Euler zeta functions (1.11), which interpolates (1.11) at non-
positive integers (see Theorem 2.4 below), so called the p-adic Hurwitz-type Euler zeta func-
tions. In the same paper, we also proved several properties of �p,E(s, a), including the analytic-
ity, the convergent Laurent series expansion, the distribution formula, the difference equation, 
the reflection functional equation, the derivative formula and the p-adic Raabe formula.

In this note, we define a p-adic analogue of the operator T,   denoted by Ta
p
 (see (2.10) 

below). Under this operator, the p-adic Hurwitz-type Euler zeta function �p,E(s, a) satisfies an 
infinite order linear differential equation

(see Theorem 3.5). In contrast with the complex case, the left hand side of the above equa-
tion is convergent everywhere for s ∈ ℤp with s ≠ 1 and a ∈ K with |a|p > 1, where K is 
any finite extension of ℚp with ramification index over ℚp less than p − 1 (see Corollary 3.8 
and Remarks 3.7 and 3.9 below).

2  Preliminaries

2.1  p‑adic Teichmüller character

To our purpose, in this subsection, we recall some notions from p-adic analysis, including the 
p-adic Teichmüller character �v(a) and the projection function ⟨a⟩ for a ∈ ℂ×

p
 . Our approach 

follows Tangedal and Young in [18] closely.
Given a ∈ ℤp, p ∤ a and p > 2, there exists a unique (p − 1) th root of unity �(a) ∈ ℤp 

such that

where � is the Teichmüller character. Let ⟨a⟩ = �−1(a)a, so ⟨a⟩ ≡ 1 (mod p).

In what follows we extend the definition domain of the projection function ⟨a⟩ from ℤp 
to ℂp . Fixed an embedding of ℚ into ℂp, denote the image of the set of positive real rational 
powers of p under this embedding in ℂ×

p
 by pℚ, and the group of roots of unity with order not 

divisible by p in ℂ×
p
 by � . Given a ∈ ℂp with |a|p = 1 , there exists a unique element â ∈ 𝜇 

such that

(1.11)�E(s, a) =

∞∑

n=0

(−1)n

(n + a)s
.

(1.12)Ta
p

�
�p,E(s, a) − ⟨a⟩1−s

�
=

1

s − 1

�
⟨a − 1⟩1−s − ⟨a⟩1−s

�

a ≡ �(a) (mod p),

(2.1)|a − â|p < 1,
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which is also named the Teichmüller representative of a; it can also be defined from 
â = limn→∞ ap

n! . Then we extend this definition to a ∈ ℂ×
p
 by

that is, we define â = û if a = pru with pr ∈ pℚ and |u|p = 1 , then we define the function 
⟨⋅⟩ on ℂ×

p
 by

Now we define �v(⋅) on ℂ×
p
 by

From this we get an internal product decomposition of multiplicative groups

where D = {a ∈ ℂp ∶ |a − 1|p < 1}, given by

As remarked by Tangedal and Young in [18], this decomposition of ℂ×
p
 depends on the 

choice of embedding of ℚ into ℂp ; the projections pvp(a), â, ⟨a⟩ are uniquely determined up 
to roots of unity. However for a ∈ ℚ×

p
 the projections pvp(a), â, ⟨a⟩ are uniquely determined 

and do not depend on the choice of the embedding. Notice that the projections a ↦ pvp(a) 
and a ↦ â are constant on discs of the form {a ∈ ℂp ∶ |a − y|p < |y|p} and therefore have 
derivative zero whereas the projections a ↦ ⟨a⟩ has derivative d

da
⟨a⟩ = ⟨a⟩∕a.

2.2  The fermionic p‑adic integral and the p‑adic Hurwitz‑type Euler zeta functions

In this subsection, we recall the definition of the p-adic Hurwitz-type Euler zeta functions 
�p,E(s, a) from the fermionic p-adic integral. For details, we refer to [10].

