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Abstract
We prove that at least one of the six numbers β(2i) for i = 1, . . . , 6 is irrational. Here
β(s) = ∑∞

k=0(−1)k(2k + 1)−s denotes Dirichlet’s beta function, so that β(2) is Catalan’s
constant.
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1 Introduction

In this note we discuss arithmetic properties of the values of Dirichlet’s beta function

β(s) =
∞∑

n=1

(−4
n

)

ns
=

∞∑

k=0

(−1)k

(2k + 1)s

at positive even integers s. The very first such beta value β(2) is famously known as Cata-
lan’s constant; its irrationality remains an open problem, though we expect the number to
be irrational and transcendental. The best known results in this direction were given by
T. Rivoal and this author in [4]. Namely, we showed that at least one of the seven num-
bers β(2), β(4), . . . , β(14) is irrational, and that there are infinitely many irrational numbers
among the even beta values β(2), β(4), β(6), . . . . Here we use a variant of the method from
[3,8] to improve slightly on the former achievement; a significant strengthening towards the
infinitude result, based on a further development of the ideas in [2,6], is a subject of the recent
preprint [1] of S. Fischler.
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46 W. Zudilin

Theorem 1 At least one of the six numbers

β(2), β(4), β(6), β(8), β(10), β(12)

is irrational.

In Sect. 2we illustrate principal ingredients of themethod in a particularly simple situation;
this leads to a weaker version of Theorem 1, namely, to the irrationality of at least one number
β(2i) for i = 1, . . . , 8. The details about the general construction of approximating forms
to even beta values and our proof of Theorem 1 are given in Sect. 3.

2 Outline of the construction

For an odd integer s ≥ 3 (which we eventually set to be 17) and even n > 0, define the
rational function

Rn(t) = 26nn!s−3 (2t + n)
∏3n

j=1

(
t − n + j − 1

2

)

∏n
j=0(t + j)s

(1)

and assign to it the related sequence of quantities

rn =
∞∑

ν=1

Rn
(
ν − 1

2

)
(−1)ν =

∞∑

ν=n+1

Rn
(
ν − 1

2

)
(−1)ν . (2)

The sums rn are instances of generalized hypergeometric functions, for which we can use
some standard integral representations to write

rn = 26n(3n + 1)!
n!3

∫

· · ·
∫

[0,1]s
(1 − t1t2 · · · ts) ∏s

j=1 t
n−1/2
j (1 − t j )n dt j

(1 + t1t2 · · · ts)3n+2

(details are given in Lemma 2 below). This form clearly implies that rn > 0 and also gives
access to the asymptotics

lim
n→∞ r1/nn = 2633 max

t∈[0,1]s

∏s
j=1 t j (1 − t j )

(1 + t1t2 · · · ts)3 = 123 max
0<t<1

t s(1 − t)s

(1 + t s)3
. (3)

An important ingredient of the construction is the following decomposition of the quantities
rn .

Lemma 1 For odd s and even n as above,

rn =
s∑

i=1
i even

aiβ(i) + a0,

where ai = ai,n satisfy the inclusions �−1
n ds−i

n ai ∈ Z for i = 0, 1, . . . , s even. Here dn
denotes the least common multiple of the numbers 1, 2, . . . , n, and

�n =
∏

2
√
n<p≤n

pϕ0(n/p) with ϕ0(x) =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ {x} < 1
3 ,

1 if 1
3 ≤ {x} < 1

2 ,

2 if 1
2 ≤ {x} < 1,

the product taken over primes.
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Arithmetic of Catalan’s constant and its relatives 47

Note that from the prime number theorem we deduce the asymptotics

lim
n→∞ d1/nn = e and lim

n→∞ �
1/n
n = eκ,

where

κ = (
ψ

( 1
2

) − ψ
( 1
3

) − 1
) + 2 · (

ψ(1) − ψ
( 1
2

) − 1
) = 0.9411124762 . . . ,

the function ψ(x) denotes the logarithmic derivative of the gamma function.

