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Abstract This paper is devoted, first of all, to give a complete unified proof of the characteri-
zation theorem for compact generalized Kihler manifolds. The proof is based on the classical
duality between “closed” positive forms and “exact” positive currents. In the last part of the
paper we approach the general case of non compact complex manifolds, where “exact” pos-
itive forms seem to play a more significant role than “closed” forms. In this setting, we state
the appropriate characterization theorems and give some interesting applications.
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1 Introduction

In his fundamental work [35], D. Sullivan started to study compact complex manifolds using
‘cycles’ and, more generally, positive currents. As he says in the Introduction:

“The idea is to consider currents which are ‘directed’ by an a-priori given field of cones in
the spaces of tangent p-vectors. Such a positivity condition leads to a compact convex cone of
currents with a compact convex subcone of cycles (closed currents) (...) Moreover, because
of the compactness one can apply the basic tools of linear analysis such as the theorems of
Hahn-Banach and Choquet. The former allows one to construct closed C*°-forms satisfying
positivity conditions (on the cone field) because of the duality between forms and currents.”
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He observed that a compact complex n-dimensional manifold M has natural cone struc-
tures, defined by the complex structure J: atapoint x, C, (x) is the compact (i.e., with compact
basis, see Definition I.1 ibidem) convex cone in Az, (7] M) generated by the positive com-
binations of p-dimensional complex subspaces. Moreover, a smooth form Q € £27(M) is
transversal to the cone structure C, if, for every x € M, and for every v € C),(x), v # 0, it
holds 2 (v) > 0 (see Definitions 1.3 and 1.4 ibidem).

The cone C of structure currents associated to the cone structure C), is the closed convex
cone of currents generated by the Dirac currents associated to elements of C,(x), x € M. In
C, the closed currents are called structure cycles.

Sullivan proved, simply using the Hahn—Banach theorem, that on a compact complex
manifold M (Theorem 1.7):

(a) If no closed transverse form exists, some non-trivial structure cycle is homologous to
zero in M.

(b) If no non-trivial structure cycle exists, some transversal closed form is cohomologous
to zero.

He gave some relevant applications: to symplectic structures on a compact complex manifold
(sections 10 and 11), and, partially, to compact Kéhler manifolds (III.15 and II1.16).

Later on, Harvey and Lawson [25] and Michelsohn [26] apply the same ideas to compact
Kihler and balanced manifolds, getting an ‘intrinsic characterization” of Kéhler and balanced
compact manifolds. While Sullivan considered a transversal symplectic 2-form, in duality
with null-homologous structure cycles, Harvey and Lawson want to characterize by means of
positive currents the Kihler condition, i.e. the datum of a closed strictly positive (1, 1)-form.
It turns out that the right space of currents is that of positive currents of bidimension (1, 1),
which are (1, 1)-components of boundaries (i.e., T = (dS)1,1); such currents are structure
currents in the sense of Sullivan, but no more structure cycles! (see [25, p. 170]). Hence they
are no more flat currents, in general, and the closeness of the space of (1, 1)-components of
boundaries has to be proved, to allow the use of a separation theorem.

The same considerations apply to (n — 1, n — 1)-components of boundaries in the work
of Michelsohn [26] and to the case 1 < p < n — 1, which has been studied starting from
[4], using both closed transverse (p, p)-forms (p-Kéhler forms) and closed real transverse
2 p-forms (p-symplectic forms).

Some years later, also other “closeness” conditions on the fundamental forms of hermitian
metrics have been studied: in particular, pluriclosed (i.e. closed with respect to the operator
i99) metrics (see [18]); such metrics are often called strong Kdihler metrics with torsion (SKT)
(see among others [19] or [20]). Moreover, (n — 1)-symplectic metrics are called strongly
Gauduchon metrics (sG) by Popovici (see [28,29]), while (n — 1)-pluriclosed metrics are
called standard or Gauduchon metrics.

Hence we proposed in [1] a unified vision of the whole subject, by introducing for every
p, 1 < p <n — 1, the four classes of generalized p-Kihler manifolds (see Sect. 3).