Let UD(ℤp) be the space of all uniformly (or strictly) differentiable ℂp-valued func-
tions on ℤp (see [1, §11.1.2]). The fermionic p-adic integral I−1(f ) on ℤp of a function 
f ∈ UD(ℤp) is defined by

The fermionic p-adic integral (2.6) was independently found by Katz [8, p. 486] (in Katz’s 
notation, the �(2)-measure), Shiratani and Yamamoto [17], Osipov [14], Lang [12] (in 
Lang’s notation, the E1,2-measure), Kim [9] from very different viewpoints.

For a ∈ ℂ×
p
 and s ∈ ℂp, the two-variable function ⟨a⟩s ([16, p. 141]) is defined by

when this sum is convergence. The analytic property of ⟨a⟩s is stated in the following 
proposition.

(2.2)â ∶= ( �a∕pvp(a)),

⟨a⟩ = p−vp(a)a∕â.

(2.3)𝜔v(a) =
a

⟨a⟩
= pvp(a)â.

(2.4)ℂ
×

p
≃ pℚ × � × D,

(2.5)a = pvp(a) ⋅ â ⋅ ⟨a⟩ ↦ (pvp(a), â, ⟨a⟩).

(2.6)I−1(f ) = ∫
ℤp

f (t)d�−1(t) = lim
r→∞

pr−1∑

k=0

f (k)(−1)k.

(2.7)⟨a⟩s =
∞�

n=0

�
s

n

�
(⟨a⟩ − 1)n,
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Proposition 2.1 (see Tangedal and Young [18]) For any a ∈ ℂ×
p
 the function s ↦ ⟨a⟩s is a 

C∞ function of s on ℤp and is analytic on a disc of positive radius about s = 0 ; on this disc 
it is locally analytic as a function of a and independent of the choice made to define the ⟨⋅⟩ 
function. If a lies in a finite extension K of ℚp whose ramification index over ℚp is less than 
p − 1 then s ↦ ⟨a⟩s is analytic for |s|p < |𝜋|−1

p
p−1∕(p−1) , where (�) is the maximal ideal of 

the ring of integers OK of K. If s ∈ ℤp, the function a ↦ ⟨a⟩s is an analytic function of a on 
any disc of the form {a ∈ ℂp ∶ |a − y|p < |y|p}.

Now we are at the position to recall the definition for the p-adic Hurwitz-type Euler 
zeta function �p,E(s, a).

Definition 2.2 (see [10, Definition 3.3]) For a ∈ ℂp�ℤp , we define the p-adic Hurwitz-
type Euler zeta function �p,E(s, a) by the formula

The following theorem summarize the analytic property of �p,E(s, x) and Tangedal and 
Young proved a similar result for p-adic multiple zeta functions (see [18, Theorem 3.1]).

Theorem 2.3 (see [10, Theorem 3.4]) For any choice of a ∈ ℂp�ℤp the function �p,E(s, a) 
is a C∞ function of s on ℤp , and is an analytic function of s on a disc of positive radius 
about s = 0 ; on this disc it is locally analytic as a function of a and independent of the 
choice made to define the ⟨⋅⟩ function. If a is so chosen to lie in a finite extension K of 
ℚp whose ramification index over ℚp is less than p − 1 then �p,E(s, a) is analytic for 
|s|p < |𝜋|−1

p
p−1∕(p−1) . If s ∈ ℤp , the function �p,E(s, a) is locally analytic as a function of a 

on ℂp∖ℤp.

It needs to mention that the p-adic Hurwitz-type Euler zeta function �p,E(s, a) interpo-
lates its complex counterpart �E(s, a) (1.11) p-adically, that is,

Theorem 2.4 (see [10, Theorem 3.8]) Suppose that a ∈ ℂp and |a|p > 1. For m ∈ ℕ,

where the Euler polynomials Em(x) is defined by the generating function

2.3  The p‑adic operator Tap

In this subsection, we give a definition of Ta
p
 , the p-adic analogue of the operator T (see 

(1.3)). Let E = {x ∈ ℂp ∶ |x|p < p
−

1

p−1 } be the region of convergence of the power series ∑∞

k=0

xk

k!
 . The p-adic exponential function is given by

(2.8)�p,E(s, a) = ∫
ℤp

⟨a + t⟩1−sd�−1(t).

