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Abstract
We look at genera of even unimodular lattices of rank 12 over the ring of integers of 
ℚ(

√

5) and of rank 8 over the ring of integers of ℚ(
√

3) , using Kneser neighbours to diago-
nalise spaces of scalar-valued algebraic modular forms. We conjecture most of the global 
Arthur parameters, and prove several of them using theta series, in the manner of Ikeda and 
Yamana. We find instances of congruences for non-parallel weight Hilbert modular forms. 
Turning to the genus of Hermitian lattices of rank 12 over the Eisenstein integers, even and 
unimodular over ℤ , we prove a conjecture of Hentschel, Krieg and Nebe, identifying a cer-
tain linear combination of theta series as an Hermitian Ikeda lift, and we prove that another 
is an Hermitian Miyawaki lift.

Keywords Algebraic modular forms · Even unimodular lattices · Theta series · Hilbert 
modular forms · Hermitian modular forms

Mathematics Subject Classification 11F41 · 11F27 · 11F33 · 11E12 · 11E39

1 Introduction

Nebe and Venkov [52] looked at formal linear combinations of the 24 Niemeier lattices, 
which represent classes in the genus of even, unimodular, Euclidean lattices of rank 24. 
They found a set of 24 eigenvectors for the action of an adjacency operator for Kneser 
2-neighbours, with distinct integer eigenvalues. This is equivalent to computing a set of 
Hecke eigenforms in a space of scalar-valued modular forms for a definite orthogonal 
group O24 . They conjectured the degrees gi in which the Siegel theta series Θ(gi)(vi) of these 
eigenvectors are first non-vanishing, and proved them in 22 out of the 24 cases.
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Ikeda [36, §7] identified Θ(gi)(vi) in terms of Ikeda lifts and Miyawaki lifts, in 20 out 
of the 24 cases, exploiting his integral construction of Miyawaki lifts. Chenevier and 
Lannes  [10] expanded upon his work and showed how it can be used to determine the 
global Arthur parameters of the automorphic representations �i of O24(�) generated by the 
vi in those 20 cases. They also used different methods, based on Arthur’s multiplicity for-
mula, to recover the global Arthur parameters of all 24 of the �i , and completed the proof 
of Nebe and Venkov’s conjecture on the degrees.

Ikeda and Yamana [38] constructed Ikeda lifts in the case of Hilbert modular forms over 
totally real fields. An integral construction of Miyawaki lifts based on this has been worked 
out in detail by Atobe [2]. As an application, Ikeda and Yamana considered the genus of 6 
classes of even, unimodular lattices of rank 8 over the ring of integers of the real quadratic 
field E = ℚ(

√

2) . They found a set of 6 eigenvectors for the action of an adjacency opera-
tor for Kneser 

√

2-neighbours, and determined the first non-vanishing theta series for each 
one, again using Ikeda and Miyawaki lifts, and for the latter a kind of triple product of 
eigenvectors introduced by Nebe and Venkov. The global Arthur parameters of the associ-
ated automorphic representations of O8(�E) may be deduced from their results.

We extend this work of Ikeda and Yamana to other cases, in particular to the genus of 15 
classes of even, unimodular lattices of rank 12 over the ring of integers of E = ℚ(

√

5) , first 
studied by Costello and Hsia [13]. We are able to conjecture the global Arthur parameters 
for 12 out of the 15 associated automorphic representations. These are formal direct sums 
of certain discrete automorphic representations of GLm(�E) , for various m. The ingredients 
going into these include representations of GL2(�E) attached to Hilbert modular forms for 
SL2(OE) , including examples of non-parallel weights, and symmetric square lifts to 
GL3(�E) . The conjectured global Arthur parameters are such that the implied eigenvalues 
for the Hecke operators T

(
√

5)
 and T(2) match those we computed using Kneser neighbours. 

They also satisfy the requirements of the Langlands parameters at the infinite places.
In 10 of these 12 cases we prove the conjecture for the global Arthur parameters, in 

Proposition 7.1. In one case we can apply directly a theorem of Ikeda and Yamana (Propo-
sition 4.3) to identify the global Arthur parameter and (upon checking the non-vanishing 
of a certain L-value) to determine the first non-vanishing theta series as a specific Ikeda 
lift. In other cases we follow Ikeda and Yamana, in using Kuang’s analogue [42] of a well-
known theorem of Böcherer, to establish that certain Hilbert–Siegel modular forms, includ-
ing Ikeda lifts, are in the images of theta maps. Our Hecke eigenvalue computations then 
determine which eigenvectors they come from. Following Chenevier and Lannes, we use 
a theorem of Rallis to deduce the global Arthur parameters from the theta series. Finally, 
in one case we use non-vanishing of a triple product of eigenvectors to show that the theta 
series of a certain eigenvector is not orthogonal to a certain Miyawaki lift, which is enough 
to determine the global Arthur parameter, and we show that in fact the theta series is the 
Miyawaki lift.

An interesting aspect of the work of Chenevier and Lannes was the study of easily-
proved congruences of Hecke eigenvalues between computed eigenvectors. Some could 
be accounted for, via the global Arthur parameters, by well-known congruences between 
genus-1 cusp forms and Eisenstein series, such as Ramanujan’s mod 691 congruence. 
Another was used to prove a mod 41 congruence of Hecke eigenvalues involving genus-1 
and vector-valued genus-2 forms, the first known instance of Harder’s conjecture. In our 
case of rank 12 for ℚ(

√

5) , we likewise observe congruences that can be explained in 
terms of congruences between Hilbert modular cusp forms and Eisenstein series, modulo 
prime divisors occurring in Dedekind zeta values. We also see two apparent congruences 
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involving genus-2 vector-valued forms “lifted” from Hilbert modular forms (for us of non-
parallel weight) in the manner of Johnson-Leung and Roberts [40]. The congruences are 
akin to those between cusp forms and Klingen–Eisenstein series. The moduli are “dihe-
dral” congruence primes for certain cusp forms with quadratic character for Γ0(5) . This 
leads us to a Conjecture (7.6) about congruences for non-parallel weight Hilbert modular 
forms. H. Hida has informed us that experimental instances of such congruences were dis-
covered by H. Naganuma more than thirty years ago. We are not aware of them having 
been published anywhere before now.

We consider also the genus of 31 classes of even, unimodular lattices of rank 8 over the 
ring of integers of E = ℚ(

√

3) , first studied by Hung [32]. We are able to conjecture the 
global Arthur parameters in 28 out of the 31 cases, and can prove 16 of these. A new fea-
ture here is that the narrow class number of ℚ(

√

3) is 2 (whereas for both ℚ(
√

5) and 
ℚ(

√

2) it is 1). Thus the quadratic character, and CM forms, associated to the narrow Hil-
bert class field H = ℚ(�12) , make an appearance. (Since H/E is ramified only at infinite 
places, an unramified Hecke character for H produces a level 1 Hilbert modular form for 
E.) For E = ℚ(

√

3) , as for any E = ℚ(
√

D) with squarefree D = −1 + 4t , the rank only has 

to be divisible by 2 (indeed 

�

2
√

D
√

D 2t

�

 is even, unimodular of rank 2, as pointed out in 

[30]) and we look also at the baby cases of ranks 2, 4 and 6.
Hentschel et al. [26] studied a genus of 5 classes of Hermitian lattices of rank 12 over 

the ring of integers of E = ℚ(
√

−3) , even and unimodular over ℤ . The Hecke operator 
T(2) on the associated space of algebraic modular forms was diagonalised in [17]. In Prop-
osition 11.1, for each eigenspace we determine the first non-vanishing (Hermitian) theta 
series, in particular confirming a conjecture of Hentschel, Krieg and Nebe that one of them 
is a degree-4 Hermitian Ikeda lift (up to scaling). We also identify one as an Hermitian 
Miyawaki lift, as studied by Atobe and Kojima [3]. For our purposes, we put together an 
Hermitian analogue of Böcherer’s theorem (Proposition  10.3(3)), making use of some 
work of Lanphier and Urtis [43], among others. To get from theta series to global Arthur 
parameters, the analogue of Rallis’s theorem that we need (Proposition 10.3(1), (2)) is cov-
ered by work of Liu [45].

In Sect. 2 we introduce some preliminaries on even unimodular lattices (over ℤ ), alge-
braic modular forms, local Langlands parameters, global Arthur parameters, theta series, 
Ikeda and Miyawaki lifts. In Sect. 3 we review briefly the work of Chenevier and Lannes 
on the Niemeier lattices. After some preliminaries in Sect. 4 on even unimodular lattices 
over real quadratic fields, in Sect. 5 we review the work of Ikeda and Yamana on ℚ(

√

2) . In 
Sect. 6 we further warm up with even unimodular lattices of rank 8 for ℚ(

√

5) , where there 
are only 2 classes in the genus. Section 7 deals with the more substantial case of the 15 
classes for rank 12 for ℚ(

√

5) . We introduce the Hilbert modular forms involved, before 
presenting the Hecke eigenvalues for T

(
√

5)
 and T(2) , conjecturing the global Arthur parame-

ters, and proving what we can about them and the degrees via theta series. Then we look at 
the congruences mentioned above. Section 8 is about E = ℚ(

√

3) . In Sect. 9 we consider to 
what extent we have covered all the interesting examples amenable to computation, and 
have a brief look at one or two more, with E = ℚ(

√

7) and ℚ(
√

11) . After preliminaries in 
Sect. 10 on Hermitian lattices, even and unimodular over ℤ , in Sect. 11 we look at the case 
E = ℚ(

√

−3) , rank 12.
All the computed neighbour matrices used but not included in the paper, and their char-

acteristic polynomials, may be found at the second-named author’s webpage https ://www.
danfr etwel l.com/knese r.
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We are grateful to G. Chenevier for his suggestion, in response to [17], to adapt the 
methods of Ikeda [36, §7] to Hermitian lattices. We thank him, O. Taïbi and an anonymous 
referee for their comments on an earlier version of this paper. We thank also H. Hida for 
informing us of the work of Naganuma, M. Kirschmer, for advice on using his Magma 
code for neighbours over number fields, and for making some useful additions to it, and S. 
Yamana for his invaluable help with the proof of Proposition 7.1, case � = ��.

2  Preliminaries

2.1  Even unimodular lattices and algebraic modular forms

Let L be a ℤ-lattice in V ≃ ℚN , with positive-definite integral quadratic form 
� ↦ qA(�) ∶=

1

2
⟨�, �⟩ , where A is a positive-definite symmetric matrix of size N with 

rational entries and ⟨�, �⟩ ∶= t�A� , for all �, � ∈ V  . Associated to L is an orthogonal 
group-scheme OL , where for any commutative ring R,

If �f  is the ring of finite adeles of ℚ then OL(�f ) produces other lattices from L: given 
(gp) ∈ OL(�f ) , (gp)L ∶= V ∩ ((gp)(L⊗�f )) . These lattices are everywhere locally isomet-
ric to L, and form the genus  of L. Let K =

∏

p OL(ℤp) ⊂ OL(𝔸f ) be the stabiliser of L. 
Then there is a natural bijection between CL ∶= OL(ℚ)�OL(𝔸f )∕K and the set of classes 
in the genus of L, which is finite, say represented by classes [L1],… , [Lh] , with [L] = [L1].

The set of ℂ-valued functions on CL may be regarded as the space of functions on 
OL(�) , left-invariant under OL(ℚ) , right-invariant under K and transforming on the right 
via the trivial representation of OL(ℝ) . Thus they are scalar-valued algebraic modular 
forms for OL , forming a space denoted M(ℂ,K) . It is acted upon by the Hecke algebra HK 
of all locally constant, compactly supported functions OL(𝔸f ) → ℂ that are left and right 
K-invariant. It is a semi-simple module for HK [23, Prop. 6.11], and there is a natural bijec-
tion between simple HK-submodules of M(ℂ,K) and irreducible automorphic representa-
tions of OL(�) with a K-fixed vector and such that �∞ is trivial [21, Proposition 2.5].

We now suppose that L is even integral ( ⟨�, �⟩ ∈ 2ℤ ∀� ∈ L ) and unimodular ( L∗ = L , 
where L∗ ∶= {� ∈ V� ⟨�, �⟩ ∈ ℤ ∀� ∈ L} ). (By adjusting A, we may suppose that L = ℤN , 
then A has integer entries, even on the diagonal, and determinant 1.) Then 8 ∣ N [10, Scho-
lium 2.2.2(b)] and every even unimodular lattice of rank N is equivalent to one in the genus 

of L [15, Chapter  15, §7]. At all primes p, A is equivalent over ℤp to 
(

0N∕2 IN∕2
IN∕2 0N∕2

)

 [10, 

Scholium 2.2.5]. Hence SOL∕ℤp is reductive and SOL(ℚp) is a split orthogonal group, with 
SOL(ℤp) a hyperspecial maximal compact subgroup. To deal with p = 2 , we have to define 
the group scheme SOL∕ℤ as the kernel of the Dickson determinant on OL . As explained 
just before [10, 4.2.11], the p-component of HK is a subring of a Hecke algebra for SOL(ℚp) 
with respect to SOL(ℤp) . Convolution by the indicator function of the double coset 
Kdiag(p, 1,… , 1, p−1, 1,… , 1)K gives a Hecke operator denoted Tp , which can be made 
explicit using the notion of Kneser p-neighbours [10, 6.2.8]. Given lattices M and M′ in V, 
we say that M′ is a p-neighbour of M if #

(

M

M∩M�

)

= #
(

M�

M∩M�

)

= p . The number of p-neigh-
bours of M is finite, equal to the number of left cosets of K into which 
Kdiag(p, 1,… , 1, p−1, 1,… , 1)K decomposes, and if M′ is a p-neighbour of M then M and 
M′ belong to the same genus. The Hecke operator Tp is represented, with respect to the 

OL(R) = {g ∈ GL(L⊗ R) ∣ qA◦g = qA}.
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basis {e1,… , eh} of M(ℂ,K) , where ei([Lj]) = �ij , by the matrix (bij) , where among the 
Kneser p-neighbours of Li , bij is the number isometric to Lj . The Hecke algebra is commu-
tative [22, Proposition 2.10], and there exists a basis of M(ℂ,K) of simultaneous eigenvec-
tors for HK . Let vi and �i be the corresponding eigenvectors and automorphic representa-
tions, respectively, in some order for 1 ≤ i ≤ h.

2.2  Local Langlands parameters

For each local Weil group Wℝ and Wℚp
 of ℚ there is associated to �i a Langlands parameter, 

a homomorphism c∞(�i) or cp(�i) from that group to the Langlands dual group ON(ℂ) of 
OL . (As explained in [10, 6.4.7], it lands in SON(ℂ) but is only defined up to conjugation by 
ON(ℂ) .) Now Wℂ = ℂ× is a subgroup of index 2 in Wℝ , and it is a consequence of the fact 
that vi is scalar-valued that (up to conjugation)

At any finite prime p, since in our situation �i is unramified at p, cp(�i) is determined by 
Frobp ↦ tp(�i) , the Satake parameter at p, in fact this is how we know it exists without 
assuming the local Langlands conjecture for ON(ℚp) . This determines �i(Tp) , by the for-
mula (cf. [22, (3.13)])

2.3  Global Arthur parameters

A complete description of those automorphic representations, of a split special orthogonal 
group G∗ , occurring discretely in L2(G∗(ℚ)�G∗(𝔸)) , was given by Arthur  [1]. This was 
extended to a wider class of special orthogonal groups (including SOL ) by Taïbi [61]. (The 
representations of OL(�) we are looking at are classified in terms of their restriction to 
SOL(�) , as explained in [10, 6.4.7], and they also satisfy the regularity condition in the 
work of Arthur and Taïbi.) Part of this description is that to such an automorphic represen-
tation is attached a “global Arthur parameter”, a formal unordered sum of the form 
⊕m

k=1
Πk[dk] , where Πk is a cuspidal automorphic representation of GLnk

(�) , dk ≥ 1 and 
∑m

k=1
nkdk = N . For each Πk there are local Langlands parameters c∞ ∶ Wℝ → GLnk

(ℂ) 
and cp ∶ Wℚp

→ GLnk
(ℂ) ( Frobp ↦ tp(Πk) ), defined up to conjugation in the codomain. 