Remark 1 The analogous construction in [4]makes use of a slightly different rational function
than (1), namely, of

R̃n(t) = 24nn!s−2 (2t + n)
∏n

j=1

(
t − n + j − 1

2

) ∏n
j=1

(
t + n + j − 1

2

)

∏n
j=0(t + j)s

,

so that

Rn(t) = R̃n(t) · 2
2n ∏n

j=1

(
t + j − 1

2

)

n! .

The analogous decomposition of a related quantity r̃n assumes the form

r̃n =
s∑

i=1
i even

ãiβ(i) + ã0,

in which the rational coefficients ãi = ãi,n satisfy �−1
n ds−i

n ãi ∈ Z for i = 1, . . . , s even, but
�−1

n ds2nã0 ∈ Z. The appearance of ds2n as the common denominator in place of dsn changes
the scene drastically and leads to weaker arithmetic applications.

Proof of Lemma 1 Following the strategy in [5,8] we can write the function (1) as sum of
partial fractions,

Rn(t) =
s∑

i=1

n∑

k=0

ai,k
(t + k)i

,

in which �−1
n ds−i

n ai,k ∈ Z for all i and k. Indeed, the rational function (1) is a product of
simpler ones

n!
∏n

j=0(t + j)
=

n∑

k=0

(−1)k
(n
k

)

t + k
,

22n
∏n

j=1

(
t − n + j − 1

2

)

∏n
j=0(t + j)

=
n∑

k=0

(−1)n+k
(2n+2k

2n

)( 2n
n+k

)

t + k
,

22n
∏n

j=1

(
t + j − 1

2

)

∏n
j=0(t + j)

=
n∑

k=0

(2k
k

)(2n−2k
n−k

)

t + k
,

22n
∏n

j=1

(
t + n + j − 1

2

)

∏n
j=0(t + j)

=
n∑

k=0

(−1)k
(4n−2k

2n

)(2n
k

)

t + k
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48 W. Zudilin

and 2t + n; the inclusions ds−i
n ai,k ∈ Z then follow from [8, Lemma 1]. The cancellation by

the factor �n originates from the p-adic analysis of the binomial factors entering

as,k = (2n + 2k)! (4n − 2k)!
(n + k)! (2n − k)! k!3(n − k)!3 · (n − 2k)

(
n

k

)s−3

for k = 0, 1, . . . , n,

and the estimate ordpai,k ≥ −(s − i) + ordpas,k ≥ −(s − i) + ϕ(n/p, k/p) for primes in
the range 2

√
n < p ≤ n, where

ϕ(x, y) = 	2x + 2y
 + 	4x − 2y
 − 	x + y
 − 	2x − y
 − 3	y
 − 3	x − y


is a periodic function of period 1 in both x and y, and from the inequality

ϕ(x, y) ≥ min
y∈R

ϕ(x, y) = min
0≤y<1

ϕ(x, y) = ϕ0(x);

the details can be borrowed from [4, Sect. 7]. Furthermore, the property Rn(−t −n) = Rn(t)
derived from (1) implies ai,k = (−1)i ai,n−k for i = 1, . . . , s and k = 0, 1, . . . , n.

Recall that n is even, so that n/2 = m is a positive integer. The summation over ν in (2)
can also start from −m − 1 (rather than 1 or n + 1), because the function Rn(t) vanishes at
all half-integers between −2n and n. Therefore,