�p,E(1 − m, a) =
1

�m
v
(a)

Em(a) =
1

�m
v
(a)

�E(−m, a),

(2.9)
2exz

ez + 1
=

∞∑

m=0

Em(x)
zm

n!
, |z| < 𝜋.
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(see [16, p. 70]) and the p-adic Van Gorder’s operator is defined as follows

where

for Dk
s
∶=

�k

�sk
.

3  Main results

In this section, we shall prove (1.12). First we need to establish the following identity for 
�p,E(s, a).

Lemma 3.1 Let �p,E(s, a) be the p-adic Hurwitz-type Euler zeta function. Then, for s ∈ ℤp 
with s ≠ 1 and a ∈ ℂp with |a|p > 1 , we have that

Remark 3.2 This is a p-adic analogue of complex identities for the Hurwitz zeta function 
�(s, a) (see [15, Lemma 1]) and for the Riemann zeta function �(s) (see [15, (3.3)]).

Proof of Lemma 3.1 Fix s ∈ ℤp and a ∈ ℂp with |a|p > 1. For any r ∈ ℕ we have

expp(x) =

∞∑

k=0

xk

k!
, (x ∈ E)

(2.10)Ta
p
=

∞∑

n=0

La
p,n
,

(2.11)

La
p,n

∶=Pa
p,n
(s) expp(nD),

Pa
p,n
(s) ∶=

⎧
⎪
⎨
⎪
⎩

2

s−1
if n = 0

1

�v(a)
if n = 1

1

n!�n
v
(a)

∏n−1

j=1
(s − 1 + j) if n ≥ 2,

expp(nD) ∶=id +

∞�

k=1

nk

k!
Dk

s

(3.1)

2

s − 1

�
�p,E(s, a) − ⟨a⟩1−s

�
+

1

�v(a)

�
�p,E(s + 1, a) − ⟨a⟩1−(s+1)

�

+

∞�

n=2

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

�
�p,E(s + n, a) − ⟨a⟩1−(s+n)

�

=
1

s − 1

�
⟨a − 1⟩1−s − ⟨a⟩1−s

�
.
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Since |a|p > 1 , for k ∈ ℕ , we have |k + a|p > 1 , thus

and

Then from (2.1) we see that

and by (2.3)

Again by (2.3), we have

(3.2)

−
1

(s − 1)⟨a⟩s−1
=

1

s − 1

�
pr−1�

k=0

(−1)k+1

⟨k + a⟩s−1
+

pr−1�

k=1

(−1)k

⟨k + a⟩s−1

�

=
1

s − 1

�
pr�

k=1

(−1)k

⟨k − 1 + a⟩s−1
+

pr−1�

k=1

(−1)k

⟨k + a⟩s−1

�

=
1

s − 1

�
pr−1�

k=1

(−1)k

⟨k − 1 + a⟩s−1
+

pr−1�

k=1

(−1)k

⟨k + a⟩s−1
+

(−1)p
r

⟨pr − 1 + a⟩s−1

�

=
1

s − 1

pr−1�

k=1

(−1)k

⟨k + a⟩s−1

��
k + a

k − 1 + a

�s−1

+ 1

�

−
1

s − 1

1

⟨pr − 1 + a⟩s−1

(since p is an odd prime).

||||
1 −

1

k + a

||||p
= 1

||||||

1

1 −
1

k+a

− 1

||||||p
=

||||||

1

k+a

1 −
1

k+a

||||||p
< 1.