For us there are four cases: 

(1) nk = 1 and Πk is trivial;
(2) nk = 2 , c∞(Πk)(z) = diag((z∕z)a∕2, (z∕z)−a∕2) , and Πk , denoted Δa , is the automorphic 

representation generated by a cusp form f of weight � , with a = � − 1 . If ap(f ) is the 
Hecke eigenvalue at p then tp(Πk) = diag(�, �−1) , with ap(f ) = p(�−1)∕2(� + �−1);

(3) nk = 3 , c∞(Πk)(z) = diag((z∕z)a, 1, (z∕z)−a) , and Πk , denoted Sym2Δa , is the symmetric 
square lift of Δa;

(4) nk = 4 , c∞(Πk)(z) = diag((z∕z)a∕2, (z∕z)b∕2, (z∕z)−b∕2, (z∕z)−a∕2) , and Πk , denoted 
Δa,b , is the spinor lift to GL4(�) of the automorphic representation of GSp2(�) gen-
erated by a Siegel cusp form F of weight (j, �) (vector-valued when j > 0 ), with 
a = j + 2� − 3, b = j + 1 . Note that j is even, so a, b are odd.

c∞(�i) ∶ z ↦ diag
(

(z∕z)(N∕2)−1, (z∕z)(N∕2)−2,… , (z∕z)0, (z∕z)1−(N∕2), (z∕z)2−(N∕2),… , (z∕z)0
)

.

(1)�i(Tp) = p(N∕2)−1tr(tp(�i)).
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Letting Z denote the centre of GLnkdk
 , the representation Πk[dk] of GLnkdk

(�) 
occurs discretely in L2(Z(𝔸)GLnkdk

(ℚ)�GLnkdk
(𝔸)) . In all cases, c∞(Πk[dk])(z) 

= c∞(Πk)(z)⊗ diag((z∕z)(dk−1)∕2, (z∕z)(dk−3)∕2,… , (z∕z)(3−dk)∕2, (z∕z)(1−dk)∕2) and

When Πk is the trivial representation of GL1(�) , the representation Πk[dk] of GLdk
(�) is 

written simply [dk] . When direct summing the Πk[dk] , we direct sum the associated local 
Langlands parameters. To say that ⊕m

k=1
Πk[dk] is the global Arthur parameter of �i is to 

say that each cp(�i) and c∞(�i) , composed with the standard representation from SON(ℂ) to 
GLN(ℂ) , is conjugate in GLN(ℂ) to the local Langlands parameter associated to ⊕m

k=1
Πk[dk].

2.4  Theta series

Let L be an even unimodular lattice in ℚN , as above, and for each m ≥ 1 define its theta 
series of degree m by

where Z ∈ ℌm ∶= {Z ∈ Mm(ℂ) ∶
tZ = Z, Im(Z) > 0} , the Siegel upper half space of 

degree m. It is known that �(m)(L) is a Siegel modular form of weight N/2 for the full modu-

lar group Spm(ℤ) ∶= {g ∈ M2m(ℤ) ∶
tgJg = J} , where J =

(

0m − Im
Im 0m

)

 . If 

g =

(

A B

C D

)

∈ Spm(ℤ) then

Now one can define linear maps Θ(m) ∶ M(ℂ,K) → MN∕2(Spm(ℤ)) by

where ei([Lj]) = �ij.

Proposition 2.1 

(1) If vi ∈ M(ℂ,K) is an eigenvector for HK , then Θ(m)(vi) (if non-zero) is a Hecke eigen-
form.

(2) S u p p o s e  t h a t  Θ(m)(vi)  i s  n o n - z e ro ,  a n d  t h a t  (N∕2) ≥ m  .  L e t 
tp(�) = diag(�1,p,… , �N∕2,p, �

−1
1,p
,… , �−1

N∕2,p
) be the Satake parameter at p for vi , and let 

(diag(�1,p,… , �m,p, 1, �
−1
1,p
,… , �−1

m,p
) ∈ SO(m + 1,m)(ℂ) be the Satake parameter at p 

of the automorphic representation of Spm(�) generated by Θ(m)(vi) . Then, as multisets,

tp(Πk[dk]) = tp(Πk)⊗ diag(p(dk−1)∕2, p(dk−3)∕2,… , p(3−dk)∕2, p(1−dk)∕2).

�(m)(L, Z) ∶=
�

�∈Lm

exp(�itr(⟨�, �⟩Z)),

�(m)(L, (AZ + B)(CZ + D)−1) = det(CZ + D)N∕2�(m)(L, Z).

Θ(m)

(

h
∑

j=1

xjej

)

∶=

h
∑

j=1

xj

|Aut(Lj)|
�(m)(Lj),

{�±1
1,p
,… , �±1

(N∕2),p
} =

{

{�±1
1,p
,… , �±1

m,p
} ∪ {p±((N∕2)−m−1),… , p±1, 1, 1} if (N/2)>m;

{�±1
1,p
,… , �±1

m,p
} if (N/2)=m.
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(3) If 8 ∣ N and (N∕2) ≥ m + 1, a cuspidal Hecke eigenform F ∈ SN∕2(Spm(ℤ)) is in the 
i m a g e  o f  Θ(m)  i f  a n d  o n l y  i f  L(st,F, (N∕2) − m) ≠ 0,  w h e r e 
L(st,F, s) =

∏

p

�

(1 − p−s)−1
∏m

i=1
((1 − �i,pp

−s)(1 − �−1
i,p
p−s))−1

�

 is the standard L-func-
tion.

(1) and (2) follow from a theorem of Rallis [54, Remark 4.4(A)], as explained in [10, 
7.1]. (3) is a theorem of Böcherer [6, Theorem 41].

The degree of vi is defined to be the smallest m such that Θ(m)(vi) ≠ 0 . Note that if m ≥ 1 , 
Φ(Θm(vi)) = Θ(m−1)(vi) , where Φ is the Siegel operator, so this first non-zero theta series is 
cuspidal, except in the case that vi is a multiple of the all-ones vector, where Θ(m)(vi) is an 
Eisenstein series for all 1 ≤ m < (N∕2) , by Siegel’s Main Theorem, and by convention the 
degree of vi is 0.

Following Nebe and Venkov, but with slightly different normalisation as in [38, §12.5], 
we define an inner product and multiplication on M(ℂ,K) by

and

Let gi be the degree of vi , and let Fi ∶= Θ(gi)(vi) . The following is equivalent to [36, Lemma 
7.1].

Proposition 2.2 
In particular, (vk, vi◦vj) ≠ 0 if and only if the left hand side is non-zero.

Corollary 2.3 If (vk, vi◦vj) ≠ 0 then gk ≤ gi + gj.

See [52, Proposition 2.3] for an alternative approach. If vi =
∑h

t=1
citet then 

(vk, vi◦vj) =
∑h

t=1

1

�Aut(Lt)�
cktcitcjt, so it is easy to compute in any given case.

2.5  Ikeda and Miyawaki lifts

Proposition 2.4 Let �, g be even natural numbers. Let f ∈ S2�−g(SL2(ℤ)) be a normalised 
Hecke eigenform. Let G ∈ S�(Spr(ℤ)) be a Hecke eigenform, for r < g . 

(1) There exists a Hecke eigenform F ∈ S�(Spg(ℤ)) with standard L-function

(ei, ej) ∶=
1

|Aut(Li)|
�ij

ei◦ej ∶= �ijei.

⟨Θ(gi+gj)(vk)�ℌgi
×ℌgj

,Fi × Fj⟩ =
⟨Fi,Fi⟩⟨Fj,Fj⟩

(vi, vi)(vj, vj)
(vk, vi◦vj).

L(st,F, s) = � (s)

g
∏

i=1

L(f , s + � − i).
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(2) The function

 if non-zero, is a Hecke eigenform in S�(Spg−r) , with standard L-function 

(1) is a theorem of Ikeda [35], and F (whose existence was conjectured by Duke and Ima-
moglu) is the Ikeda lift I(g)(f ) . Its scaling is determined naturally by a choice of scaling of 
a half-integral weight form in Kohnen’s plus space corresponding to f. (2) was also proved 
by Ikeda [36], and gives his construction of a form whose existence was conjectured by 
Miyawaki in the case g = 4, r = 1 [49].

3  Even unimodular 24‑dimensional quadratic forms over ℚ

In the case N = 24 , the genus of even unimodular lattices has h = 24 classes, represented 
by the Niemeier lattices. Nebe and Venkov diagonalised the operator T2 , and found that it 
has 24 distinct rational integer eigenvalues, shown in the table below [52]. We have listed 
the eigenvalues �i(T2) in descending order, for 1 ≤ i ≤ 24 . Let vi and �i be the correspond-
ing eigenvectors and automorphic representations, respectively. Chenevier and Lannes 
determined the �i in terms of Arthur’s endoscopic classification of automorphic representa-
tions of classical groups [10]. The global Arthur parameters are listed in the final column 
of the table. Each one Ai = ⊕m

k=1
Πk[dk] must pass the two tests that

and that 211tr(t2(Ai)) = �i(T2) , as computed using neighbours. That would be enough to 
justify a conjecture that these global Arthur parameters are correct, but Chenevier and 
Lannes gave several proofs that they really are correct, for example by using Arthur’s mul-
tiplicity formula applied to the group SO24 . 

� �i
(

T
2

)

Degree Global Arthur parameters

� 8,390,655 0 [23]⊕ [1]

� 4,192,830 1 Sym2Δ11 ⊕ [21]

� 2,098,332 2 Δ21[2]⊕ [1]⊕ [19]

� 1,049,832 3 Sym2Δ11 ⊕ Δ19[2]⊕ [17]

� 533,160 4 Δ19[4]⊕ [1]⊕ [15]

� 519,120 4 Δ21[2]⊕ Δ17[2]⊕ [1]⊕ [15]

� 268,560 5 Sym2Δ11 ⊕ Δ19[2]⊕ Δ15[2]⊕ [13]

� 244,800 5 Sym2Δ11 ⊕ Δ17[4]⊕ [13]

� 145,152 6 Δ21[2]⊕ Δ15[4]⊕ [1]⊕ [11]

�� 126,000 6 Δ21,13[2]⊕ Δ17[2]⊕ [1]⊕ [11]

�� 99,792 6 Δ17[6]⊕ [1]⊕ [11]

�� 91,152 7 Sym2Δ11 ⊕ Δ15[6]⊕ [9]

Ff ,G(Z) ∶= ∫Spr(ℤ)�ℌr

F

((

Z 0

0 W

))

G(−W)(det ImW)�−r−1 dW,

L(st,Ff ,G, s) = L(st,G, s)

g−2r
∏

i=1

L(f , s + � − r − i).

c∞(Ai)(z) = diag
(

(z∕z)11, (z∕z)10,… , (z∕z)0, (z∕z)−11, (z∕z)−10,… , (z∕z)0
)
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� �i
(

T
2

)

Degree Global Arthur parameters

�� 89,640 8 Δ15[8]⊕ [1]⊕ [7]

�� 69,552 7 Sym2Δ11 ⊕ Δ19[2]⊕ Δ15[2]⊕ Δ11[2]⊕ [9]

�� 51,552 8 Δ21,9[2]⊕ Δ15[4]⊕ [1]⊕ [7]

�� 45,792 7 Sym2Δ11 ⊕ Δ17[4]⊕ Δ11[2]⊕ [9]

�� 35,640 8 Δ19[4]⊕ Δ11[4]⊕ [1]⊕ [7]

�� 21,600 8 Δ21[2]⊕ Δ17[2]⊕ Δ11[4]⊕ [1]⊕ [7]

�� 17,280 9 Sym2Δ11 ⊕ Δ19,7[2]⊕ Δ15[2]⊕ Δ11[2]⊕ [5]

�� 5040 9 Sym2Δ11 ⊕ Δ19[2]⊕ Δ11[6]⊕ [5]

�� −7920 10 Δ21,5[2]⊕ Δ17[2]⊕ Δ11[4]⊕ [1]⊕ [3]

�� −16,128 10 Δ21[2]⊕ Δ11[8]⊕ [1]⊕ [3]

�� −48,528 11 Sym2Δ11 ⊕ Δ11[10]⊕ [1]

�� −98,280 12 Δ11[12]

The degrees were proved by Nebe and Venkov [52], with the exception of cases �� and 
�� , where the degrees they conjectured were later proved by Chenevier and Lannes [10]. As 
pointed out in [10, 1.4], 20 out of the 24 global Arthur parameters (all those not involving 
any Δa,b ) may be proved as a direct consequence of work of Ikeda [36, §7]. For these cases, 
he identified Θ(gi)(vi) in terms of Ikeda lifts and Miyawaki lifts. For example, for � , let-
ting � = 12 and g = 4 , Proposition 2.4(1) gives us an Ikeda lift F = I(4)(f ) ∈ S12(Sp4(ℤ)) , 
where f ∈ S20(SL2(ℤ)) . Proposition  2.1(3) (Böcherer’s Theorem), combined with 
L(st,F, s) = � (s)

∏g

i=1
L(f , s + � − i) , shows that F = Θ(4)(v) for some v ∈ M(ℂ,K) , neces-

sarily an eigenvector v = vi , using Proposition 2.1(1) and the fact that all the eigenspaces in 
M(ℂ,K) are 1-dimensional. The values of �i(T2) show that it can only be i = 5 . The formula 
L(st,F, s) = � (s)

∏g

i=1
L(f , s + � − i) implies Satake parameters for the associated automor-

phic representation of Sp4(�) that make Δ19[4]⊕ [1] its global Arthur parameter. The extra 
⊕[15] in the global Arthur parameter of �5 is accounted for by the extra {p±7,… , p±1, 1} in 
Proposition 2.1(2) (Rallis’s Theorem), with N = 24,m = 4.

4  Preliminaries on even unimodular lattices over real quadratic fields

Let E be a real quadratic field, with ring of integers OE . Let L be an OE-lattice in V ≃ EN , 
with totally positive-definite quadratic form � ↦

1

2
⟨�, �⟩ . We may define an orthogonal 

group scheme OL over OE , a genus, algebraic modular forms M(ℂ,K) , Hecke operators 
T� , vi and �i very much as before. We assume that L is even ( ⟨�, �⟩ ∈ 2OE ∀� ∈ L ), and 
unimodular ( L∗ = L , where L∗ ∶= {� ∈ V� ⟨�, �⟩ ∈ OE ∀� ∈ L} ). The following result of 
Scharlau is worth noting.

Proposition 4.1 [56, Proposition 3.1] If 4 ∣ N , there is a unique genus of free, even uni-
modular lattices of determinant 1.

If OE has class number 1, the word “free” is superfluous, and if the narrow class number 
is equal to the class number then “determinant 1” is superfluous, since this is the deter-
minant of a Gram matrix, well-defined modulo squares of units, but the determinant of a 
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totally positive-definite unimodular lattice is a totally positive unit, necessarily a square 
under the given condition.

There will be local Langlands parameters c∞1
(�i), c∞2

(�i) ∶ Wℝ → SON(ℂ) , for the two 
infinite places ∞1,∞2 , and c�(�i) ∶ WE�

→ SON(ℂ) (with Frob� ↦ t�(�i) ) for each finite 
prime � . In the global Arthur parameters, cuspidal automorphic representations of GLnk

(�) 
are replaced by cuspidal automorphic representations of GLnk

(�E) , modular forms by Hil-
bert modular forms. In order for everything to work as before, we must check in each case 
we look at that, for every finite prime � , SOL∕E� is split and SOL∕O� is reductive (hence, 
by [63, 3.8.1], SOL(O�) is a hyperspecial maximal compact subgroup). This is necessary 
for the relation between �-neighbours and the Hecke operators T� , for the Eq. (1) for Hecke 
eigenvalues, and for the application of Rallis’s theorem to Proposition 2.1.

If the norm of a fundamental unit is −1 (e.g if OE has narrow class number 1, with every 
ideal generated by a totally positive element), then the different � is generated by a totally 
positive element � . Let �1, �2 be the two real embedddings of E. We may define the theta 
series of degree m of L as

where Z = (Z1, Z2) ∈ ℌ2
m
.