This paper is devoted, first of all, to give a complete unified proof of the characterization
theorem for compact generalized p-Kéhler manifolds. The proof is based on the classical
duality between “closed” positive forms and “exact” positive currents.

We develop this kind of ideas in the other parts of the paper in two directions: reversing
the role of closeness and exactness (“‘closed” positive currents and “exact” positive forms),
and approaching the general case of non compact complex manifolds.
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As a matter of fact, the natural environment of “exact” p-Kéhler forms is that of non
compact manifolds; indeed, C" and Stein manifolds are Kéhler with a form w =i d0u (u is
a smooth strictly plurisubharmonic function).

Moreover, g-complete manifolds, and 1-convex manifolds with exceptional set S of dimen-
sion g — 1, are p-Kahler for ever p > ¢, with a 99d-exact form.

Thus in Sect. 8 we state the convenient characterization theorems in the non compact case
and give some interesting applications.

The plane of the paper is as follows:

In Sect. 2 we discuss the notion of positivity of forms, vectors and currents, while in
Sect. 3 we introduce the generalized p-Kéhler manifolds and their characterization by “exact”
positive currents in the compact case. The complete proof of the characterization Theorem 3.2
is given in Sect. 4, where we introduce also the machinery of exact sequences of suitable
sheaves, that we shall use also in the second part of the paper.

In Sect. 5 we propose a characterization theorem with “closed” currents and “exact” forms
on compact manifolds, also inspired by the work of Sullivan, which makes sense for p > 1.

From Sect. 6 on, we try to put exact generalized p-Kéhler forms, or also ‘locally’ gen-
eralized closed p-Kéhler forms, on some classes of non compact manifolds. We collect in
Sect.7 the machinery to get some information about Bott—Chern and Aeppli cohomology,
and in Sect. 8 the characterization theorems on non compact manifolds.

2 Basic tools

Let X be a complex manifold of dimensionn > 2, let p be aninteger, | < p < n.The purpose
of this section is to discuss positivity of (p, p)-forms, (p, p)-vectors and (p, p)-currents:
we refer to [17,24] as regards notation and terminology.

Positivity involves only multi-linear algebra; therefore, take a complex vector space E of
dimension n, its associated vector spaces of (p, g)-forms A?*9(E™*), and a basis {¢1, ..., ¢,}
for E*.

Let us denote by ¢; the product ¢;; A --- A @i, where I = (iy, ..., 1)) is an increasing
multi-index. Call o), := ip22*1’; thus, if ¢, n € APO(E*), then OpC AT = opn A Z, s0
that o,n A 7 is real; hence we get obviously that {o,¢; A @7, [I| = p} is a basis for
ARP(E*) :={¥ € AP'P(E*); ¥ = U} and that

i _ i o _
dU:(5‘/’1/\¢’]>/\"'/\<§‘/)n/\§0n>:O'n(/)l/\gﬂly I'=(,...,n)

is a volume form. We call a (n, n)-form t positive (strictly positive) if t = cdv, ¢ > 0 (c >
0). We shall write T > 0 (t > 0).
Fromnowon,letl < p <n—1landletk :=n — p.

Definition 2.1 (1) n € A?9(E*) is called simple (or decomposable) if and only if there are
{¥1,...,¥p} € E*suchthat n = Yy A -+ A ).

(2) Qe AR (E*) is called strongly positive (2 € SPP)ifand only if @ = 0, >~ 1; AT},
with n; simple.

(3) Q@ € ARP(E¥) is called positive (2 € PP) if and only if for all n € AKO(E*), the
(n, n)-form t ;= Q A oxn A7 is positive.

4) Q e ARP(E*) is called weakly positive (2 € W PP) if and only if for all ; € E*, and
forall I = (iy,...,ik), LA oY A % is a positive (n, n)-form. It is called transverse
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220 L. Alessandrini

when it is strictly weakly positive, that is, when € A oxy; A V7 is a strictly positive
(n, n)-form for oy ry Ay #0 (i.e. ¥y, ..., ¥y, linearly independent).