1̂

1 −
1

k+a

= 1

�v

(
1

1 −
1

k+a

)
= 1.
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From [16, p.140, Lemma 47.6], for s ∈ ℤp we have the expansion

Thus by (3.3) we get

Substituting the above expansion into (3.2), we have

(3.3)

⟨
k + a

k − 1 + a

⟩
=

⟨
1

1 −
1

k+a

⟩

=�−1
v

(
1

1 −
1

k+a

)(
1

1 −
1

k+a

)

=
1

1 −
1

k+a

=

(
1 −

1

k + a

)−1

.

(1 + x)s =

∞∑

n=0

(
s

n

)
xn, |x|p < 1.

(3.4)

�
k + a

k − 1 + a

�s−1

=

�
1 −

1

k + a

�1−s

=

∞�

n=0

�
1 − s

n

�
(−1)n

(k + a)n

=1 +

∞�

n=1

∏n−1

j=0
(s − 1 + j)

n!

1

(k + a)n
.
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Since |a|p > 1 and k ∈ ℕ , by (2.3) we have

and

Substituting the above identity into (3.5), we get

Taking r → ∞ in the above equality, by the continuity of the p-adic function ⟨a⟩s in a (see 
the last sentence of Proposition 2.1), we have

and

(3.5)

−
1

(s − 1)⟨a⟩s−1

=
1

s − 1

pr−1�

k=1

(−1)k

⟨k + a⟩s−1

��
1 +

∞�

n=1

∏n−1

j=0
(s − 1 + j)

n!

1

(k + a)n

�
+ 1

�

−
1

s − 1

1

⟨pr − 1 + a⟩s−1

=
2

s − 1

pr−1�

k=1

(−1)k

⟨k + a⟩s−1

+
1

s − 1

pr−1�

k=1

(−1)k

⟨k + a⟩s−1

∞�

n=1

∏n−1

j=0
(s − 1 + j)

n!

1

(k + a)n

−
1

s − 1

1

⟨pr − 1 + a⟩s−1

=
2

s − 1

pr−1�

k=1

(−1)k

⟨k + a⟩s−1

+
1

s − 1

pr−1�

k=1

(−1)k

⟨k + a⟩s−1

�
s − 1

k + a
+

∞�

n=2

∏n−1

j=0
(s − 1 + j)

n!

1

(k + a)n

�

−
1

s − 1

1

⟨pr − 1 + a⟩s−1
.

�v(k + a) = �v(a)

k + a = �v(k + a)⟨k + a⟩ = �v(a)⟨k + a⟩.

(3.6)

−
1

(s − 1)⟨a⟩s−1
=

2

s − 1

pr−1�

k=1

(−1)k

⟨k + a⟩s−1
+

1

�v(a)

pr−1�

k=1

(−1)k

⟨k + a⟩s

+

∞�

n=2

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

pr−1�

k=1

(−1)k

⟨k + a⟩s+n−1

−
1

s − 1

1

⟨pr − 1 + a⟩s−1
.

lim
r→∞

⟨pr − 1 + a⟩s−1 = ⟨a − 1⟩s−1
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Then by the definitions of the fermionic p-adic integral (2.7) and the p-adic Hurwitz-type 
zeta function �p,E(s, a) (2.8), we have

which is equivalent to

(3.7)

−
1

(s − 1)⟨a⟩s−1
=

2

s − 1
lim
r→∞

pr−1�

k=1

(−1)k

⟨k + a⟩s−1
+

1

�v(a)
lim
r→∞

pr−1�

k=1

(−1)k

⟨k + a⟩s

+

∞�

n=2

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

lim
r→∞

pr−1�

k=1

(−1)k

⟨k + a⟩s+n−1

(see Proposition 3.3)

−
1

s − 1

1

⟨a − 1⟩s−1

=
2

s − 1

�
lim
r→∞

pr−1�

k=0

(−1)k

⟨k + a⟩s−1
−

1

⟨a⟩s−1

�

+
1

�v(a)

�
lim
r→∞

pr−1�

k=0

(−1)k

⟨k + a⟩s
−

1

⟨a⟩s

�

+

∞�

n=2

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

�
lim
r→∞

pr−1�

k=0

(−1)k

⟨k + a⟩s+n−1
−

1

⟨a⟩s+n−1

�

−
1

s − 1

1

⟨a − 1⟩s−1
.