If the norm of a fundamental unit is 1 then � has a generator � with 𝜎1(𝛿) > 0 and 
𝜎2(𝛿) < 0 , and we define �(m)(L) by the same formula, but now with (Z1, Z2) ∈ ℌm ×ℌ−

m
 , 

where ℌ−
m
∶= {Z ∈ Mm(ℂ) ∶

tZ = Z, Im(Z) < 0} . Then in either case 
�(m)(L) ∈ MN∕2(Spm(OE)) , where the N/2 is parallel weight (N/2,  N/2), cf. [32, §4], [31, 

p.371]. Thus, if g =

(

A B

C D

)

∈ Spm(OE) and we denote �1(A) = A1 etc., then

where

Again one can define linear maps Θ(m) ∶ M(ℂ,K) → MN∕2(Spm(OE)) by

Parts (1) and (2) of Proposition 2.1 are just as before. Note that we are concerned with 
automorphic representations of Spm(�E) , not GSpm(�E) so we have strong approximation 
even when the narrow class number of E is not 1. Thus it makes sense to talk of an individ-
ual function F on ℌ2

m
 or ℌm ×ℌ−

m
 being a Hecke eigenform (interchangeable with an auto-

morphic form on Spm(�E) , as explained in [42, pp. 926–7]), but this does not include the 
Hecke operators usually denoted T(�) , which only exist for GSpm . In place of (3) we have

Proposition 4.2 If N∕2 > m + 1 (with N such that we have an even unimodular lattice 
L,   with reference to whose genus the maps Θ(m) are defined) then a Hecke eigenform 
F ∈ SN∕2(Spm(OE)) is in the image of Θ(m) if L(st,F, (N∕2) − m) ≠ 0.

This is based on work of Kuang [42]. We do not need his condition 8 ∣ N , whose pur-
pose was to construct something like an even unimodular quadratic form, given that we 

�(m)(L) =
�

�∈Lm

exp
�

�itr
�

�1(⟨�, �⟩∕�)Z1 + �2(⟨�, �⟩∕�)Z2
��

,

�(m)(L, (AZ + B)(CZ + D)−1) = det(C1Z1 + D1)
N∕2 det(C2Z2 + D2)

N∕2�(m)(L, (Z1, Z2)),

(AZ + B)(CZ + D)−1 ∶= ((A1Z1 + B1)(C1Z1 + D1)
−1, (A2Z2 + B2)(C2Z2 + D2)

−1).

Θ(m)

(

h
∑

j=1

xjej

)

∶=

h
∑

j=1

xj

|Aut(Lj)|
�(m)(Lj).
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start with one. His Theorem 2 omits the condition L(st,F, (N∕2) − m) ≠ 0 , and his Propo-
sition 5.4 appears to claim that the non-vanishing follows automatically from that of the 
local factors. But the example where E = ℚ (he works in the setting of any totally real 
field), N = 32 , � = 16,m = g = 14 , f ∈ S18(SL2(ℤ)) and F = I(14)(f ) ∈ S16(Sp14(ℤ)) 
shows that this is not so. Here L(st,F, 2) = � (2)

∏14

i=1
L(f , 18 − i), which includes the van-

ishing factor L(f, 9).
The notion of degree, and Proposition 2.2, carry over in the obvious fashion, as do 

the statements about Ikeda lifts and Miyawaki lifts. Ikeda lifts for Hilbert modular forms 
were constructed by Ikeda and Yamana [38], and the application to Miyawaki lifts of Hil-
bert–Siegel modular forms has been worked out in detail by Atobe [2]. The following is 
from Corollaries 1.4 and 11.3 in [38].

Proposition 4.3 Given N, L and M(ℂ,K) as above, if E is of narrow class number H = 1 
suppose that f ∈ SN∕2(SL2(OE)) is a Hecke eigenform, with associated cuspidal automor-
phic representation Δ(N∕2)−1 of GL2(�E). More generally, in place of f consider the appro-
priate H-tuple of functions on ℌ2 representing an automorphic form on GL2(�E) that is 
right-invariant under 

∏

GL2(O�) and has components at the infinite places corresponding 
to weight N/2, say f ∈ SN∕2(GL2(�E),

∏

GL2(O�)) . 

(1) There exists �i with global Arthur parameter Δ(N∕2)−1[N∕2].
(2) If L(f ,N∕4) ≠ 0 then Θ(N∕2)(vi) = I(N∕2)(f ), up to scalar multiples, whereas if 

L(f ,N∕4) = 0 then Θ(N∕2)(vi) = 0.

5  Even unimodular 8‑dimensional quadratic forms over ℚ(
√

2)

Takada [62] showed that if E = ℚ(
√

2) (for which H = 1 ) then the genus of even unimodu-
lar OE-lattices contains a single class if N = 4 (in which case there will be a single v1 = (1) , 
�1 of global Arthur parameter [1]⊕ [3] ). Hsia and Hung [31] proved that there are 6 classes 
if N = 8 . These were considered by Ikeda and Yamana [38, §§12.4,12.5]. They took the 
matrix from [31] representing T

(
√

2)
 with respect to the basis {e1,… , eh} for M(ℂ,K) , and 

computed its eigenvalues and eigenvectors. The eigenvalues are in the table below. The 
global Arthur parameters follow, using Proposition 2.1(2), from their determination of all 
the Θ(gi)(vi) . (We know that OL is split over each E� and reductive over each O� , since one 
choice of L is E8 ⊗ℤ OE.)

First, since v1 =
t(1,… , 1) , �(m)(v1) is an Eisenstein series for all m with 

1 ≤ m < (N∕2) − 1 = 3 , by the Siegel–Weil formula. The [1]⊕ [7] then follows from 
Proposition 2.1(2). The space S4(SL2(OE)) is spanned by a single form g, with associated 
Δ3 . Using Proposition 4.3(1), there exists some �i with global Arthur parameter Δ3[4] , 
which can only be �2 , and if one wants the theta series too then Proposition 4.3(2) gives 
Θ(4)(v2) = I(4)(g) . (Magma gives L(g, 2) ≈ 0.440328 ≠ 0 .) The space S6(SL2(OE)) is 
spanned by Galois conjugate forms f1, f2 , with associated cuspidal automorphic represen-
tations of GL2(�E) both denoted Δ(2)

5
 . Both I(2)(f1) and I(2)(f2) are in the image of Θ(2) , by 

Proposition 4.2. This accounts for �5 and �6 . Similarly g is in the image of Θ(1) , which 
accounts for �4 , recalling that the standard L-function of g is (a translate of) its symmetric 
square L-function. Finally, Ikeda and Yamana use Proposition 2.2 to show that g3 = 3 , and 
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prove that Θ(3)(v3) = FI(4)(g),g . (Then we may use Proposition 2.4(2) for the global Arthur 
parameter.) 

� �i

�

T
(
√

2)

�

Degree Global Arthur parameters

� 135 0 [1]⊕ [7]

� −30 4 Δ3[4]

� −8 3 Sym2Δ3 ⊕ Δ3[2]⊕ [1]

� 58 1 Sym2Δ3 ⊕ [5]

� 33 + 3
√

73 2 Δ
(2)

5
[2]⊕ [3]

� 33 − 3
√

73 2 ”

6  Even unimodular 8‑dimensional quadratic forms over ℚ(
√

5)

Maass [47] showed that if E = ℚ(
√

5) (again H = 1 ) then the genus of even unimodular OE

-lattices contains a single class if N = 4 (in which case there will be a single v1 = (1) , �1 of 
global Arthur parameter [1]⊕ [3] ), and 2 classes if N = 8 . In this latter case, we computed 

the matrices representing the neighbour operators T
(
√

5)
 and T(2) to be 

(

12,456 7200

12,096 7560

)

 and 
(

3650 1875

3150 2175

)

 , respectively. For this, and similar computations referred to in later sections, 

we used Magma code written by M. Kirschmer, available at http://www.math.rwth-aache 
n.de/~Marku s.Kirsc hmer/. The eigenvalues are in the table below. One eigenvector is 
v1 =

t(1, 1) , with �1 of global Arthur parameter [1]⊕ [7] . Note that the computed 19,656 
matches 5(8∕2)−1tr(diag(53, 52, 5, 1, 5−3, 5−2, 5−1, 1)) = 53 +

57−1

5−1
 . The other eigenvector is 

t(−25, 42) . Using Magma again, the space S6(SL2(OE)) is spanned by a single form f, on 
which the eigenvalues of the (Hilbert modular) Hecke operators T

(
√

5)
 and T(2) are −90 and 

20, respectively. Let F = I(2)(f ) ∈ S4(Sp2(OE)) ( � = (N∕2) = 4, g = m = 2, 2� − g = 6 ). 
Then (N∕2) = 4 > 3 = m + 1 , and L(st,F, (N∕2) − m) = �(2)L(f , 5)L(f , 4) ≠ 0 , so by Prop-
osition 4.2, F is in the image of Θ(2) , say F = Θ(2)(vi) . It follows from Proposition 2.1(2) 
that �i has global Arthur parameter Δ5[2]⊕ [1]⊕ [3] , and the computed Hecke eigenvalue 
shows that it can only be �2 . Indeed, if t

(
√

5)
(Δ5) = diag(�, �−1) (so 55∕2(� + �−1) = −90 ), 

then

We could reach the same conclusions using eigenvalues of T(2) instead of T
(
√

5)
 . 

� �i

�

T
(
√

5)

�

�i
(

T(2)
)

Degree Global Arthur parameters

� 19,656 5525 0 [1]⊕ [7]

� 360 500 2 Δ5[2]⊕ [1]⊕ [3]

 Note that t(0, 1) = 1

67

(

25v1 + v2
)

 . Applying the Hecke operator T� , for any prime ideal � , 
to both sides, it follows easily that �1(T�) ≡ �2(T�) (mod 67) . This is

53((� + �−1)(5−1∕2 + 51∕2) + 1 + (5−1 + 1 + 5)) = (−90)(1 + 5) + 52(1 + 5 + 52) + 53 = 360.
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which boils down to (N� + 1) times the known Eisenstein congruence 
a�(f ) ≡ 1 + N�5 (mod 67) , the true origin of the modulus 67 being as a divisor of the alge-
braic part of the Dedekind zeta value �E(6) . Using the factorisation �E(s) = � (s)L(s,�5) , 
and using Bernoulli polynomials to compute L(1 − 6,�5) , one finds �E(6) =

23⋅67⋅�12

34⋅5⋅7
.

Similarly in the previous section, we could have proved congruences modulo 11 
between �1(T�) and all of �2(T�), �3(T�), �4(T�) , and modulo divisors of 19 between 
�1(T�) and �5(T�), �6(T�) . These are accounted for similarly by Eisenstein congruences 
in weights 4 and 6, with 11 dividing �

ℚ(
√

2)
(4)∕�8 and 192 dividing �

ℚ(
√

2)
(6)∕�12.

To justify what we have done in this section, and what we shall do in the next, we 
need to take care of the following lemmas.

Lemma 6.1 For L even and unimodular of rank 4n over OE, where E = ℚ(
√

5) , SOL is split 
at all finite places.

Proof One of the classes in the genus is represented by the direct sum (let’s call it L) of 
n copies of a lattice representing the single class of rank 4 even, unimodular lattices. We 
can take this to be a maximal order in the totally definite quaternion algebra D over E 
unramified at all finite places (the icosian ring), with bilinear form (�, �) ↦ �� + �� , so 
quadratic form � ↦ �� . Since D has a basis {1, i, j, k} over E satisfying the same rela-
tions as the usual Hamilton quaternions, over E the quadratic form on L is equivalent to 
∑4n

i=1
x2
i
 . We just need to show that at all finite places � , 

∑4n

i=1
x2
i
 is equivalent over E� to 

∑2n

i=1
x2
i
−
∑4n

i=2n+1
x2
i
 , which in turn is equivalent to the desired 

∑2n

i=1
xix2n+i.

Two forms over a �-adic field are equivalent if and only if they have the same rank, dis-
criminant (modulo squares) and Hasse-Witt invariant. For 

∑4n

i=1
x2
i
 and 

∑2n

i=1
x2
i
−
∑4n

i=2n+1
x2
i
 , 

the rank and discriminant are obviously equal. For a diagonal form 
∑N

i=1
aix

2
i
 , the Hasse-

Witt invariant is a product of Hilbert symbols 
∏

i<j(ai, aj)� [57, Chapter IV,§2]. Since 
z2 − (x2 + y2) = 0 and z2 − (x2 − y2) = 0 have non-trivial solutions (1, 0, 1) and (1, 1, 0) 
respectively in E� , (1, 1)� = (1,−1)� = 1 . Hence the Hasse-Witt invariants of 

∑4n

i=1
x2
i
 

and 
∑2n

i=1
x2
i
−
∑4n

i=2n+1
x2
i
 are 1 and (−1,−1)

⎛

⎜

⎜

⎝

2n

2

⎞

⎟

⎟

⎠

�
 , respectively, so it suffices to show that 

(−1,−1)� = 1 , i.e. that x2 + y2 + z2 = 0 has a non-trivial solution in every E� . This is easy 
for � dividing odd p, where we have solutions in ℚp (by the Chevalley-Warning theorem 
and Hensel’s lemma). For � = (2) , we can use Hensel’s lemma in the variable x to lift the 
mod 8 solution (2 + �, 1 + �, 1) (where �2 = 1 + � ) to a solution in E� . Alternatively we 
can use (−1,−1)∞1

= (−1,−1)∞2
= −1 and the product formula for the Hilbert symbol.  

 ◻

Lemma 6.2 For L even and unimodular of rank 4n over OE, where E = ℚ(
√

5), and for 
every finite � , SOL∕OE,� is reductive.

Proof Since L is unimodular, the group scheme SOL is reductive over OE,� for any finite 
prime � ≠ (2) . (The special fibre is the special orthogonal group of the quadratic form 
associated to the reduction of the Gram matrix, which is non-singular. In characteristic 

N�3 + (1 + N� + N�2 +⋯ + N�6) ≡ a�(f )(1 + N�) + (N�2 + N�3 + N�4) + N�3 (mod 67),
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2 we have to be more careful about the distinction between bilinear forms and quadratic 
forms.) The question arises whether or not SOL∕OE,(2) is reductive.

As already remarked in the proof of Lemma 6.1, one of the classes in the genus is repre-
sented by the direct sum (let’s call it L) of n copies of the icosian ring R. Following [64, 
(11.5.7)], we take {1, i, � , i�} as an OE-basis for R, where � ∶= (� + �−1i + j)∕2 , 
� = (1 +

√

5)∕2 is the golden ratio and i, j are the usual Hamilton quaternions of the same 
names. With respect to this basis, one easily checks that the Gram matrix of the bilinear 

form (�, �) ↦ �� + �� is 

⎛

⎜

⎜

⎜

⎝

2 0 � − �−1

0 2 �−1 �

� �−1 2 0

−�−1 � 0 2

⎞

⎟

⎟

⎟

⎠

 , which does have determinant 1. Using 

(2)-integral elementary row and column operations to change the OE,(2)-basis of the lattice 

R⊗OE,(2) , one reduces the Gram matrix to an equivalent 

⎛

⎜

⎜

⎜

⎝

2 � 0 0

� 2 0 0

0 0 4 + 2� − 1 − 3�

0 0 − 1 − 3� 4 + 2�

⎞

⎟

⎟

⎟

⎠

 , then 

further to

In the notation of the proof of [53, Proposition 9], both blocks are of the form 

K ≃

(

2� 1

1 2�

)

 . Up to squares, the determinant of the first block is 4 − �2 = −(� − 3) . Since 

� − 3 is not a square in OE,(2) and since the block is “even”, K ≃ H(�) , in O’Meara’s nota-
tion. Likewise for the second block, since the overall determinant is 1, so R ≃ H(𝜌)⊕ H(𝜌) , 
which is isomorphic to H(0)⊕ H(0) , according to the proof of [53, Proposition 10]. In 
other words, with respect to some OE,(2)-basis of the lattice R⊗OE,(2) , the Gram matrix is 
⎛

⎜

⎜

⎜

⎝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞

⎟

⎟

⎟

⎠

 . It follows now from [14, Proposition C.3.10] that SOL is reductive (in fact semi-

simple) over OE,(2) .   ◻

7  Even unimodular 12‑dimensional quadratic forms over ℚ(
√

5)

Costello and Hsia [13] showed that if E = ℚ(
√

5) then the genus of even unimodular OE-lat-
tices contains 15 classes if N = 12 . We have simultaneously diagonalised the neighbour oper-
ators T(2) and T

(
√

5)
 , with the eigenvalues recorded in the table below. We have also produced 

guesses for the global Arthur parameters that recover these computed Hecke eigenvalues (and 
the correct c∞1

(z), c∞2
(z) ), with the exception of three cases. To illustrate this, consider � = �� . 