rn =
∞∑

ν=−m−1

Rn
(
ν − 1

2

)
(−1)ν =

s∑

i=1

n∑

k=0

ai,k

∞∑

ν=−m−1

(−1)ν
(
ν + k − 1

2

)i

=
s∑

i=1

n∑

k=0

(−1)k−1ai,k

∞∑

�=k−m

(−1)�
(
� + 1

2

)i

=
s∑

i=1

2iβ(i)
n∑

k=0

(−1)k−1ai,k +
s∑

i=1

m−1∑

k=0

(−1)k−1ai,k

−1∑

�=k−m

(−1)�
(
� + 1

2

)i

−
s∑

i=1

n∑

k=m+1

(−1)k−1ai,k

k−m−1∑

�=0

(−1)�
(
� + 1

2

)i ,

where the rules

∞∑

�=k−m

=
∞∑

�=0

−
k−m−1∑

�=0

if k > m and
∞∑

�=k−m

=
∞∑

�=0

+
−1∑

�=k−m

if k < m

were applied. Thus, the rational numbers

ai = 2i
n∑

k=0

(−1)k−1ai,k for i = 1, . . . , s

satisfy �−1
n ds−i

n ai ∈ Z, while for the quantity

a0 =
s∑

i=1

m−1∑

k=0

(−1)k−1ai,k

−1∑

�=k−m

(−1)�
(
� + 1

2

)i −
s∑

i=1

n∑

k=m+1

(−1)k−1ai,k

k−m−1∑

�=0

(−1)�
(
� + 1

2

)i
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the inclusion �−1
n dsna0 ∈ Z follows from noticing that

din−1

−1∑

�=k−m

(−1)�
(
� + 1

2

)i ∈ Z if 0 ≤ k < m,

din−1

k−m−1∑

�=0

(−1)�
(
� + 1

2

)i ∈ Z if m < k ≤ n.

Finally,

ai = 2i
n∑

k=0

(−1)k−1ai,k = (−1)i2i
n∑

k=0

(−1)k−1ai,n−k

= (−1)i2i
n∑

k=0

(−1)n−k−1ai,n−k = (−1)i ai ,

so that ai vanish for odd i . ��
Set now s = 17, in which case we compute from (3) that

lim
n→∞ r1/nn = e−16.1123070755...,

hence the linear forms

�−1
n d17n rn ∈ Zβ(2) + Zβ(4) + · · · + Zβ(16) + Z

are positive and tend to 0 as n → ∞. This implies that the eight numbers β(2), β(4), . . . ,
β(16) cannot be all rational.

3 General settings

A natural way to generalize the construction in Sect. 2 follows the recipe of [4] and [7].
For an odd integer s ≥ 5, consider a collection η = (η0, η1, . . . , ηs) of integral parameters

satisfying the conditions

0 < η j <
1

2
η0 for j = 1, . . . , s and η1 + η2 + · · · + ηs ≤ s − 1

2
η0,

to which we assign, for each positive integer n, the collection

h0 = η0n + 1, h j = η j n + 1
2 for j = 1, . . . , s.

In what follows, we assume that h0 − 1 = η0n is even—the condition that is automatically
achieved when η0 ∈ 2Z, otherwise by restricting to even n.

Define the rational function

Rn(t) = Rn,η(t) = γn · (2t + h0)
(t + 1)h0−1

∏s
j=1(t + h j )1+h0−2h j

= Rn(−t − h0), (4)

where

γn = 4h0−1

∏s
j=2(h0 − 2h j )!
(
h1 − 1

2

)!2 ,
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50 W. Zudilin

and the (very-well-poised) hypergeometric sum

rn = rn,η =
∞∑

ν=0

Rn(ν)(−1)ν

= γn · 
(1 + h0)
∏q

j=1 
(h j )
∏q

j=1 
(1 + h0 − h j )
s+2Fs+1

(
h0, 1 + 1

2h0, h1, . . . , hs
1
2h0, 1 + h0 − h1, . . . , 1 + h0 − hs

∣
∣
∣
∣ −1

)

.

(5)

Then [4, Lemma 1] implies the following Euler-type integral representation of rn (see also
[4, Lemma 3]).

Lemma 2 The formula

rn = 4h0−1
(1 + h0)



(
h1 + 1

2

)2

(1 + h0 − 2h1)

×
∫

· · ·
∫

[0,1]s

∏s
j=1 t

h j−1
j (1 − t j )h0−2h j

(1 + t1t2 · · · ts)h0
1 − t1t2 · · · ts
1 + t1t2 · · · ts dt1 dt2 · · · dts

is valid. In particular, rn > 0 and

lim
n→∞ r1/nn = (4η0)η0

η
2η1
1 (η0 − 2η1)η0−2η1

· max
t∈[0,1]s

∏s
j=1 t

η j
j (1 − t j )η0−2η j

(1 + t1t2 · · · ts)η0 .