(3.8)

−
1

(s − 1)⟨a⟩s−1
=

2

s − 1

�

∫
ℤp

⟨k + a⟩1−sd�−1(a) −
1

⟨a⟩s−1

�

+
1

�v(a)

�

∫
ℤp

⟨k + a⟩−sd�−1(a) −
1

⟨a⟩s

�

+

∞�

n=2

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

�

∫
ℤp

⟨k + a⟩1−(s+n)d�−1(a) −
1

⟨a⟩s+n−1

�

−
1

s − 1

1

⟨a − 1⟩s−1

=
2

s − 1

�
�p,E(s, a) − ⟨a⟩1−s

�

+
1

�v(a)

�
�p,E(s + 1, a) − ⟨a⟩1−(s+1)

�

+

∞�

n=2

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

�
�p,E(s + n, a) − ⟨a⟩1−(s+n)

�

−
1

s − 1

1

⟨a − 1⟩s−1
,
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This completes the proof.   ◻

As pointed out by the referee, in order to move the limit to the inside of the sum-
mation 

∑∞

n=2
 in (3.7) of the above lemma, we need to show that the convergence of the 

inner limit is uniform for r ∈ ℕ . To this end, we add the following proposition.

Proposition 3.3 For s ∈ ℤp and a ∈ ℂp with |a|p > 1 , the series

converges uniformly for r ∈ ℕ and

Proof For n ≥ 2 we have

By [16, p. 138, Proposition 47.2(v)], for s ∈ ℤp,

Since |n|p =
(

1

p

)vp(n)

 , we have

thus for n ≥ 2,

Since for any a ∈ ℂ×
p
 , â ∈ 𝜇 is a root of unity, we have |â|p = 1 and by (2.3)

(3.9)

2

s − 1

�
�p,E(s, a) − ⟨a⟩1−s

�
+

1

�v(a)

�
�p,E(s + 1, a) − ⟨a⟩1−(s+1)

�

+

∞�

n=2

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

�
�p,E(s + n, a) − ⟨a⟩1−(s+n)

�

=
1

s − 1

�
⟨a − 1⟩1−s − ⟨a⟩1−s

�
.

∞�

n=2

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

pr−1�

k=1

(−1)k

⟨k + a⟩s+n−1

(3.10)

lim
r→∞

∞�

n=2

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

pr−1�

k=1

(−1)k

⟨k + a⟩s+n−1

=

∞�

n=2

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

lim
r→∞

pr−1�

k=1

(−1)k

⟨k + a⟩s+n−1
.

∏n−1

j=1
(s − 1 + j)

n!
=

�
s + n − 2

n − 1

�
1

n
.

|||||

(
s + n − 2

n − 1

)|||||p
≤ 1.

||||
1

n

||||p
= pvp(n) ≤ n,

(3.11)
������

∏n−1

j=1
(s − 1 + j)

n!

������p
=

�����

�
s + n − 2

n − 1

�
1

n

�����p
≤ n.
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thus

Combining (3.11) and (3.12), for any fixed a ∈ ℂp with |a|p > 1 we have

Now fix a ∈ ℂp with |a|p > 1, we know that logp⟨y + a⟩ is a continuous function in y ∈ ℤp. 
Since ℤp is compact in the p-adic topology, by the Weierstrass maximum value theorem 
([13, p. 61, Theorem 4.3]) there exists a y0 ∈ ℤp such that