Using Magma, the space S[10,6](SL2(OE)) (i.e. f
(

az+b

cz+d

)

= (c1z1 + d1)
10(c2z2 + d2)

6f (z) , non-

⎛

⎜

⎜

⎜

⎝

2 1 0 0

1 2�−2 0 0

0 0 2(2 + �) 1

0 0 1 2(2 + �)∕(1 + 3�)2

⎞

⎟

⎟

⎟

⎠

.
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parallel weight) is one-dimensional. The associated automorphic representation Δ(9,5) of 
GL2(�E) has

Exchanging embeddings, we have Δ(5,9) with

Now if 𝜋 = Δ(9,5)[2]⊕ Δ(5,9)[2]⊕ [3]⊕ [1] then

which is conjugate (in GL12(ℂ) ) to the correct

Similarly c∞2
(�) is correct. Here is a small table of Hecke eigenvalues of the Hilbert modu-

lar forms used in this section. 

T(2) T
(
√

5)

Δ5 20 −90

Δ7 140 150

Δ
(2)

9 170 ∓ 30
√

809 570 ± 60
√

809

Δ(9,5),Δ(5,9) 320 1950
Δ(7,3),Δ(3,7) −160 150

 Note that in general, Δ(9,5) and Δ(5,9) do not have the same Hecke eigenvalues, rather they 
are conjugate in ℚ(

√

5).

For � = �� and � = (2) , if 49∕2(� + �−1) = 320 , we check

so Δ(9,5)[2]⊕ Δ(5,9)[2]⊕ [1]⊕ [3] would produce the same �10(T(2)) as what was computed 
using neighbours. 

� �i
(

T(2)
)

�i

�

T
(
√

5)

�

gi Global Arthur parameters (conj’l)

� 1,399,125 12,210,156 0 [1]⊕ [11]

� 348,900 2,446,380 1 Sym2Δ5 ⊕ [9]

� 89,250 + 150
√

809 494,820 − 360
√

809 2 Δ
(2)

9
[2]⊕ [1]⊕ [7]

� 89,250 − 150
√

809 494,820 + 360
√

809 2 ”

c∞1
(Δ(9,5))(z) = diag((z∕z)9∕2, (z∕z)−9∕2),

c∞2
(Δ(9,5))(z) = diag((z∕z)5∕2, (z∕z)−5∕2).

c∞1
(Δ(5,9))(z) = diag((z∕z)5∕2, (z∕z)−5∕2),

c∞2
(Δ(5,9))(z) = diag((z∕z)9∕2, (z∕z)−9∕2).

c∞1
(𝜋) = diag((z∕z)9∕2, (z∕z)−9∕2)⊗ diag((z∕z)1∕2, (z∕z)−1∕2)

⊕ diag((z∕z)5∕2, (z∕z)−5∕2)⊗ diag((z∕z)1∕2, (z∕z)−1∕2)⊕ diag((z∕z)1, (z∕z)−1, 1, 1),

diag((z∕z)5,… , (z∕z)1, 1, (z∕z)−5,… , (z∕z)−1, 1).

45tr(� ⋅ 41∕2, � ⋅ 4−1∕2, �−1 ⋅ 41∕2, �−1 ⋅ 4−1∕2, � ⋅ 41∕2, � ⋅ 4−1∕2,

�−1 ⋅ 41∕2, �−1 ⋅ 4−1∕2, 4, 1, 4−1, 1)

= 2(320)(1 + 4) + 44(1 + 4 + 42) + 45 = 9600,
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� �i
(

T(2)
)

�i

�

T
(
√

5)

�

gi Global Arthur parameters (conj’l)

� 27,300 −351,540 6 Δ5[6]

� 24,000 107,100 3 Sym2Δ5 ⊕ Δ7[2]⊕ [5]

� 21,300 90,900 3 ?
� 18,300 45,900 4 Δ7[4]⊕ [1]⊕ [3]

� 10,800 27,900 4 ?
�� 9600 45,900 4 Δ(9,5)[2]⊕ Δ(5,9)[2]⊕ [1]⊕ [3]

�� 8850 + 150
√

809 12,420 − 360
√

809 4 Δ
(2)

9
[2]⊕ Δ5[2]⊕ [1]⊕ [3]

�� 8850 − 150
√

809 12,420 + 360
√

809 4 ”

�� 7200 −62,100 5 Sym2Δ5 ⊕ Δ5[4]⊕ [1]

�� −6000 17, 100 ≤ 5 Sym2Δ5 ⊕ Δ(7,3)[2]⊕ Δ(3,7)[2]⊕ [1]

�� 900 −13,500 ≤ 5 ?

 Unlike the situation in the previous two sections, it is not possible to prove all the guesses 
for global Arthur parameters using theta series. But we can do most of them, all but 
i = ��, ��.

Proposition 7.1 The guesses for global Arthur parameters are correct in the cases 
i = �, �, �, �, �, �, �, ��, ��, �� . In these cases, also the degrees are as in the table.

Proof � = � . This is proved just as in the previous sections.
� = � . The space S6(SL2(OE)) is spanned by a single form f, met already in the previous 

section. Since (N∕2) = 6 > 1 + 1 = m + 1 , and L(st, f , 5) = L(Sym2f , 10) ≠ 0 , Proposi-
tion 4.2 tells us that f belongs to the image of Θ(1) . The Satake parameter at (

√

5) for the 
automorphic representation of Sp1(�) associated with f is (�2, 1, �−2) . If Θ(1)(vi) = f  (up to 
scalar multiples) then t

(
√

5)
(�i) = (diag(54, 53,… , 1, �2, 5−4, 5−3,… , 1, �−2)) , by Proposi-

tion 2.1(2). Now

so we must have Θ(1)(v2) = f  . Proposition 2.1(2) now shows that for every � we have

where a�(f ) = (N�)5∕2(�� + �−1
�
) . Thus every local Langlands parameter of �2 at a finite 

prime matches that attached to the global Arthur parameter Sym2Δ5 ⊕ [9] . At ∞1 and ∞2 , 
c∞j

(Sym2Δ5) ∶ z ↦ diag((z∕z)5, 1, (z∕z)−5) (for j = 1, 2 ), and 
c∞j

([9]) ∶ z ↦ diag((z∕z)4,… , (z∕z)1, 1, (z∕z)−4,… , (z∕z)−1) . The concatenation matches 
the standard c∞j

(�i)(z) . Also the other element j generating Wℝ with ℂ× (with jzj−1 = z ) 
acts to exchange powers of z∕z with opposite exponents, for both c∞j

(�i) and c∞j
(Sym2Δ5) , 

c∞j
([9]) . So all the local Langlands parameters match, and the global Arthur parameter of 

�2 is as stated. For the other cases we shall not give such full details of the logic.
� = �, � . The space S10(SL2(OE)) is spanned by Galois conjugate forms f1, f2 , with asso-

ciated cuspidal automorphic representations of GL2(�E) both denoted Δ(2)

9
 . Both I(2)(f1) 

and I(2)(f2) ∈ S6(Sp2(OE)) are in the image of Θ(2) , by Proposition 4.2, since 6 > 2 + 1 and 

5(12∕2)−1tr(diag(54, 53,… , 1, �2, 5−4, 5−3,… , 1, �−2))

= 5
59 − 1

5 − 1
+ (55∕2(� + �−1))2 − 55 = 5

59 − 1

5 − 1
+ (−90)2 − 55 = 2,446,380,

t�(�2) = (diag(N�4, N�3,… , 1, �2
�
, N�−4, N�−3,… , 1, �−2

�
)),
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L(st, I(2)(fj), 4) = � (4)L(fj, 9)L(fj, 8) ≠ 0 . By Proposition  2.1(2) (and Proposition  2.4(1)), 
the corresponding �i have the correct t� for Δ(2)

9
[2]⊕ [1]⊕ [7] , which also produces the 

correct c∞1
, c∞2

 . Checking Hecke eigenvalues, i must be � and �.
� = � . The space S8(SL2(OE)) is spanned by a single form g, with associ-

ated Δ7 . By Proposition  4.2, I(4)(g) = Θ(4)(vi) for some i, since 6 > 4 + 1 and 
L(st, I(4)(g), 2) = � (2)L(g, 7)L(g, 6)L(g, 5)L(g, 4) ≠ 0 . Note that although L(g,  4) is a cen-
tral value, the sign in the functional equation is +1 , and in fact L(g, 4) ≠ 0 . (Magma pro-
duced, after about 2 min, an approximation to 29 decimal places, beginning 1.606277885, 
sufficient to prove non-vanishing.) As before, �i must have global Arthur parameter 
Δ7[4]⊕ [1]⊕ [3] , and checking against the computed Hecke eigenvalues, i must be �.

� = � . By Proposition  4.3(1), there is some �i with global Arthur parameter 
Δ5[6] , and it can only be i = � , since −9056−1

5−1
= −351,540 . We may also check that 

L(f , 3) ≈ 0.854944 ≠ 0 , so Θ(6)(v5) = I(6)(f ) , by Proposition 4.3(2).
� = � . We have seen already that Θ(4)(v8) = I(4)(g) (with g ∈ S8(SL2(OE)) ), and 

Θ(1)(v2) = f ∈ S6(SL2(OE)) , in particular g8 = 4 and g2 = 1 . We find that (v8, v2◦v6) ≠ 0 , 
so by Proposition  2.2 Θ(1+g6)(v8) ≠ 0 , so 1 + g6 ≥ g8 = 4 , i.e. g6 ≥ 3 . But also 
(v6, v3◦v2) ≠ 0 , which implies that g6 ≤ g3 + g2 = 2 + 1 = 3 . Hence g6 = 3 . Know-
ing this, Proposition  2.2 now tells us that ⟨Θ(4)(v8)�ℌ1×ℌ3

,Θ(1)(v2) × Θ(3)(v6)⟩ ≠ 0 , i.e. 
⟨I(4)(g)�ℌ1×ℌ3

, f × Θ(3)(v6)⟩ ≠ 0 . By Proposition 2.4(2) then ⟨FI(4)(g),f ,Θ
(3)(v6)⟩ ≠ 0 , so the 

Hecke eigenforms FI(4)(g),f  and Θ(3)(v6) must have the same Hecke eigenvalues and stand-
ard L-function. Using L(st,FI(4)(g),f , s) = L(st, f , s)L(g, s + 4)L(g, s + 3) , the global Arthur 
parameter of the cuspidal automorphic representation of Sp3(OE) associated to Θ(3)(v6) 
is Sym2Δ5 ⊕ Δ7[2] , then using Proposition  2.1(2) the global Arthur parameter of �6 is 
Sym2Δ5 ⊕ Δ7[2]⊕ [5] (where again one checks easily that c∞1

 and c∞2
 are right).

We may actually say something a bit stronger about the relation between FI(4)(g),f  and 
Θ(3)(v6) , now we know that FI(4)(g),f ≠ 0 . Since N∕2 = 6 > 3 + 1 = m + 1 , and since 
L(st,FI(4)(g),f , (N∕2) − m) = L(st, f , 3)L(g, 7)L(g, 6) ≠ 0 , Proposition 4.2 tells us that FI(4)(g),f  
is in the image of Θ(3) , and (up to scalar multiple) it can only be Θ(3)(v6).

� = ��, �� . This time use (v5, v3◦v11) ≠ 0 and (v11, v6◦v2) ≠ 0 to show that 
g11 = 4 and Θ(4)(v11) has the same Hecke eigenvalues as FI(6)(f ),I(2)f1

 . Then since 
N∕2 = 6 > 4 + 1 = m + 1 and

Θ(4)(v11) and FI(6)(f ),I(2)f1
 are actually the same up to scalar multiples. Similarly for � = ��.

� = �� . We argue as in the previous case, using (v5, v2◦v13) ≠ 0 and (v13, v6◦v3) ≠ 0 to 
prove that g13 = 5 and Θ(5)(v13) is in the same Hecke eigenspace as FI(6)(f ),f  . This proves 
the guess for the global Arthur parameter and shows that FI(6)(f ),f ≠ 0 . To show that FI(6)(f ),f  
and Θ(5)(v13) are equal up to scalar multiple, we proceed as follows, thanks to advice from 
Yamana. Since N∕2 = m + 1 = 6 , Proposition 4.2 does not apply. In other words, we are 
outside the “convergent range” for the Siegel–Weil formula. However, a theorem of Gan, 
Qiu and Takeda, extending Rallis’s inner product formula [20][Theorem 11.3] applies. In 
their notation, r = 0, �0 = 1,m = 12, n = 5, d(n) = 6 , and the L-value in their condition (b) 
is L(st,FI(6)(f ),f , (N∕2) − m) = L(st, f , 1)L(f , 5)L(f , 4)L(f , 3)L(f , 2) , which is non-zero as 
required. Regarding the condition (a), the required non-vanishing of the local zeta inte-
grals at infinite places is pointed out by Liu [46, §4.3], who attributes the computation to 
Shimura [60]. Hence the theta lift to O12(�E) of (the automorphic representation associated 
to) FI(6)(f ),f  is non-zero. By a theorem of Moeglin [50], the theta lift of this to Sp5(�E) is 

L(st,FI(6)(f ),I(2)f1
, (N∕2) − m) = L(st, I(2)f1, 2)L(f , 5)L(f , 4)

= � (2)L(f1, 7)L(f1, 6)L(f , 5)L(f , 4) ≠ 0,
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back where we started. It follows that FI(6)(f ),f  is in the image of Θ(5) , and (up to scalar mul-
tiple) it can only be Θ(5)(v13) .   ◻

Proposition 7.2 The rest of the degrees in the table are correct.

Proof � = � . (v7, v2◦v3) ≠ 0 ⟹ g7 ≤ g2 + g3 = 1 + 2 = 3 . But 
(v13, v7◦v3) ≠ 0 ⟹ g7 ≥ g13 − g3 = 5 − 2 = 3 , hence g7 = 3.

� = �, �� . (v9, v6◦v2) ≠ 0 ⟹ g9 ≤ 4 , while (v5, v9◦v3) ≠ 0 ⟹ g9 ≥ 4 , so g9 = 4 . 
Similarly, non-vanishing of (v10, v6◦v2) and (v5, v10◦v3) implies that g10 = 4.

� = ��, �� . (v14, v8◦v2) ≠ 0 ⟹ g14 ≤ 5 and (v15, v9◦v2) ≠ 0 implies that g15 ≤ 5 .  
 ◻

An alternative approach to proving the global Arthur parameters for � = ��, �� (or any 
of the others), would be to use Arthur’s multiplicity formula for symplectic groups over E, 
to prove the existence of Hecke eigenforms in S6(Sp4(OE)) and S6(Sp5(OE)) whose associ-
ated automorphic representations have global Arthur parameters Δ(9,5)[2]⊕ Δ(5,9)[2]⊕ [1] 
and Sym2Δ5 ⊕ Δ(7,3)[2]⊕ Δ(3,7)[2] , respectively, then to proceed as in the proof of Prop-
osition  7.1, to show that each is in the image of the appropriate theta map. This would 
be the analogue of the proof in [10, 9.2.11] for the Niemeier lattices. We do not pursue 
this here, because we are as yet unable to prevent this method showing that the parameter 
𝜓 = Δ(7,3) ⊗ Δ(3,7) ⊕ Δ7[2]⊕ [3]⊕ [1] also occurs. This is impossible, since the eigen-
value of T(2) would be (−160)2 + 4(140)(1 + 4) + 44(1 + 4 + 42) + 45 = 34,800 , which 
does not match anything in the table. Here Δ(7,3) ⊗ Δ(3,7) comes from a representation of 
SO2,2(�E) arising via tensor-product functoriality, as explained in [11, 4.14].