Computation of the latter maximum is performed in [4, Sect. 4, Remark], and the result
is as follows.

Lemma 3 Assume that x0 is a unique zero of the polynomial

x
s∏

j=1

(
(η0 − η j ) − η j x

) −
s∏

j=1

(
η j − (η0 − η j )x

)

in the interval 0 < x < 1, and set

x j = η j − (η0 − η j )x0
(η0 − η j ) − η j x0

for j = 1, 2, . . . , s.

Then

max
t∈[0,1]s

∏s
j=1 t

η j
j (1 − t j )η0−2η j

(1 + t1t2 · · · ts)η0 =
∏s

j=1 x
η j
j (1 − x j )η0−2η j

(1 + x1x2 · · · xs)η0 .

Arithmetic ingredients of the construction are in line with the strategy used in the proof
of Lemma 1. For simplicity we split the corresponding statement into two parts. Define

N = min
1≤ j≤s

{h j − 1
2 } and M = max{h0 − 2N − 1, h1 − 1

2 },

and notice that the poles of the rational function (4) are located at the points t = −k − 1
2 for

integers k in the range N ≤ k ≤ h0 − N − 1.

Lemma 4 The coefficients in the partial-fraction decomposition

Rn(t) =
s∑

i=1

h0−N−1∑

k=N

ai,k
(
t + k + 1

2

)i
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of (4) satisfy
ai,k = (−1)i ai,h0−1−k (6)

and
�−1

n ds−i
M ai,k ∈ Z (7)

for i = 1, . . . , s and N ≤ k ≤ h0 − N − 1, where the product over primes

�n =
∏

√
2h0<p≤M

pϕ0(n/p)

is defined through the 1-periodic functions

ϕ0(x) = min
0≤y<1

ϕ(x, y)

and

ϕ(x, y) = 	2(η0x − y)
 + 	2y
 − 	η0x − y
 − 	y
 − 2	η1x
 − 	(η0 − 2η1)x


+
s∑

j=1

(	(η0 − 2η j )x
 − 	y − η j x
 − 	(η0 − η j )x − y
).

Proof For this, we write the function Rn(t − 1
2 ) as the product of 2t + h0 − 1, the three

integer-valued polynomials

4h
∗
1
(
t + 1

2

)
h∗
1

h∗
1!

,
4h0−2h1

(
t + h∗

1 + 1
2

)
h0−2h1

(h0 − 2h1)! ,
4h

∗
1
(
t + h0 − h∗

1 − 1
2

)
h∗
1

h∗
1!

,

where h∗
1 = h1 − 1

2 = η1n, and the rational functions

(h0 − 2h j )!
(
t + h j − 1

2

)
1+h0−2h j

for j = 1, . . . , s.

Then [4, Lemmas 4, 5, 10, 11] and the Leibniz rule for differentiating a product imply the
inclusions ds−i

M ai,k ∈ Z and estimates

ordpai,k ≥ −(s − i) + ϕ
( n

p
,
k

p

)

for the p-adic order of the coefficients. These are combined to conclude with (7).
The property (6) follows from the symmetry of the rational function (4). ��

Lemma 5 The decomposition

rn =
s∑

i=1
i even

aiβ(i) + a0 ∈ Qβ(2) + Qβ(4) + · · · + Qβ(s − 1) + Q (8)

takes place, where �−1
n ds−i

M ai ∈ Z for i = 0, 1, . . . , s even, and �n is defined in Lemma 4.