for all y ∈ ℤp . Since ⟨y0 + a⟩ − 1 ∈ (p) , we have

and by [20, p. 51, Lemma 5.5],

Combining (3.14), (3.15) and (3.16), we see that

for all y ∈ ℤp . By [18, p. 1245, (2.22)], for (x, s) ∈ ℂ×
p
× ℂp satisfying 

�s�p < p−1∕(p−1)� logp⟨x⟩�−1p , we have

Let D = ℤp × ℤp . For (y, s) ∈ D , at first we have |s|p ≤ 1 and by (3.17), we see that 
p−1∕(p−1)� logp⟨y + a⟩�−1

p
≥ p−1∕(p−1) ⋅ p = p

p−2

p−1 > 1, thus �s�p < p−1∕(p−1)� logp⟨y + a⟩�−1
p
. 

Then by (3.18) we have

for (y, s) ∈ D . Hence the two variable function f (y, s) = ⟨y + a⟩s is continuous on the 
domain D. Since D = ℤp × ℤp is compact in the p-adic topology, for any fixed a ∈ ℂp with 
|a|p > 1 it is bounded as a function for (y, s) ∈ D , so there exists a positive constant Na such 
that for any k ∈ ℕ and n ∈ ℕ,

|𝜔v(a)|p = |pvp(a)â|p = |p|vp(a)p =

(
1

p

)vp(a)

,

(3.12)
|||||

1

�n
v
(a)

|||||p
= pnvp(a).

(3.13)
������

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

������p
≤ pnvp(a) ⋅ n.

(3.14)� logp⟨y + a⟩�p ≤ � logp⟨y0 + a⟩�p

(3.15)�⟨y0 + a⟩ − 1�p ≤ p−1 < p−1∕(p−1)

(3.16)� logp⟨y0 + a⟩�p = �⟨y0 + a⟩ − 1�p ≤ p−1.

(3.17)� logp⟨y + a⟩�p ≤ p−1

(3.18)⟨x⟩s = expp(s logp⟨x⟩).

(3.19)⟨y + a⟩s = expp(s logp⟨y + a⟩)
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and by the non-archimedean property, for any r ∈ ℕ,

Then combining (3.13) and (3.21), for any fixed a ∈ ℂp with |a|p > 1 and for any r ∈ ℕ we 
have

Since |a|p > 1 , i.e., vp(a) < 0 , we have limn→∞ Na ⋅ p
nvp(a)

⋅ n = 0, which implies the series

is convergent. Finally by (3.22), (3.23) and the Weierstrass test (see [13, p. 230, Theo-
rem 5.1]), we see that the series

converges uniformly for r ∈ ℕ . Then applying [13, p. 185, Theorem 3.5] we conclude that 
the limit r → ∞ can be moved to the inside of the above series, which is the desired result.  
 ◻

The following result ensures the convergence of (3.1), which is a p-adic analogue of 
[15, Lemma 2].

Lemma 3.4 The left hand side of (3.1) in Lemma 3.1 converges p-adically for s ∈ ℤp with 
s ≠ 1 and a ∈ ℂp with |a|p > 1.

Proof By Proposition 2.1 and Theorem 2.3, for a ∈ ℂp with |a|p > 1 , �p,E(s, a) − ⟨a⟩1−s is 
a C∞ function of s on ℤp . Since ℤp is compact in the p-adic topology, for any fixed a ∈ ℂp 
with |a|p > 1 it is bounded as a function for s ∈ ℤp , i.e., there exists a positive constant Ma 
such that

Then combining (3.13) and (3.24), for any fixed a ∈ ℂp with |a|p > 1 we have

(3.20)

�����

(−1)k

⟨k + a⟩s+n−1
�����p

=
���(−1)

k⟨k + a⟩1−s−n���p

=
���(−1)

kf (k, 1 − s − n)
���p

≤Na

(3.21)
������

pr−1�

k=1

(−1)k

⟨k + a⟩s+n−1

������p
≤ Na.