7.1  Congruences mod 29 and mod 11

As in the previous section, we may easily prove the following congruences, for any prime 
ideal � : 

(1) �1(T�) ≡ �2(T�) ≡ �5(T�) ≡ �13(T�) (mod 67);
(2) �3(T�) ≡ �11(T�), �4(T�) ≡ �12(T�) (mod 67);
(3) �2(T�) ≡ �6(T�) (mod 19);
(4) �1(T�) ≡ �3(T�) (mod �) with � ∣ 191 or 2161 (similarly for �4(T�));
(5) �8(T�) ≡ �10(T�) (mod 29);
(6) �13(T�) ≡ �14(T�) (mod 11).

The first four are accounted for by congruences between cusp forms and Eisen-
stein series. We have already met 67 ∣ (�E(6)∕�

12) , but also 19 ∣ (�E(8)∕�
16) and 

191 ⋅ 2161 ∣ (�E(10)∕�
20) . In fact 192 ∣ (�E(8)∕�16) , and the congruence in (3) appears to be 

modulo 192 . To explain the congruences (5) and (6) we shall need the following.

Proposition 7.3 Let �0 be a cuspidal automorphic representation of GL2(�E) (E a real 
quadratic field) with trivial character and �0,∞1

|SL2(ℝ)
 and �0,∞2

|SL2(ℝ)
 isomorphic to the 

discrete series representations D+
k1
⊕ D−

k1
, D+

k2
⊕ D−

k2
 respectively, say k1 > k2 ≥ 2. Let N0 

be the level of �0 and let N = N(N0)d
2
E
 , where dE is the discriminant. Then there is a Siegel 

cusp form F of genus 2,  weight Symj(ℂ2)⊗ det𝜅 , with (j, �) = (k2 − 2, 2 +
k1−k2

2
), and par-

amodular level N,  such that L(Spin,F, s) = L(�0, s).
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Proof This is a mild generalisation of part of a theorem of Johnson-Leung and Roberts [40, 
Main Theorem], which is the case k2 = 2, k1 = 2n + 2 . It is likewise an application of a 
theorem of Roberts [55, Theorem 8.6, Introduction]. The analysis at finite places (leading 
to paramodular level) is exactly as in [40]. The only difference is at archimedean places. 
To make the generalisation, we simply observe that the L-packet Π(�(�0,∞)) (in the nota-
tion of [40, §3]) contains the discrete series representation of GSp2(ℝ) denoted ��[c] in 
[51, p. 207], with c = 0 and Harish-Chandra parameter � = (�1, �2) = (

k1+k2−2

2
,
k1−k2

2
) . The 

Blattner parameter is (Λ1,Λ2) = (�1, �2) + (1, 2) = (
k1+k2

2
, 2 +

k1−k2

2
) . This is (j + �, �) , 

where the lowest K∞-type is Symj(ℂ2)⊗ det𝜅 , so we recover (j, �) = (k2 − 2, 2 +
k1−k2

2
) .  

 ◻

Note that the case k1 = k2 (which requires a limit of discrete series representation with 
�2 = 0 ) appears in the proof of [18, Theorem 3.1].

7.1.1  �
8
(T�) ≡ �

10
(T�) (mod 29)

Recall that the putative Arthur parameters for � = � and � = �� are Δ7[4]⊕ [1]⊕ [3] and 
Δ(9,5)[2]⊕ Δ(5,9)[2]⊕ [1]⊕ [3] , respectively.

Before explaining the congruence in question, first we consider a related congruence. 
We apply the above proposition with E = ℚ(

√

5) , �0 = Δ(9,5) , N = (1) , so we get F of 
weight (j, �) = (4, 4) and paramodular level 52 . Note that L(Spin,F, s) has rational coef-
ficients in its Dirichlet series. For primes p ≠ 5 , let �F(p) be the Hecke eigenvalue for T(p) 
(associated to diag(1, 1, p, p) ) on F. Let g1, g2 be the conjugate pair of eigenforms spanning 
S8(Γ0(5),�5) , where

The first thing we notice of course is that the coefficient field ℚ(
√

−29) is ramified at 29, 
the prime in question. Let � = (

√

−29) . There appears to be a congruence, for all primes 
p ≠ 5:

For primes p ≠ 5 , since Tp and ⟨p⟩Tp are adjoints for the Petersson inner product, ap(g1) 
is real (hence rational) or purely imaginary (hence a multiple of 

√

−29 ) according as 
�5(p) = 1 or −1 respectively. When �5(p) = −1 , �F(p) = 0 and ag1 (p) is a multiple of � , 
so the congruence holds for these p. Here is a table of what happens for the first few split 
primes. Note that �F(p) = ah(�) + ah(�) = trE∕ℚ(ah(�)) , where h spans S[10,6](SL2(OE)) , 
and � ∣ (p) in E. 

p �F(p) ag1 (p) �F(p) − ag1 (p)(1 + p2)

11 2184 − 6828 29 ⋅ 28,800

19 −133,640 6860 29 ⋅ (− 90,240)

29 2,170,140 25,590 29 ⋅ (− 668,160)

31 − 630,656 82,112 29 ⋅ (− 2,768,640)

Observe that 29 ∤ ag1 (29) , so g1 is “ordinary” at � . Let us now consider a non-exper-
imental reason to believe the congruence. The right hand side of the congruence is 

g1 = q + 2
√

−29q2 + 6
√

−29q3 + 12q4 + (75 − 50
√

−29)q5 +⋯ .

�F(p) ≡ ag1 (p)(1 + p2) (mod �).
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ap(g1)(1 + p�−2) , which would be the eigenvalue of T(p) on a vector-valued Klingen–Eisen-
stein series of weight Symj(ℂ2)⊗ det𝜅 (with (j, �) = (4, 4), j + � = k = 8 ) attached to g1 . 
The scalar-valued Klingen–Eisenstein series of paramodular level is dealt with in [58], and 
the vector-valued case could be done similarly. In particular, the analysis at finite places 
would be the same, and we would be looking at something of paramodular level 52 , just like 
F. So our congruence looks like one between a cusp form and a Klingen–Eisenstein series. 
This is not quite so, because the convergence condition 𝜅 > n + r + 1 = 2 + 1 + 1 = 4 does 
not hold. Nonetheless, it would be an “Eisenstein” congruence, between a cuspidal auto-
morphic representation of GSp2(�) and an automorphic representation of GSp2(�) induced 
from the Klingen parabolic subgroup. Conjecture 4.2 of [5] is a very general conjecture on 
the existence of Eisenstein congruences. The case of GSp2 and its Klingen parabolic sub-
group is worked out in Sect. 6, where the analogue of g1 has trivial character, but it is easy 
to see that the condition under which the conjecture would predict our congruence is that 
q > 2(j + 𝜅) (i.e. 29 > 16 ) and

where the adjoint L-function L(ad0(g1), s) is also L(Sym2g1, s + k − 1,�5) , with k = 8 , and 
the subscript {5} denotes omission of the Euler factor (1 − 5−s)−1 at 5. Here Ω is a Deligne 
period normalised as in [5, §4], and 3 = 1 + s with s = � − 2 = 2 (which satisfies the con-
dition s > 1 from [5]). Note that Conjecture 4.2 of [5] only predicts a cuspidal automorphic 
representation, of the appropriate infinitesimal character and unramified away from 5, and 
does not specify the paramodular level 52 (for F).

The relation between the Deligne period and the Petersson norm is (up to divisors of 
5(k!))

where �g1 is a certain congruence ideal. This employs ideas of Hida, as in [16, §3]. By [16, 
Proposition 2.2], ord�(�g1 ) = 1 . For us, ord�(𝜂g1 ) > 0 would suffice, and this may appear to 
follow from the obvious congruence of q-expansions g1 ≡ g2 (mod �) , but note that the 
definition of �g1 is in terms of congruences between cohomology classes rather than 
q-expansions. Anyway, it follows that the condition ord�

(

L{5}(ad
0(g1),3)

Ω

)

> 0 is equivalent to 

the integrality at � of L{5}(ad
0(g1),3)

�13(g1,g1)
 . A theorem of Katsurada [41, Corollary 4.3], which 

depends on �D being an even character, provides a way of computing this number precisely. 
Note that Katsurada’s L(g1, s,�D) is our L{5}(ad

0(g1), s) , with the Euler factor (1 − 5−s)−1 at 
5 already missing. Also his Petersson norm is ours divided by the volume of a fundamental 
domain for Γ0(5) , which is (�∕3)5(1 + (1∕5)) = 2�.

In Katsurada’s case ( c − 1 ), substituting m = 1 gives us a linear equation for the 
unknowns c L{5}(ad

0(g1),3)

�13(g1,g1)
 and c L{5}(ad

0(g2),3)

�13(g2,g2)
 , with coefficients the same simple multiple of 

a1(g1) = a1(g2) = 1 . Here c is a complex number of absolute value 1 such that g1|W5 = cg2 , 
where W5 is an Atkin–Lehner operator. First observe that L{5}(ad

0(g1), 3) = L{5}(ad
0(g2), 3) , 

since g2 and g1 are related by twist. Also (g1, g1) = (g2, g2) since the Fourier coefficients of 
g2 are obtained from those of g1 by complex conjugation (or using the relation between 
(g, g) and L(ad0(g), 1) [28, Theorem 5.1]). Thus we actually have a linear equation in the 
single unknown L{5}(ad

0(g1),3)

�13(g1,g1)
 . We must check that it is non-trivial, i.e. that c ≠ −c . We have 

ord�

(

L{5}(ad
0(g1), 3)

Ω

)

> 0,

Ω = �13(g1, g1)�
−1
g1
,
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c = w∞w5 , with w∞ = (−1)k∕2 . By local-global compatibility [9], w5 may be determined 
from a 2-dimensional representation of the Weil group W5 , which according to a theorem 
of Langlands and Carayol [29, Theorem 4.2.7 (3)(a)] is diagonal, so w5 may be written as a 
product of local constants for two characters, whose product is a power of the cyclotomic 
character, and using Tate’s local functional equation we find this product has to be ±1 , in 
particular c = c , so the linear equation for L{5}(ad

0(g1),3)

�13(g1,g1)
 is non-trivial. The “right-hand-side” 

of the linear equation, which comes from Fourier coefficients of an Eisenstein series of 
genus 2, is very complicated, and would be tedious to compute exactly, but it is not too dif-
ficult to see at least that the solution to the equation will be integral at � , as required.

Now the congruence between Δ7[4]⊕ [1]⊕ [3] and Δ(9,5)[2]⊕ Δ(5,9)[2]⊕ [1]⊕ [3] 
can be accounted for by the apparent congruence we have just been discussing. This is 
because Δ7 is the base-change to E of the cuspidal automorphic representation of GL2(�) 
attached to g1 (or equally to g2 , which is the newform associated to the twist by �5 of g1 ), 
and because the Satake parameters of F are “induced” from those of Δ(9,5) (or equally of 
Δ(5,9) ), as in Proposition 7.3. For example, at a factor � of a split prime p, the congruence 
between Δ7[4]⊕ [1]⊕ [3] and Δ(9,5)[2]⊕ Δ(5,9)[2]⊕ [1]⊕ [3] would give

This is

which is just (1 + p) times the Klingen–Eisenstein congruence.

Remark 7.4 The 2-dimensional mod � representation of Gal(ℚ∕ℚ) attached to g1 is “dihe-
dral”, in particular its restriction to Gal(ℚ∕E) is reducible, cf. [16, Proposition 1.2(2)]. 
The congruence would imply that the 2-dimensional mod � representation of Gal(ℚ∕E) 
attached to Δ(9,5) is likewise reducible. In fact, it appears to be the case that if � is a totally 
positive generator of any prime ideal � in OE (even � = (

√

5) ), with algebraic conjugate � , 
and �� = (29,

√

5 − 11) , then

This is independent of the choice of � , since if �+ is a totally positive unit of OE then 
(�+)7 ≡ 1 (mod ��) , which is what leads to the dihedral congruence, cf. [16, Proposition 
1.2(4)]. Without proving the global Arthur parameter for � = �� , we have not actually 
proved this congruence for ah(�) . It should be compared (for split p) with the congruence

We can see how ag1 (p)(1 + p2) gets to be the same as ah(�) + ah(�) (mod ��) , how one-
dimensional composition factors get rearranged.

Remark 7.5 The same argument as above shows that also ord�
(

L{5}(ad
0(g1),5)

Ω

)

> 0 and 

ord�

(

L{5}(ad
0(g1),7)

Ω

)

> 0 , so we would expect to observe also congruences of Klingen–
Eisenstein type for g1 with (j, �) = (2, 6) and (0,  8), i.e. (j + 2� − 3, j + 1) = (11, 3) and 

ag1 (p)(1 + p + p2 + p3) + p5 + (p4 + p5 + p6)

≡ ah(�)(1 + p) + ah(�)(1 + p) + p5 + (p4 + p5 + p6) (mod �).

ag1 (p)(1 + p2)(1 + p) ≡ �F(p)(1 + p) (mod �),

ah(�) ≡ �
7
+ �9�

2 ≡ �
7
+ �7N�2 (mod ��).

ag1 (p) ≡ �
7
+ �7 (mod ��).
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(13, 1), and indeed we do. We find that dim(S[12,4](SL2(OE))) = 1 , and for the associated F 
of weight (j, �) = (2, 6) and paramodular level 52 , 

p �F(p) ag1 (p) �F(p) − ag1 (p)(1 + p4)

11 −795,576 −6828 29 ⋅ 3,420,000

19 21,628,600 6860 29 ⋅ (− 30,082,080)

29 − 36,938,100 25,590 29 ⋅ (− 625,389,120)

31 92,822,464 82,112 29 ⋅ (− 2,611,704,000)

 Moreover, if now h denotes a generator of S[12,4](SL2(OE)) , then it appears that

Similarly, dim(S[14,2](SL2(OE))) = 1 , and for the associated F of weight (j, �) = (0, 8) and 
paramodular level 52 we find 

p �F(p) ag
1
(p) �F(p) − ag1 (p)(1 + p6)

11 8,606,664 − 6828 29 ⋅ 417,408,000

19 333,407,800 6860 29 ⋅ (− 11,117,287,680)

29 − 7,660,887,300 25,590 29 ⋅ (− 15,754,334,169,600)

31 − 200,383,616 82,112 29 ⋅ (− 2,512,927,680,000)

 and if now h denotes a generator of S[14,2](SL2(OE)) , then it appears that

7.1.2  ���(��) ≡ ���(��) (mod ��)

Recall that the putative Arthur parameters for � = �� and � = �� are Sym2Δ5 ⊕ Δ5[4]⊕ [1] 
and Sym2Δ5 ⊕ Δ(7,3)[2]⊕ Δ(3,7)[2]⊕ [1] , respectively. We apply Proposition 7.3 with 
E = ℚ(

√

5) , �0 = Δ(7,3) , N = (1) , so we get F of weight (j, �) = (2, 4) and paramodular 
level 52 . For primes p ≠ 5 , let �F(p) be the Hecke eigenvalue for T(p) on F.