Proof Since the function (4) vanishes at t = −1,−2, . . . ,−h0 + 2, we can shift the sum-
mation in (5):

rn =
∞∑

ν=−(h0−1)/2

Rn(ν)(−1)ν =
s∑

i=1

h0−N−1∑

k=N

(−1)kai,k

∞∑

ν=−(h0−1)/2

(−1)ν+k

(
ν + k + 1

2

)i .
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52 W. Zudilin

Now proceeding as in the proof of Lemma 1 we arrive at the desired decomposition (8) with

a0 =
s∑

i=1

(h0−3)/2∑

k=N

(−1)kai,k

−1∑

�=k−(h0−1)/2

(−1)�
(
� + 1

2

)i

−
s∑

i=1

h0−N−1∑

k=(h0+1)/2

(−1)kai,k

k−(h0+1)/2∑

�=0

(−1)�
(
� + 1

2

)i

and

ai = 2i
h0−N−1∑

k=N

(−1)kai,k,

with ai vanishing for i odd in view of the property (6). The inclusions for the coefficients in
(8) therefore follow from Lemma 4 and

dih0−2N−2

−1∑

�=k−(h0−1)/2

(−1)�
(
� + 1

2

)i ∈ Z if N ≤ k ≤ h0 − 3

2
,

dih0−2N−2

k−(h0+1)/2∑

�=0

(−1)�
(
� + 1

2

)i ∈ Z if
h0 + 1

2
≤ k ≤ h0 − N − 1.

��
Proof of Theorem 1 Take s = 13 and

(η0, η1, . . . , η13) = (31, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12),

hence M = 11n. Then

lim
n→∞ r1/nn = exp(−100.73966317 . . .)

and

ϕ0(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8 if {x} ∈ [ 7
24 ,

3
10

)
,

7 if {x} ∈ [ 3
31 ,

1
10

) ∪ [ 6
31 ,

1
5

) ∪ [ 9
31 ,

7
24

) ∪ [ 19
24 ,

4
5

) ∪ [ 8
9 ,

9
10

)
,

6 if {x} ∈ [ 1
11 ,

3
31

) ∪ [ 2
11 ,

6
31

) ∪ [ 3
11 ,

9
31

) ∪ [ 7
20 ,

2
5

) ∪ [ 9
20 ,

1
2

)

∪[ 11
20 ,

3
5

) ∪ [ 13
20 ,

7
10

) ∪ [ 3
4 ,

19
24

) ∪ [ 6
7 ,

8
9

)
,

5 if {x} ∈ [ 7
31 ,

1
4

) ∪ [ 7
22 ,

7
20

) ∪ [ 3
7 ,

9
20

) ∪ [ 17
31 ,

11
20

) ∪ [ 19
31 ,

5
8

)

∪[ 20
31 ,

13
20

) ∪ [ 5
7 ,

8
11

) ∪ [ 23
31 ,

3
4

)
,

4 if {x} ∈ [ 1
10 ,

1
8

) ∪ [ 1
5 ,

7
31

) ∪ [ 3
10 ,

7
22

) ∪ [ 6
11 ,

17
31

) ∪ [ 3
5 ,

19
31

)

∪[ 7
11 ,

20
31

) ∪ [ 8
11 ,

23
31

)
,

2 if {x} ∈ [ 1
24 ,

1
11

) ∪ [ 3
22 ,

2
11

) ∪ [ 1
4 ,

3
11

) ∪ [ 13
24 ,

6
11

) ∪ [ 5
8 ,

7
11

)

∪[ 17
20 ,

6
7

) ∪ [ 19
20 , 1

)
,

1 if {x} ∈ [ 1
31 ,

1
24

) ∪ [ 1
8 ,

3
22

) ∪ [ 9
22 ,

3
7

) ∪ [ 1
2 ,

13
24

) ∪ [ 7
10 ,

5
7

)

∪[ 4
5 ,

9
11

) ∪ [ 26
31 ,

17
20

) ∪ [ 9
10 ,

10
11

) ∪ [ 29
31 ,

19
20

)
,

0 otherwise,
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so that

lim
n→∞(�−1

n d13M )1/n = exp(100.23354349 . . .).

This means that the positive linear forms

�−1
n d13M rn ∈ Zβ(2) + Zβ(4) + · · · + Zβ(12) + Z

tend to 0 as n → ∞. Thus, at least one of the even beta values in consideration must be
irrational. ��

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.
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