(3.22)
������

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

pr−1�

k=1

(−1)k

⟨k + a⟩s+n−1

������p
≤ Na ⋅ p

nvp(a)
⋅ n.

(3.23)Na

∞∑

n=2

pnvp(a)n

∞�

n=2

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

pr−1�

k=1

(−1)k

⟨k + a⟩s+n−1

(3.24)
����p,E(s, a) − ⟨a⟩1−s���p ≤ Ma.
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Since |a|p > 1 , i.e., vp(a) < 0 , we have limn→∞ Ma ⋅ p
nvp(a)

⋅ n = 0, which implies

thus the series

is convergent under the p-adic topology.   ◻

The above result implies the following theorem.

Theorem 3.5 Let Ta
p
 be as defined in (2.10). Then �p,E(s, a) formally satisfies the following 

differential equation

for s ∈ ℤp with s ≠ 1 and a ∈ ℂp with |a|p > 1.

Proof Denote by Dk
s
∶=

�k

�sk
 . For any analytic function f(s) on ℤp and n ∈ ℕ we have

which maybe interpreted operationally through its formal Taylor expansion in n. By Propo-
sition 2.1 and Theorem 2.3, for a ∈ ℂp with |a|p > 1 , the function �p,E(s, a) − ⟨a⟩1−s is ana-
lytic for s ∈ ℤp. Thus from (3.27) we get

for n ≥ 0 and by the definition of Ta
p
 (2.10) and Lemma 3.1

(3.25)
������

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

�
�p,E(s + n, a) − ⟨a⟩1−(s+n)

�������p
≤ Ma ⋅ p

nvp(a)
⋅ n.

lim
n→∞

������

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

�
�p,E(s + n, a) − ⟨a⟩1−(s+n)

�������p
= 0,

∞�

n=2

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

�
�p,E(s + n, a) − ⟨a⟩1−(s+n)

�

(3.26)Ta
p

�
�p,E(s, a) − ⟨a⟩1−s

�
=

1

s − 1

�
⟨a − 1⟩1−s − ⟨a⟩1−s

�

(3.27)

expp(nD)f (s) =

(
id +

∞∑

k=1

nk

k!
Dk

s

)
f (s)

=f (s) +

∞∑

k=1

nk

k!

�kf (s)

�sk

=f (s + n),

(3.28)
La
p,n

�
�p,E(s, a) − ⟨a⟩1−s

�
=Pa

p,n
(s) expp(nD)

�
�p,E(s, a) − ⟨a⟩1−s

�

=Pa
p,n
(s)

�
�p,E(s + n, a) − ⟨a⟩1−(s+n)

�
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which is the desired result.   ◻

In what follows, we shall investigate the area of convergence for Theorem 3.5 and show 
that the operator Ta

p
 applied to the p-adic Hurwitz-type Euler zeta function �p,E(s, a) is con-

vergent in certain area of the p-adic plane. First we need to prove the following proposition.

Proposition 3.6 Let K be a finite extension of ℚp with ramification index e over ℚp less than 
p − 1. Let s ∈ ℂp with |s|p < rp ∶= p

1

e
−

1

p−1 , and a ∈ K�ℤp. For any n ≥ 2 the series

converges.

Remark 3.7 This is mainly because the non-archimedean property of the p-adic metric and 
it is quite different from the complex situation for Hurwitz zeta functions. In that case, by 
[15, Proposition 5], we have “for any s ∈ ℂ , we can find some N ≥ 0 so that the series

diverges.”