Let f1, f2 be the conjugate pair of eigenforms spanning S6(Γ0(5),�5) , where

Noting the appearance of 
√

−11 , we may now proceed very much as in the other case. In 
particular, Δ5 is the base-change to E of the cuspidal automorphic representation of GL2(�) 
attached to f1 (or equally to f2 ). Further, if now h denotes a generator of dim(S[8,4](SL2(OE)) 
and �� = (11,

√

5 − 4) , then it appears that

As in all the above cases, the coefficient field of h is E, and ah(�) is the algebraic conjugate 
of ah(�).

ah(�) ≡ �
7
+ �11�

4 ≡ �
7
+ �7N�4 (mod ��).

ah(�) ≡ �
7
+ �13�

6 ≡ �
7
+ �7N�6 (mod ��).

f1 = q − 2
√

−11q2 + 6
√

−11q3 − 12q4 + (−45 − 10
√

−11)q5 +⋯ .

ah(�) ≡ �
5
+ �7�

2 ≡ �
5
+ �5N�2 (mod ��).
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Since dim(S[10,2](SL2(OE))) = 0 , we cannot find a congruence for (j, �) = (0, 6) in the 
same manner. We may explain this as follows. Suppose there is a congruence 
�F(p) ≡ af1 (p)(1 + p�−2) (mod �) , where F is a genus-2 cuspidal Hecke eigenform of 
weight (j, �) and level trivial away from 5, with irreducible 4-dimensional �-adic Galois 
representation �F,� . We expect ord�

(

L{5}(ad
0(f1),𝜅−1)

Ω

)

> 0 by the Bloch–Kato conjecture, 
because an adaptation of a well-known construction of Ribet produces a non-trivial exten-
sion of �f1,� (2-dimensional mod � Galois representation attached to f1 ) by �f1,�(2 − �) (Tate 
twist) inside the residual representation �F,� , and a non-zero class in H1(ℚ, ad0�f1,�(2 − �)) . 
This satisfies the Bloch–Kato local conditions away from p = 5 , so contributes to the 
numerator of the conjectural formula for L{5}(ad

0(f1),�−1)

Ω
 . Now if the congruence arises in the 

special way described above, via a congruence for a non-parallel weight Hilbert modular 
form, because that form has level 1 it is not difficult to show (using inflation-restriction) 
that the class also satisfies the local condition at 5, so we should in fact see 
ord�

(

L(ad0(f1),𝜅−1)

Ω

)

> 0 , for the complete L-value with no missing Euler factor. However, 
what is special about this example is that 55 ≡ 1 (mod 11) , so that ord�((1 − 5−5)−1) = −2 , 
hence when the Euler factor is put back in,

making it seem unlikely that ord�
(

L(ad0(f1),𝜅−1)

Ω

)

> 0 . Thus, though we may still expect the 
Klingen–Eisenstein congruence to happen, we shouldn’t expect it to arise from a Johnson-
Leung–Roberts lift of a non-parallel weight Hilbert modular form satisfying the type of 
congruence encountered in the other examples.

7.1.3  Examples with E = ℚ(
√

2)

To reinforce what we have found, we consider two more examples. If E = ℚ(
√

2) then 
D = 8 . The space S4(Γ0(8),�8) is spanned by a conjugate pair of eigenforms, one of which 
is

for which � = (
√

−7) is a dihedral congruence prime. Letting (j, �) = (0, 4) , so 
[j + 2� − 2, j + 2] = [6, 2] , we might expect a congruence involving a Hecke eigenform 
in S[6,2](SL2(OE)) , but dim(S[6,2](SL2(OE))) = 0 . As in the previous paragraph, we can 
explain this failure by ord�((1 − 2−(𝜅−1))−1) < 0 , since 23 ≡ 1 (mod 7).

On the other hand, the space S14(Γ0(8),�8) is spanned by a conjugate pair of eigen-
forms, one of which is q + (−56 − 8

√

−79)q2 + 258
√

−79q3 +⋯ , for which � = (
√

−79) 
is a dihedral congruence prime. Letting (j, �) = (2, 14) , so [j + 2� − 2, j + 2] = [26, 2] , we 
find that S[26,2](SL2(OE)) is spanned by a pair of Hecke eigenforms, with coefficient field 
E(
√

11,713) , conjugate over E. Letting h be one of them, and �� = (
√

2 − 9,
√

11,713 − 10) , 
a divisor of 79, it does appear that for � any totally positive generator of a prime ideal � , 
with Gal(E∕ℚ)-conjugate �,

ord�

(

L(ad0(f1), 𝜅 − 1)

Ω

)

< ord�

(

L{5}(ad
0(f1), 𝜅 − 1)

Ω

)

,

q + (−1 −
√

−7)q2 + 2
√

−7q3 + (−6 + 2
√

−7)q4 − 4
√

−7q5 + (14 − 2
√

−7)q6 − 8q7 +⋯ ,

ah(�) ≡ �
13
+ �25�

12 ≡ �
13
+ �13N�12 (mod ��).

51



 N. Dummigan, D. Fretwell 

1 3

Note that 213 ≢ 1 (mod 79).
All of this seems to support the following conjecture. (We have to introduce the character 

� because we no longer assume that E has narrow class number 1.) Let g ∈ Sk(Γ0(D),�D) 
be a normalised Hecke eigenform, where D > 0 is the discriminant of a real quadratic 
field E = ℚ(

√

D) , with associated character �D . Let gc be the normalised Hecke eigen-
form obtained from g by complex-conjugating the Fourier coefficients. Suppose that 
g ≡ gc (mod �) , where � ∣ q , with q > 2k and q ∤ D , is a prime divisor of the coefficient 
field Kg , ramified in Kg∕K

+
g
 , where K+

g
 is the totally real subfield of the CM field Kg . Suppose 

also that g is ordinary at � and that the residual representation �g,� of Gal(ℚ∕ℚ) is absolutely 
irreducible. Necessarily �g,� is induced from a character of Gal(ℚ∕E) associated by class 
field theory with � ∶ �

×
E
∕E×

→ � ×
q

 , a finite-order character of conductor Q +∞1 such that 
�(a) ≡ a1−k (mod Q) for a ∈ O×

Q
 , where (q) = QQ in OE . It is also induced from �  , the 

Gal(E∕ℚ) conjugate, of conductor Q +∞2 . (See [8, Theorems 2.1, 2.11] and their proofs for 
more on this.)

Conjecture 7.6 If k = j + � with j ≥ 0 even and � ≥ 4, and if for all 
primes p ∣ D, p�−1 ≢ 1 (mod q), then there exists a cuspidal eigenform 
h ∈ S[j+2�−2,j+2](GL2(�E),

∏

GL2(O�)) and a prime divisor �� ∣ q in Kh such that for any 
prime � ∤ q of OE,

For comparison, note that when � = 2 we have the base change (of g)

satisfying

8  Even unimodular quadratic forms over ℚ(
√

3)

According to Hung [32], if E = ℚ(
√

3) then there is a unique genus of even unimodular 
OE-lattices for each even N ≥ 2 . He showed that it contains 1 class when N = 2 , 2 classes 
when N = 4 , 6 classes when N = 6 and 31 classes when N = 8 . We have simultaneously 
diagonalised certain neighbour operators T� and recorded the eigenvalues later in this sec-
tion. We have also produced guesses for the global Arthur parameters that recover these com-
puted Hecke eigenvalues (and the correct c∞1

(z), c∞2
(z) ), with the exception of three cases 

when N = 8 . Things are different now, because although the class number is 1, the narrow 
class number is 2. The ray class field of conductor ∞1 +∞2 is H = ℚ(

√

3, i) = ℚ(�12) . Let 
� ∶ GL1(𝔸E) → ℂ× be the ray class character of conductor ∞1 +∞2 . It takes the value 1 on 
inert primes and totally positive split primes, −1 on the rest. It is now possible to have non-
zero forms of odd weights. The central character of the associated automorphic representation 
of GL2(�E) is then �.

Let Δ3 be the automorphic representation of GL2(�E) attached to one of the Galois conju-
gate pair of Hecke eigenforms spanning S[4,4](GL2(�E),

∏

GL2(O�)) . Its Galois conjugate is 
𝜒 ⊗ Δ3.

ah(�) ≡ �(�) + �(�)N��−2 (mod ��).

h ∈ S[k,k]

(

GL2(�E),
∏

GL2(O�)
)

,

ah(�) ≡ �(�) + �(�) (mod ��).
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Let Δ
(4)

5
 be any of the four Galois conjugate Hecke eigenforms spanning 

S[6,6](GL2(�E),
∏

GL2(O�)) (so this symbol means four different things on different lines of 
the table).

There are three non-identity elements of Gal(H∕ℚ) , i.e.

The space S[7,7](GL2(�E),
∏

GL2(O�)) is 3-dimensional. One of the spanning Hecke 
eigenforms is CM, associated to a Hecke character of H with ∞-type z ↦ z6��(z)6 . Let Δ6 
be the associated cuspidal automorphic representation of GL2(�E) . We have

(coming from the z6 and ��(z)6 factors respectively). Alternatively, Δ6 is the base-change 
to E of the cuspidal automorphic representation of GL2(�) attached to the CM newform 
q − 27q3 + 64q4 − 286q7 +⋯ spanning S7(Γ0(3),�−3).

The space S[5,5](GL2(�E),
∏

GL2(O�)) is 1-dimensional, spanned by a CM form, associ-
ated to a Hecke character of H with ∞-type z ↦ z4�(z)4 . Let Δ4 be the associated cuspidal 
automorphic representation of GL2(�E) . We have

(coming from the z4 and �(z)4 factors respectively). Alternatively, Δ4 is the base-change 
to E of the cuspidal automorphic representation of GL2(�) attached to the CM newform 
q − 4q2 + 16q4 − 14q5 −… spanning S5(Γ0(4),�−4).

The space S[6,2](GL2(�E),
∏

GL2(O�)) is 1-dimensional, spanned by a CM form, associ-
ated to a Hecke character of H with ∞-type z ↦ z5�(z)2��(z)3 . Let Δ(5,1) be the associated 
cuspidal automorphic representation of GL2(�E) . We have

from z5

(zz)5∕2
= (z∕z)5∕2 and z2z

3

(zz)5∕2
= (z∕z)−1∕2 , respectively.

Some Hecke eigenvalues: 

T
(1+

√

3)
T
(
√

3)
T
(4+

√

3)
T(5)

Δ3 2
√

3 −4
√

3 −10 170

Δ6 0 0 506 2 ⋅ 56 = 31,250

Δ4 0 0 −238 (2 + i)8 + (2 − i)8 = −1054

Δ(5,1) 0 0 350 − 432
√

3 53((2 + i)4 + (2 − i)4) = −1750

Δ(1,5) 0 0 350 + 432
√

3 −1750

 The zeros result from �(1 +
√

3) = �(
√

3) = −1 and the CM nature of the forms. For 
some of the other entries, z = 3

2
+ i +

√

3

2
i is an element of H generating a prime ideal of 

norm 13, dividing (4 +
√

3) . One finds that

� ∶
√

3 ↦ −
√

3, i ↦ i, � ∶
√

3 ↦

√

3, i ↦ −i, �� ∶
√

3 ↦ −
√

3, i ↦ −i.

c∞1
(Δ6)(z) = c∞2

(Δ6)(z) = diag((z∕z)6∕2, (z∕z)−6∕2),

c∞1
(Δ4)(z) = c∞2

(Δ4)(z) = diag((z∕z)4∕2, (z∕z)−4∕2),

c∞1
(Δ4)(z) = diag((z∕z)5∕2, (z∕z)−5∕2), c∞2

(Δ4)(z) = diag((z∕z)1∕2, (z∕z)−1∕2),
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� = �

� �i

�

T
(1+

√

3)

�

�i

�

T
(
√

3)

�

�i
(

T(5)
)

Global Arthur parameters (conj’l)

� 0 0 2 [1]⊕ 𝜒

� = �

� �i

�

T
(1+

√

3)

�

�i

�

T
(
√

3)

�

�i
(

T(5)
)

Global Arthur 
parameters 
(conj’l)

� 9 16 676 [1]⊕ [3]

� −9 −16 676 𝜒 ⊗ (��)

 Here, 9 = 2 + (1 + 2 + 22) = (1 + 2)2 , 16 = (1 + 3)2 and 676 = (1 + 25)2.

� = �

� �i

�

T
(1+

√

3)

�

�i

�

T
(
√

3)

�

�i
(

T(5)
)

Global Arthur 
parameters 
(conj’l)

� 27 112 407,526 [5]⊕ 𝜒

� −27 −112 407,526 𝜒 ⊗ (��)

� 18 48 15,846 Δ4 ⊕ [3]⊕ [1]

� −18 −48 15,846 𝜒 ⊗ (��)

� 6
√

3 16
√

3 5670 Δ3[2]⊕ [1]⊕ 𝜒

� −6
√

3 −16
√

3 5670 𝜒 ⊗ (��)

Note that 27 = (1 + 2 +⋯ + 24) − 22 , 112 = (1 + 3 +⋯ + 34) − 32 but 
407,526 = (1 + 25 +⋯ + 254) + 252.

� = �

� �i

�

T
(1+

√

3)

�

�i

�

T
(
√

3)

�

�i

�

T
(4+

√

3)

�

Global Arthur parameters (conj’l)

� 135 1120 5,231,240 [1]⊕ [7]

� −135 −1120 5,231,240 𝜒 ⊗ (��)

� 54 336 404,936 Δ6 ⊕ 𝜒 ⊕ [5]

� −54 −336 404,936 𝜒 ⊗ (��)

� 66 384 400,136 Sym2Δ3 ⊕ [5]

(z��(z))6 =

�

5 + 3
√

3i

2

�6

= 253 − 1260
√

3i,

(z��(z))6 + �(z��(z))6 = 2 × 253 = 506,

(z�(z))4 = (2 + 3i)4 = −119 − 120i,

(z�(z))4 + �(z�(z))4 = 2 × (−119) = −238, and

z5�(z)2��(z)3 = 175 − 420i − 90
√

3i − 216
√

3, 2 × (175 − 216
√

3) = 350 − 432
√

3.
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� �i

�

T
(1+

√

3)

�

�i

�

T
(
√

3)

�

�i

�

T
(4+

√

3)

�

Global Arthur parameters (conj’l)

� −66 −384 400,136 𝜒 ⊗ (��)

� a (degree 4) b (degree 4) 33,320 + 672
√

73 Δ
(4)

5
[2]⊕ [1]⊕ [3]

� −a −b 33,320 + 672
√

73 𝜒 ⊗ (��)

� Conj. of a Conj. of b 33,320 + 672
√

73 Δ
(4)

5
[2]⊕ [1]⊕ [3]

�� Conj. of −a Conj. of −b 33,320 + 672
√

73 𝜒 ⊗ (��)

�� Conj. of a Conj. of b 33,320 − 672
√

73 Δ
(4)

5
[2]⊕ [1]⊕ [3]

�� Conj. of −a Conj. of −b 33,320 − 672
√

73 𝜒 ⊗ (��)

�� Conj. of a Conj. of b 33,320 − 672
√

73 Δ
(4)

5
[2]⊕ [1]⊕ [3]

�� Conj. of −a Conj. of −b 33,320 − 672
√

73 𝜒 ⊗ (��)

�� 36 144 30,536 Δ6 ⊕ Δ4 ⊕ [1]⊕ [3]

�� −36 −144 30,536 𝜒 ⊗ (��)

�� 24 96 25,736 𝜒 ⊗ Sym2Δ3 ⊕ Δ4 ⊕ [3]

�� −24 −96 25,736 𝜒 ⊗ (��)

�� 0 0 9800 Δ(5,1)[2]⊕ Δ(1,5)[2]

�� 0 0 6344 ?
�� 0 0 5384 ?
�� 12

√

3 −48
√

3 3080 Δ6 ⊕ Δ3[2]⊕ [1]⊕ 𝜒

�� −12
√

3 48
√

3 3080 𝜒 ⊗ (��)

�� 0 0 1160 ?
�� 12(

√

3 + 1) 48(1 −
√

3) −1720 Sym2Δ3 ⊕ Δ3[2]⊕ [1]

�� −12(
√

3 + 1) −48(1 −
√

3) −1720 𝜒 ⊗ (��)

�� 12(
√

3 − 1) −48(1 +
√

3) −1720 𝜒 ⊗ Sym2Δ3 ⊕ Δ3[2]⊕ 𝜒

�� −12(
√

3 − 1) 48(1 +
√

3) −1720 𝜒 ⊗ (��)

�� 30
√

3 −160
√

3 −23,800 Δ3[4]

�� −30
√

3 160
√

3 −23,800 𝜒 ⊗ (��)

�� 0 0 −39,160 Δ4[3]⊕ [1]⊕ 𝜒

The numbers a and b appearing in the last table are roots of the polynomials 
x4 − 132x2 + 1728 and x4 − 960x2 + 62,208 respectively. For an Arthur parameter A, 
the meaning of 𝜒 ⊗ A is that each constituent Πk[dk] gets replaced by (𝜒◦ det)⊗ Πk[dk] , 
where the det is of GLnkdk

(�E) . Thus each Satake parameter t�(�i) gets replaced by 
�(�)t�(�i) , so �i(T�) by �(�)�i(T�) . We can explain some of what is observed in the 
table.

Proposition 8.1 

(1) Given an eigenvector vi, there is an eigenvector vj such that �j(T�) = �(�)�i(T�) for 
all �. In other words, if Ai and Aj are the associated global Arthur parameters then 
Aj = 𝜒 ⊗ Ai.