2.1.1 Remarks

(a) The sets PP, SPP, WPP and their interior parts are indeed convex cones; moreover,
there are obvious inclusions: SP? € PP € WPP C ARV (E¥)

(b) When p = 1or p =n — 1, the three cones coincide, since every (1, 0)-form is simple
(and hence also every (n—1, 0)-formis simple). In the intermediate cases, | < p < n—1,
the inclusions are strict [24].

(c) Using the volume form dv, we get the pairing

f i APP(E*) x AMKE*) > C,  f(Q, W)dv=Q A W.
Thus:

QeWPP «— YU eSPL.QAV>0.
QeSPP & VU eWPK, QAW >0.

(d) Moreover, it holds also (see [24, Theorem 1.2])
QePl < VU eP QAU>0.

As regards vectors, consider A, ,(E), the space of (p, g)-vectors: as before, V € A, o(E)
is called a simple vector if V.= vy A ... A vy for some v; € E; in this case, when V # 0,
o, LV AV is called a strictly strongly positive (p, p)-vector. We can identify strictly strongly
positive (p, p)-vectors with p-planes in C", i.e. with the elements of G¢(p, n); to every plane

corresponds a unique unit vector.

Proposition 2.2 Q € Aﬁ’p(E*) is transverse if and only ifQ(U;l V AV) > 0 for every
Ve Apo(E), V # 0 and simple.

Proof Using the pairing f, we get an isomorphism g : A) ,(E) — Ak’k(E*) given as:
f(2,8(A) = Q(A), ie.

F(Q, g(A)dv = QA g(A) := Q(A)dv, VA € A, ,(E),¥Q e APP(E¥).

If {e1, ..., ey} denotes the dual basis of {¢, ..., ¢,}, it is not hard to check that for all
I=(1,....ip), 800, er Nep) = orpy Agy with J ={1,...,n} — L.
Thus the isomorphism g transforms (p, p)-vectors of the form o 'V AV, with V simple,

p
into strongly positive (k, k)-forms (of the form oxn A 77, with 1 simple). Hence we get

Qo,'VAV)dv=QAg,'VAV)=QAan AT
and the statement follows. ]

Let us turn back to a manifold X; for 0 < p < n, we denote by DP'?(X)R the space of
compactly supported real (p, p)-forms on X and by £7-? (X)R the space of real (p, p)-forms
on X.

Their dual spaces are: D’p, » (X)r (also denoted by prkk (X)r, where p+k = n), the space
of real currents of bidimension (p, p) or bidegree (k, k), which we call (k, k)-currents, and
5;:, » (X)R (also denoted by &£’ k.k (X)Rr), the space of compactly supported real (k, k)-currents
on X.
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Forms and currents defining generalized p-Kéihler structures 221

Definition 2.3 The form Q € £P-P(X)r is called strongly positive (resp. positive, weakly
positive, transverse or strictly weakly positive) if:

VxeX, Q e€SPP(T.X*) (tesp. PP (T|X*), WPP(T.X*), (WPP(T/X*)").
These spaces of forms are denoted by SP?(X), PP (X), WPP(X), (W PP(X))".

Definition 2.4 Let T € 51,77P(X)]R be a current of bidimension (p, p) on X. Let us define:
weakly positive currents T € WP,(X) < T() >0 VQ e SPP(X).
positive currents T € P,(X) <= T(Q) >0 V Q e PP(X).
strongly positive currents T € SP,(X) <= T(Q) >0 V Q e WPP(X).

Notation Q2 > 0 denotes that €2 is weakly positive; 2 > 0 denotes that €2 is transverse;
T > 0 means that T is strongly positive. Thus:
2.4.1 Claim 2 > 0 if and only if 7(2) > O forevery T > 0, T # 0.