Proof of Propsoition 3.6 Let (�) be the maximal ideal of the ring of integers OK of K. Then

By Proposition 2.1 and Theorem 2.3, given a ∈ K�ℤp, the function �p,E(s, a) − ⟨a⟩1−s is 
analytic for

Fix s0 ∈ ℂp with |s0|p < rp. For any s ∈ ℂp with |s − s0|p < rp , we have

(3.29)

Ta
p

�
�p,E(s, a) − ⟨a⟩1−s

�

=

∞�

n=0

La
p,n

�
�p,E(s, a) − ⟨a⟩1−s

�

=

∞�

n=0

Pa
p,n
(s)

�
�p,E(s + n, a) − ⟨a⟩1−(s+n)

�

=
2

s − 1

�
�p,E(s, a) − ⟨a⟩1−s

�
+

1

�v(a)

�
�p,E(s + 1, a) − ⟨a⟩1−(s+1)

�

+

∞�

n=2

∏n−1

j=1
(s − 1 + j)

n!�n
v
(a)

�
�p,E(s + n, a) − ⟨a⟩1−(s+n)

�

=
1

s − 1

�
⟨a − 1⟩1−s − ⟨a⟩1−s

�
,

expp(nD)
�
�p,E(s, a) − ⟨a⟩1−s

�
=

∞�

k=0

Dk
s

�
�p,E(s, a) − ⟨a⟩1−s

�

k!
nk

exp(ND)
[
�(s, a) −

1

as

]
=

∞∑

k=0

Dk
s

(
�(s, a) −

1

as

)

k!
Nk

|�|p = |p|
1

e

p =

(
1

p

) 1

e

.

|s|p < rp ∶= |𝜋|−1
p
p−1∕(p−1) = p

1

e
−

1

p−1 .
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so the disc {s ∶ |s − s0| < rp} is contained in the disc {s ∶ |s| < rp}. In fact,

Thus �p,E(s, a) can be expanded as a power series around s0 with the radius of convergence 
equal to rp.

Since e < p − 1 as the assumption, we have rp > 1 and for any n ∈ ℕ, we have 
|(s0 + n) − s0|p = |n|p ≤ 1 < rp. From the discussion above, we have the following conver-
gent power series expansion of �p,E(s, a) at s0

Then by the definition of expp(nD) (2.10), we see that

which is the desired result.   ◻

From the above proposition we have the following result which asserts that the operator 
Ta
p
 applied to the p-adic Hurwitz-type Euler zeta function �p,E(s, a) is convergent in the p-adic 

topology.

Corollary 3.8 Let K be stated as in the Proposition 3.6. Then

converges for s ∈ ℤp with s ≠ 1 and a ∈ K with |a|p > 1.

Remark 3.9 Notice that in the complex situation, we have

diverges for all complex numbers s ∈ ℂ (see [15, Theorem 8]).

Proof of Corollary 3.8 By (3.29) we have

|s|p ≤ max{|s − s0|p, |s0|p} < rp,

{s ∶ |s − s0| < rp} = {s ∶ |s| < rp}.

�p,E(s0 + n, a) − ⟨a⟩1−(s0+n) =
∞�

k=0

Dk
s
��s=s0

�
�p,E(s, a) − ⟨a⟩1−s

�

k!
nk.

(3.30)
�p,E(s0 + n, a) − ⟨a⟩1−(s0+n) =

∞�

k=0

Dk
s
��s=s0

�
�p,E(s, a) − ⟨a⟩1−s

�

k!
nk

= expp(nD)
��s=s0

�
�p,E(s, a) − ⟨a⟩1−s

�
,

(3.31)Ta
p

�
�p,E(s, a) − ⟨a⟩1−s

�
=

∞�

n=1

Pa
p,n
(s) expp(nD)

�
�p,E(s, a) − ⟨a⟩1−s

�

T
[
�(s, a) −

1

as

]
=

∞∑

n=0

pn(s) exp(nD)
[
�(s, a) −

1

as

]
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Suppose that s ∈ ℤp with s ≠ 1 and a ∈ K with |a|p > 1. By (2.11) and (3.13), for n ≥ 2 we 
have

and limn→∞ Pa
p,n
(s) = 0. Then combining the conclusions of Proposition 3.6 and Lemma 

3.4, for each n ≥ 2, both the series

and the right hand side of (3.32) converge, which have established our result.   ◻
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