(2) Ai = 𝜒 ⊗ Ai precisely for i = 19, 20, 21, 24, 31. In particular, for these i,  �i(T�) = 0 
whenever �(�) = −1.
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Proof 

(1) The 31 classes are divided into spinor genera of sizes 18 and 13. When �(�) = −1 , �
-neighbours must be in different spinor genera, as may be deduced from [4, (1.1)], see 
also [32, §5]. We may resolve vi into components ai and bi supported on the classes in 
one spinor genus or the other. We must have T�(ai) = �i(T�)bi and T�(bi) = �i(T�)ai . 
Letting vj = ai − bi then T�(vj) = −�i(T�)vj . On the other hand, for �(�) = 1 , �
-neighbours are in the same spinor genus, so T�(ai) = �i(T�)ai , T�(bi) = �i(T�)bi and 
T�(vj) = �i(T�)vj . Thus vj is an eigenvector with the required property.

(2) We see from the table that the eigenvalues of T
(4+

√

3)
 are not repeated precisely for the 

values of i listed, so we must have Ai = 𝜒 ⊗ Ai for these values of i. For all other values 
of i, �i(T(1+

√

3)
) ≠ 0 , so we cannot have Ai = 𝜒 ⊗ Ai .   ◻

Remark 8.2 When �(�) = −1 , T� maps an 18-dimensional subspace of M(ℂ,K) to a 
13-dimensional subspace, with a kernel necessarily of dimension at least 5. So 5 was the 
expected number of i such that Ai = 𝜒 ⊗ Ai . We are unable to identify conjectural Arthur 
parameters for three of them. The other two involve CM forms coming from unramified 
Hecke characters of H, but we have exhausted all the possibilities for those already. Possi-
bly the unidentified parameters involve automorphic induction from GLm(�H) with m > 1 . 
There are 2-dimensional spaces of cusp forms of non-parallel odd weights [7, 5] and [7, 3], 
but they do not appear to be useful.

Remark 8.3 Looking in particular at the table for N = 8 , we can use the meth-
ods of previous sections to prove the guesses for global Arthur parameters in the 
cases � = �, �, �, �, ��, ��, ��, �� . Note that, although the �-twists of these, namely 
� = �, �, �, ��, ��, ��, ��, �� (for which thereby we also establish the global Arthur param-
eters), may appear to contradict Proposition 2.1(2), this is only if we assume that �-twist-
ing preserves degrees. We can see in the simple case N = 6, � = �, � that that assumption is 
false, since using v1 = t(1, 1, 1, 1, 1, 1) and v2 = t(−1, 1,−1,−1, 1, 1) and the automorphism 
group orders 82, 944, 27, 648,  46, 080,  46, 080,  103, 680, 103, 680, one easily checks 
that Θ(1)(v1) is not a cusp form, while Θ(1)(v2) is, because

Remark 8.4 We have not yet bothered to worry about whether SOL∕E� is split and SOL∕O� 
is reductive for every finite prime � . For N = 8 , both follow from the choice L = E8 ⊗ℤ O� . 
For N = 4 it is easy to prove at least that each SOL∕E� is split, as in the proof of Lemma 
6.1. But for N = 2 or 6 (or any odd multiple of 2), choosing L to be a direct sum of lattices 

with Gram matrix 

�

2
√

3
√

3 2

�

 , the discriminant is 1, whereas the discriminant is −1 for the 

direct sum of an odd number of hyperbolic planes (to which L⊗ E� would have to be 
equivalent for SOL∕E� to be split), so in these cases SOL∕E� is not split when −1 is not a 
square in �� . As further confirmation that something is not quite right, we can observe in 
the tables that when N = 2 and N = 6 the conjectural Satake parameter t�(�i) , for 
�(�) = −1 , is not in the image of SON(ℂ) , having determinant −1 . We may appear to have 
the same problem for some of the entries in the table for N = 8 , but closer inspection shows 
that this is not the case. For example, looking at i = � , for � such that �(�) = −1 , the deter-
minant of t�(Δ6) is also −1 . To see this, note that since �(�) = −1 , � is inert in 

−
1

82,944
+

1

27,648
−

1

46,080
−

1

46,080
+

1

103,680
+

1

103,680
= 0.
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ℚ(�12)∕ℚ(
√

3) . If � ∣ p , a rational prime, then p splits in ℚ(
√

3) , but not in ℚ(
√

−3) (and 
−1 is not a square in �� ), because the compositum of these two fields is ℚ(�12) . Hence 
�−3(p) = −1 , but this is the same as det(t�(Δ6)) , because Δ6 is the base change of the auto-
morphic representation associated to a Hecke eigenform in S7(Γ0(3),�−3) . Alternatively, 
we could just use the fact that Δ6 , coming from odd weight, must have central character � . 
Incidentally, this means it occurs not in L2(Z(�E)GL2(E)�GL2(�E)) (recall §2.3), rather in 
L2(GL2(E)�GL2(�E),�).

Remark 8.5 There are various congruences of Hecke eigenvalues that can be explained by 
23 ∣ (�E(4)∕�

8) and 41 ∣ (�E(6)∕�
12).

9  Other fields

According to [30], for E = ℚ(
√

2) or ℚ(
√

5) the rank of an even unimodular lattice must 
be divisible by 4. In [30, (1.2)] a mass formula is applied to show that for E = ℚ(

√

2) and 
rank 16 the number of classes would be at least 2 × 1018 , and for E = ℚ(

√

5) and rank 16 
it would be at least 2 × 106 . For E = ℚ(

√

2) and rank 12 it would also appear to be very 
large. Thus for these fields the examples amenable to computation have now been dealt 
with. Similarly one can show that all plausible examples for E = ℚ(

√

3) have been consid-
ered (the rank must be divisible by 2 and the mass of the rank 10 genus is large).

Naturally one asks how many other real quadratic fields and ranks are within reach. 
Necessarily we require a small number of classes in the corresponding genus and a mass 
formula can again be used to decide whether this is the case. If plausible we can then enu-
merate the classes by writing down one such lattice, taking iterated neighbours and testing 
for isometry (terminating once the mass is attained). As explained in the introduction, for 
E = ℚ(

√

D) with D ≡ 3 (mod 4) , we may write down a rank 2 free, even unimodular lat-
tice of determinant 1. Otherwise the recipes of [56] can be used to write down a rank 4 
even unimodular lattice. Higher ranks can be reached by repeated orthogonal direct sums. 
Strictly speaking, in the table below, for N ≡ 2 (mod 4) not all the 0 entries are for certain.

Using Magma we computed, for each real quadratic field E of discriminant under 50 
and each rank N ≤ 12 , the number of classes in a genus of even unimodular lattices of 
determinant 1 (where possible). See the table below. The symbol T indicates that the mass 
of the genus is greater than 1, so the number of classes is likely to be “too large”. Note that 
the column for rank 4 agrees with [56, Theorem 3.4]. 

Discriminant∖Rank 2 4 6 8 10 12

5∗ 0 1 0 2 0 15
8∗ 0 1 0 6 0 T
12 1 2 6 31 T T
13∗ 0 1 0 12 0 T
17∗ 0 1 0 40 0 T
21 0 3 0 T 0 T
24 0 4 0 T 0 T
28 1 4 25 T T T
29∗ 0 3 0 T 0 T
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Discriminant∖Rank 2 4 6 8 10 12

33 0 4 0 T 0 T
37∗ 0 3 0 T 0 T
40∗ 0 6 0 T 0 T
41∗ 0 3 0 T 0 T
44 1 7 T T T T

The fields are all of class number 1, except for ℚ(
√

10) , for which the class number is 
2 (and for which we only considered the genus of a free even unimodular lattice of deter-
minant 1). Those marked with an asterisk have narrow class number equal to the class 
number.

The mass formula [30, Lemma I.1] shows that for a fixed rank, the number of classes 
grows at least polynomially with the discriminant of the field. Given this, it is extremely 
likely that the only examples of rank 6 or higher that are computable are the ones in the 
table. For ranks 2 and 4 there are probably many more examples, but the variety of possible 
Arthur parameters is limited in these cases. For all cases in the table we have computed 
neighbour matrices and the data can be found at the second-named author’s webpage https 
://www.danfr etwel l.com/knese r.

In the case E = ℚ(
√

11) and N = 4 , where the number of classes is 7, the following 7 
Arthur parameters appear to be correct. For various primes we tabulate the Hecke eigenval-
ues that these Arthur parameters would produce. These Hecke eigenvalues match the roots 
of the characteristic polynomials we computed. Although 5 and 7 split in OE , the Hecke 
eigenalues are the same for both factors, so we give only the norms of the prime ideals. 
The bottom two rows of the table give the Hecke eigenvalues of the weight 2 and 3 forms 
we have used. As in the previous section, � ∶ E×�𝔸×

E
→ ℂ× is a character of conductor 

∞1 +∞2 . 

AP (conj’l)�N(�) 2 5 7 9

[1]⊕ [3] 9 36 64 100
𝜒 ⊗ (��) −9 36 −64 100
Δ1[2] 3

√

2 −6 −16
√

2 30

𝜒 ⊗ (��) −3
√

2 −6 16
√

2 30

Sym2Δ1 ⊕ [1] 2 1 8 9
𝜒 ⊗ (��) −2 1 −8 9
Δ2 ⊕ [1]⊕ 𝜒 0 9 0 25
Δ1

√

2 −1 −2
√

2 3

Δ2 0 −1 0 7

The first 6 of these automorphic representations of O(4)(�E) arise from tensor products, 
e.g. Sym2Δ1 is Δ1 ⊗ Δ1 , as they ought to if they extend to GO(4)(�E) , cf. [7]. But the last 
does not. This is possible because the GO(4)-genus can contain a lattice whose discrimi-
nant is a totally positive but non-square unit, excluded from the O(4)-genus.

In the case E = ℚ(
√

7) , N = 6 , where the number of classes is 25, the following 15 
Arthur parameters likewise appear to be correct. The bottom 6 rows of the table give the 
Hecke eigenvalues of the weight 2, 3, 4, 4, 5 and 5 forms we have used. For one of the 
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weight 4 forms, the coefficient field is of degree 4, and we have listed just one of 4 Galois 
conjugates. Note that 𝜒 ⊗ Δ

(4)

3
 is a Galois conjugate of Δ(4)

3
 . 

AP (conj’l)�N(�) 2 3

𝜒 ⊕ [5] 35 112
𝜒 ⊗ (��) 35 −112

Δ3[2]⊕ [1]⊕ 𝜒 23 0
Δ4 ⊕ [3]⊕ [1] 19 48
𝜒 ⊗ (��) 19 −48

Δa
4
⊕ [3]⊕ [1] 10 48

𝜒 ⊗ (��) 10 −48

Δ
(4)

3
[2]⊕ [1]⊕ 𝜒 2 + 6

√

2 8

�

10 + 3
√

2

Δ4 ⊕ Δ2 ⊕ [1]⊕ 𝜒 3 0
Δa

4
⊕ Δ2 ⊕ [1]⊕ 𝜒 −6 0

Δ4 ⊕ Δ1[2] −5 0
Δa

4
⊕ Δ1[2] −12 0

Δ1 −1 0
Δ2 −3 0
Δ3 5 0

Δ
(4)

3 −2 + 2
√

2 2

�

10 + 3
√

2

Δ4 1 0
Δa

4
−8 0

We did not look closely at the rank 8 examples with E = ℚ(
√

13) and E = ℚ(
√

17) . 
Data for these cases can be found at the webpage mentioned above.

10  Preliminaries on Hermitian lattices, even and unimodular over ℤ

Let E be an imaginary quadratic field, with ring of integers OE , discriminant −D . 
For simplicity we shall suppose that the class number of OE is 1. Let L be an OE

-lattice in V ≃ EN , with standard positive-definite OE-integral Hermitian form 
� ↦ ⟨�, �⟩ = t�� . We may define a unitary group scheme UN over ℤ , with R points 
UN(R) = {g ∈ MN(R⊗ℤ OE)|

tgg = I} . We assume that L is even and unimodular as 
a rank-2N ℤ-lattice with the form trE∕ℚ(⟨, ⟩) . We may define the (Hermitian) genus of L, 
algebraic modular forms (in) M(ℂ,K) , Hecke operators T� , eigenvectors vi and automor-
phic representations �i of UN(�) , very much as before.

The theta series of degree m of L is

where Z ∈ Hm ∶= {Z ∈ Mn(ℂ)| i(
tZ − Z) > 0} . Then �(m)(L) ∈ MN(Um,m(ℤ)) , by a theo-

rem of Cohen and Resnikoff [12, 27, Theorem  2.1]. Here 

Um,m(ℤ) ∶= {g ∈ M2m(OE) ∶
tgJg = J} , where J =

(

0m − Im
Im 0m

)

 . Thus, if 

g =

(

A B

C D

)

∈ Um,m(ℤ) then

�(m)(L, Z) =
�

�∈Lm

exp (�itr(⟨�, �⟩Z)),
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Again one can define linear maps Θ(m) ∶ M(ℂ,K) → MN(Um,m(ℤ)) by

There is another way to construct the theta series �(m)(L, Z) . Choosing a non-trivial additive 
character � ∶ 𝔸∕ℚ → ℂ× (and trivial multiplicative character � ∶ 𝔸

×
E
∕E×

→ ℂ× ), con-
sider the Weil representation � = �� ,� of the group U(m,m)(�) × UN(�) on the Schwartz 
space S(V(�)m) . (See [34, §1].) Given Φ ∈ S(V(�)m) , we get a theta-kernel defined on 
(g, h) ∈ U(m,m)(�) × UN(�),

If we choose Φ∞(�) ∶= exp(trE∕ℚ(tr(⟨xi, xj⟩))) and for finite p, Φp(�) ∶= 𝟙(L⊗ℤp)
m (�) , then

where Z = g(iI) , hL is a lattice in the genus of L and j(g, iI) is a standard automorphy fac-

tor, which is just (detY)−1∕2 when for Z = X + iY  we take g =

(

C X tC−1

0 tC−1

)

 , where 

Y = C tC.
If dh is a measure on UN(ℚ)�UN(𝔸) for which UN(ℚ)�UN(𝔸) has volume 1, then the theta 

integral

up to a factor j(g, iI)N , where {Li| 1 ≤ i ≤ H} is a set of lattices representing the classes in 
the genus of L, and � =

∑H

i=1

1

#Aut(Li)
 . More generally, if y is a function on UN(ℚ)�UN(𝔸)∕K , 

taking value yi on the class of hi , where hiL = Li , then

which is the same as �−1 Θ(m)
�

∑H

j=1
yjej

�

.

Consider the Eisenstein series E(m)(g, fΦ) ∶=
∑

�∈P(ℚ)�Um,m(ℚ) fΦ(�g) (for g ∈ Um,m(�) ), 
where fΦ(g) ∶= �(g, 1)Φ(�) . (In the notation of [34] we have set s = s0 . In our notation, 
s0 =

N−m

2
 .) It converges for N > 2m , but can be defined for N > m by a process of meromor-

phic continuation [33, Lemma 8.2]. The following is part of a theorem of Ichino [34, 
Theorem 1.1].

Theorem 10.1 If N > m then E(m)(g, fΦ) = I(g,Φ).

This is the Siegel–Weil formula, proved by Weil in the case N > 2m that the Eisenstein 
series converges.

�(m)(L, (AZ + B)(CZ + D)−1) = det(CZ + D)N�(m)(L, Z).

Θ(m)

(

H
∑

j=1

yjej

)

∶=

H
∑

j=1

yj

|Aut(Lj)|
�(m)(Lj).

Θ(g, h;Φ) ∶=
∑

�∈Vm(ℚ)

�(g, h)Φ(�).

Θ(g, h;Φ)j(g, iI)N = �(m)(hL, Z),

I(g,Φ) ∶= ∫UN (ℚ)�UN (𝔸)

Θ(g, h;Φ) dh =
1

�

H
∑

i=1

1

#Aut(Li)
�(m)(Li, Z),

j(g, iI)N ∫UN (ℚ)�UN (𝔸)

Θ(g, h;Φ) y(h) dh =
1

�

H
∑

i=1

yi

#Aut(Li)
�(m)(Li, Z),
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There will be local Langlands parameters c∞(�i) ∶ Wℝ → GLN(ℂ)⋊ Gal(E∕ℚ) and 
cp(�i) ∶ Wℚp

→ GLN(ℂ)⋊ Gal(E∕ℚ) , which we always restrict to Wℂ and W� , for each finite 
prime � of OE , and project to GLN(ℂ) (with Frob� ↦ t�(�i) ). Necessarily

(up to conjugation in GLN(ℂ) ). In the global Arthur parameters, instead of cuspidal auto-
morphic representations of GLnk

(�) , we see now cuspidal automorphic representations of 
GLnk

(�E) . For us, to say that �i has global Arthur parameter Ai will now mean that t�(�i) 
is conjugate in GLN(ℂ) to t�(Ai) for all � ∤ 2D , and that c∞(�i) and c∞(Ai) , restricted to ℂ× , 
are conjugate in GLN(ℂ) . With the exclusion of � ∣ 2D , this is a little weaker than what it 
might have meant.

Lemma 10.2 If E ≠ ℚ(i) then U(1, 1)(ℤ) ≃ O×
E
× SL2(ℤ).

Proof Suppose that g =

(

a b

c d

)

∈ U(1, 1)(ℤ) . Then ad − bc = 1 , ac = ac and bd = bd . 

The first equation implies that a, c (and likewise a, c ) are coprime, then the second implies 
that a, a are associates, say a = ua , with u ∈ O×

E
 . The second equation implies also that 

c = uc . Similarly using the third equation (and conjugating the first to see that it must be 
the same unit involved), we find that also b = ub and d = ud . Since E ≠ ℚ(i) , either u or 
−u is a square. In the latter case, say u = −v2 , then a∕v = −a∕v , which implies that a/v is 
an integer multiple of 

√

−D (or 
√

−D∕2 ), where −D is the discriminant of E∕ℚ . Likewise 
for all the other entries, but then the determinant of g fails to be a unit, so we must be in the 
case u = v2 , so a∕v = a∕v is in ℤ , and likewise for all the other entries.   ◻

Proposition 10.3 

(1) If vi ∈ M(ℂ,K) is an eigenvector for HK , then Θ(m)(vi) (if non-zero) is a Hecke eigen-
form, at least away from p ∣ 2D.

(2) Suppose that Θ(m)(vi) is non-zero, and that N ≥ 2m . Let

 be the Satake parameter at � for vi (with � ∤ 2D ), and diag(�1,�,… , �2m,�) ∈ GL2m(ℂ) 
the Satake parameter at � of the automorphic representation of Um,m(�) generated by 
Θ(m)(vi) . Then, as multisets, 

(3) If 4 ∣ N and N > 2m then a cuspidal Hecke eigenform F ∈ SN(Um,m(ℤ)) is in the image 
of Θ(m) if L(st,F, (N + 1 − 2m)∕2) ≠ 0, where L(st,F, s) =

∏

�

∏2m

i=1
(1 − �i,�N�

−s)−1 is 
the standard L -function.

Proof Since L is self-dual as an Hermitian lattice locally at all p ∤ D , and since Hermi-
tian OE ⊗ℤ ℤp-lattices are determined up to isometry by their invariant factors [39, Prop. 
3.2], [59, Thm. 7.1], the stabiliser in UN(ℚp) of OE ⊗ℤ ℤp is isomorphic to the standard 

c∞(�i)(z) = diag((z∕z)(N−1)∕2,… , (z∕z)−(N−1)∕2)

t�(�i) = diag(�1,�,… , �N,�)

{𝛽1,�,… , 𝛽N,�} =

{

{𝛼1,�,… , 𝛼2m,�} ∪ {N�(N−2m−1)∕2,… , N�−(N−2m−1)∕2} if N > 2m;

{𝛼1,p,… , 𝛼2m,p} if N = 2m.
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UN∕2,N∕2(ℤp) . It follows that (1) and (2) are covered by work of Liu [45, Appendix], which 
also requires p ≠ 2 . See also [33, Prop. 2.1].

Now we turn to (3). The doubling method of Piatetski-Shapiro and Rallis was developed 
in the case of unitary groups by Li [44] and by Harris et al. [24]. Consider the Eisenstein 
series E(2m)(g,Φ) as above. We may embed Um,m × Um,m into U2m,2m as in [25], thus write 
E(2m)(g1, g2,Φ) for (g1, g2) ∈ Um,m(�) × Um,m(�) . To F we may associate a function �F on 
Um,m(�) in a standard way. By [25, (3.1.2.8)] (“Basic identity of Piatetski-Shapiro and Ral-
lis”), with s = s0 =

N−2m

2
 and � trivial (noting that 2m has been substituted for m compared 

to above), we find that

is equal to

where −D is the discriminant of OE , the subscript D means we omit Euler factors at primes 
p ∣ D , Z∞(s0,F,Φ) and the Zp(s0,F,Φ) are certain local zeta integrals and �−D is the quad-
ratic character associated to E∕ℚ . We have corrected the power of �−D , as in the footnote 
on [19, p.42]. We need to know that Z∞(s0,F,Φ)

∏

p∣D Zp(s0,F,Φ) ≠ 0 . For p ∣ D an argu-
ment of Lanphier and Urtis [43, §4, case v ∤ � ] shows that Zp(s0,F,Φ) ≠ 0 . To justify this, 
note that even though Um,m is ramified at such p, the maximal compact subgroup Um,m(ℤp) 
is special (if not hyperspecial), as noted in [3, §2.1], so spherical vectors are still unique up 
to scaling [48, §2.3]. We may also call on [43, §4] for the non-vanishing of Z∞(s0,F,Φ) . 
We may now proceed as in the proof of [43, Theorem 3]. This is close to Böcherer’s idea of 
using the Siegel–Weil formula to substitute for the Eisenstein series in a pull-back formula/
doubling integral [6], and our condition N > 2m is in order to apply Theorem 10.1, with 
2m substituted for m because of the doubling.   ◻

Proposition 10.4 Suppose that OE has class number 1, and let w be the number of units in 
OE . Let �, g be even natural numbers, and suppose that w ∣ (�∕2).

(1) Let f ∈ S�−g+1(Γ0(D),�−D) be a Hecke eigenform, where E = ℚ(
√

−D) has discri-
minant −D and �−D is the associated quadratic character. Assume that f is not a 
CM form coming from a Hecke character of K. Then there exists a Hecke eigenform 
F ∈ S�(Ug,g(ℤ)) with standard L -function

(2) Let G ∈ S�(Ur,r(ℤ)) be a Hecke eigenform, for r < g. For F as above, the function

∫Um,m(ℚ)�Um,m(𝔸)
∫Um,m(ℚ)�Um,m(𝔸)

E(2m)(g1, g2,Φ)�F(g1)�F
(g2) dg1 dg2

LD(st,F, (N + 1 − 2m)∕2)Z∞(s0,F,Φ)
∏

p∣D

Zp(s0,F,Φ)

(

m−1
∏

r=0

L(N − m − r,� r
−D

)

)−1

,

L(st,F, s) =

g
∏

i=1

L
(

f , s +
� + 1

2
− i

)

L
(

f , s +
� + 1

2
− i,�−D

)

.

Ff ,G(Z) ∶= ∫Ur,r(ℤ)�Hr

F

((

Z 0

0 W

))

G(W)(det ImW)�−2r dW,
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if non-zero, is a Hecke eigenform in S�(Ug−r,g−r) , with standard L -function (if 
� ≥ 2(g − r) ) 

(1) was proved by Ikeda, and follows from Theorem  5.2, Corollary 15.21 and Theo-
rem 18.1 in [37]. (2) is a theorem of Atobe and Kojima [3, Theorem 1.1]. For simplicity we 
have imposed unnecessary conditions that are satisfied in our application.

11  12‑dimensional Hermitian forms over ℚ(
√

−3) , even unimodular 
over ℤ

When E = ℚ(
√

−3) and L is an OE-lattice in EN , even and unimodular as a ℤ-lattice, 
8 ∣ 2N ⟹ 4 ∣ N . There is a single genus of such lattices [26, Remark 1]. When N = 4 
or 8 there is a single class in the genus [26, Corollary 1], and the global Arthur parame-
ter will be [N]. For N = 12 , the genus contains 5 classes, studied by Hentschel et  al. 
[26]. The matrix representing T(2) , with respect to the basis ordered as in [26, Theo-

rem 2], is 

⎛

⎜

⎜

⎜

⎜

⎝

65,520 3,888,000 1,640,250 0 0

1458 516,285 3,956,283 1,119,744 0

15 96,480 2,467,899 2,998,272 31,104

0 13,365 1,467,477 3,935,781 177,147

0 0 405,405 4,717,440 470,925

⎞

⎟

⎟

⎟

⎟

⎠

 . This was computed by S. 

Schönnenbeck, and given in [17, §3.3] 

� �i
(

T(2)
)

gi Global Arthur parameters

� 5, 593, 770 0 [12]
� 1, 395, 945 1 Δ11 ⊕ [10]

� 357, 525 2 3Δ10[2]⊕ [8]

� 85, 365 3 Δ11 ⊕
3Δ8[2]⊕ [6]

� 23, 805 4 3Δ8[4]⊕ [4]

 Some of the notation is further explained during the proof of the proposition below. In 
[17] we looked at a genus of 20 classes of rank 12 Hermitian OE-lattices, unimodular as 
Hermitian (rather than Euclidean) lattices, and conjectured global Arthur parameters for 
all the eigenvectors arising. The entries in the above table match 5 of those in [17], and we 
have preserved the numbering used there, hence the gaps.

The eigenvectors are

L(st,Ff ,G, s) = L(st,G, s)

g−2r
∏

i=1

L
(

f , s +
� − 2r + 1

2
− i

)

L
(

f , s +
� − 2r + 1

2
− i,�−D

)

.

v1 =

⎛

⎜

⎜

⎜

⎜

⎝

1

1

1

1

1

⎞

⎟

⎟

⎟

⎟

⎠

, v2 =

⎛

⎜

⎜

⎜

⎜

⎝

−6000

−1854

−472

219

910

⎞

⎟

⎟

⎟

⎟

⎠

, v4 =

⎛

⎜

⎜

⎜

⎜

⎝

648,000

49,572

−2144

−297

20,020

⎞

⎟

⎟

⎟

⎟

⎠

, v8 =

⎛

⎜

⎜

⎜

⎜

⎝

−8,294,400

−46,656

10240

−7425

80,080

⎞

⎟

⎟

⎟

⎟

⎠

v9 =

⎛

⎜

⎜

⎜

⎜

⎝

6,220,800

−69,984

7680

−4455

40,040

⎞

⎟

⎟

⎟

⎟

⎠

.

63



 N. Dummigan, D. Fretwell 

1 3

Using the sizes of automorphism groups from [26, Theorem 2], we find then that Θ(m)(v9) 
is a scalar multiple of

in agreement with the linear combination in [26, Theorem 3(a)]. Note that the other linear 
combinations there do not correspond to eigenvectors, since they only represent quotients 
in a filtration.

Proposition 11.1 The global Arthur parameters and degrees are as in the table.

Proof � = � . Similar to earlier examples, we can get this from “Siegel’s Main Theorem” 
(a.k.a. Siegel–Weil formula), as stated in [26, Corollary 3].

� = � . Let Δ =
∑∞

n=1
�(n)qn = q − 24q2 + 252q3 … be the normalised cusp form span-

ning S12(SL2(ℤ)) . Using Lemma 10.2 and #O×
E
∣ 12 , the function Δ on ℌ1 = H1 belongs to 

S12(U(1, 1)(ℤ)) . Since 12 > 2 and L(st,Δ, 11∕2) = L(Δ, 11)L(Δ,�−3, 11) ≠ 0 , Proposition 
10.3(3) implies that Δ = Θ(1)(vi) for some i. By Proposition 10.3(2), �i has global Arthur 
parameter Δ11 ⊕ [10] (where Δ11 is now the base change to GL2(�E) of that appearing in 
Sect. 3). Hence �i(T(2)) = ((−24)2 − 2 ⋅ 211) + 4

410−1

4−1
+

212−1

2+1
= 1,395,945 , as in [17, Prop-

osition 4.1], so i = 2.
� = � . The space S11(Γ0(3),�−3) is 2-dimensional, spanned by a Hecke eigenform 

g = q + 12
√

−5q2

and its (Galois or complex) conjugate. The associated cuspidal automorphic repre-
sentations of GL2(�) are quadratic twists by �−3 of one another, so share the same 
base change to GL2(�E) , which we denote 3Δ10 . We apply Proposition 10.4(1), with 
� = 12, g = 2 (so � − g + 1 = 11 ) to produce an Hermitian Ikeda lift F = I(2)(g) . 
Since L(st,F, 9∕2) = L(g, 10)L(g, 9)L(g, 10,�−3)L(g, 9,�−3) ≠ 0 , Proposition 
10.3(3) shows that F = Θ(2)(vi) for some i, and it follows from Proposition 10.3(2) 
and L(st,F, s) = L(g, s + 11∕2)L(g, s + 11∕2,�−3)L(g, s + 9∕2)L(g, s + 9∕2,�−3) 
that �i has global Arthur parameter 3Δ10[2]⊕ [8] . Then 
�i(T(2)) = ((12

√

−5)2 + 2 ⋅ 210)(1 + 4) + 42
48−1

4−1
+

212−1

2+1
= 357,525 , so i = 4.

� = � . The space S9(Γ0(3),�−3) is 2-dimensional, spanned by a Hecke eigenform 
f = q + 6

√

−14q2 +⋯ and its (Galois or complex) conjugate. We proceed as for i = 4 , 
now with � = 12, g = 4 , so � − g + 1 = 9 , showing in the process that g9 = 4 and 
Θ(4)(v9) = I(4)(f ) , which was conjectured in [26, Remark 3(b)]. (The other degrees were 
proved in [26, Theorem 3] by computing coefficients of theta series.)

� = � . Since (v9, v8◦v2) ≠ 0 and we already know that g9 = 4 and g2 = 1 , Corollary 2.3 
implies that g8 ≥ 3 . Then (v8, v4◦v2) ≠ 0 gives g8 ≤ 3 , so g8 = 3 . Now (v9, v8◦v2) ≠ 0 tells 
us, via Proposition 2.2, that ⟨Ff ,Δ,Θ

(3)(v8)⟩ ≠ 0 , so that Θ(3)(v8) and Ff ,Δ lie in the same 
Hecke eigenspace, and have the same standard L-function. Then using

�(m)(L1) − 30 �(m)(L2) + 135 �(m)(L3) − 160 �(m)(L4) + 54 �(m)(L5),

+(−27 + 108
√

−5)q3 + 304q4 − 1272
√

−5q5 + (−6480 − 324
√

−5)q6 + 17,324q7 +⋯

L(st,Ff ,Δ, s) = L
(

Δ, s +
11

2

)

L
(

Δ, s +
11

2
,�−3

)

L
(

f , s +
9

2

)

L
(

f , s +
9

2
,�−3

)

L
(

f , s +
7

2

)

L
(

f , s +
7

2
,�−3

)
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and Proposition 10.3(2), we deduce that �8 has global Arthur parameter Δ11 ⊕
3Δ8[2]⊕ [6] . 

Incidentally, of course the value of �8(T(2)) implied by this agrees with that computed using 
neighbours. We can go further, now we know that Ff ,Δ ≠ 0 . Since N = 12 and m = 3 , 
N > 2m , so Proposition 10.3 applies, and

so Ff ,Δ is in the image of Θ(3) , necessarily a scalar multiple of Θ(3)(v8) .   ◻

Remark 11.2 It follows from the above that, up to scalar multiples, 

(1) either Hecke eigenform g ∈ S11(Γ0(3),�−3) has degree 2 Hermitian Ikeda lift 

(2) either Hecke eigenform f ∈ S9(Γ0(3),�−3) and Δ ∈ S12(SL2(ℤ)) have degree 3 Hermi-
tian Miyawaki lift 

(3) f as above has degree 4 Hermitian Ikeda lift 

For any fixed m with 0 ≤ m ≤ 4 , the �(m)(vi) such that gi ≤ m are linearly independent. For 
the unique i with gi = m , �(m)(vi) is a cusp form, while those �(m)(vi) with gi < m are killed 
by different powers of the Siegel operator.
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