Remarks Obviously the previous cones of currents satisfy: SP,(X) € P,(X) C
W P,(X). The classical positivity for currents (i.e. “positive in the sense of Lelong”) is
strong positivity; Demailly [17, Definition III.1.13] does not consider P,(X), and indicates
W P, (X) as the cone of positive currents; there is no uniformity of notation in the papers of
Alessandrini and Bassanelli.

Moreover, let us recall that, if f is a holomorphic map, and 7 > 0, then f,.T > 0.

The differential operators d, 3, d extends naturally to currents by duality; thus we have two
De Rham complexes, (£*, d) and ((D)*, d); but the embedding i : (£*,d) — ((D')*,d)
induces an isomorphism at the cohomology level. This fact applies also to other cohomolo-
gies, as Bott—Chern and Aeppli. Since the notation has changed during the last 50 years, we
recall them below:

lp € e X)pridg = 0}
{i000; a € EF-LE1(X)R}

{p € EM(X)r; 1909 = 0}

(o = 0a + da; a € ERK—1(X))
{p € E¥(X)R; dp = 0)

{p € EFFXDRs @ = di € EXH(X)R)
{¢ € &1 (X)Rr; d¢ =0}

{t €&I(Xr: ¢ =dn;n € E7HXOR)

In general, when the class of a form or a current vanishes in one of the previous cohomology
groups, we say that the form or the current “bounds” or is “exact”.

HEXR) = AGE(X) = Hgh (X, R) =

k.k k,k k,k .
HYSOGR) = Ve (X) = HY (X, R) =

Hy (XU R) =

H) (X, R) :=

3 Generalized p-Kihler conditions on compact manifolds

We introduced p-Kihler manifolds in [4] and then in [5], and studied them mainly in the
compact case: p-Kihler manifolds enclose Kéhler and balanced manifolds, and seem to be
the better generalization of the Kihler setting. Later on, also pluriclosed (SKT) manifolds
have been proposed as a good generalization of Kdhler manifolds.

Thus a deep investigation of this type of structures (no more metrics, in general) was
needed: we proposed in [1] a general setting, those of generalized p-Kdihler manifolds, which
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222 L. Alessandrini

enclose all the known classes of non-Kihler manifolds that can be characterized by a trans-
verse “closed” form. In the last years, some of them have been studied (not with the same
name!) by other authors: hence we give in Remark 3.1.2 a sort of dictionary; moreover, a brief
survey of the whole history can be seen looking at the proofs of the suitable characterization
theorems, as we indicate in the remarks after Theorem 3.2.

Definition 3.1 Let X be a complex manifold of dimension n > 2, let p be an integer,

l<p<n-—1.

(1) X is a p-Kdhler (pK) manifold if it has a closed transverse (i.e. strictly weakly positive)
(p, p)-form Q € EPP(X)R.

(2) X is a weakly p-Kdihler (pWK) manifold if it has a transverse (p, p)-form Q with Q2 =
dda for some form .

(3) X is a p-symplectic (pS) manifold if it has a closed transverse real 2 p-form W € £27(X);
that is, d¥ = 0 and Q := W?-? (the (p, p)-component of W) is transverse.

(4) X is a p-pluriclosed (pPL) manifold if it has a transverse (p, p)-form Q with 39 = 0.

Notice that: pK =— pWK = pS = pPL; as regards examples and differences
under these classes of manifolds, see [1-3].

When X satisfies one of these definitions, it is called a generalized p-Kéhler manifold;
the form €2, called a generalized p-Kihler form, is said to be “closed”.

3.1.1 Remark As regards Definition 3.1(3), let us write the condition dW = 0 in terms
of a condition on 92, as in the other statements; when ¥ = Za +b=2p Wb then dW = 0 is
equivalent to:

() awn—J2p=nti 4 gyn—Ji=L2p—n+j+l — 0 for j =0,...,n—p—1,whenn < 2p and
(i) aw?P0 =0, aw2r—iJ 4 gw2r—i=Litl =0 for j =0,..., p — 1, whenn > 2p.

In particular, 0Q2 = W PP = —gwPtLp=1 (which s the only condition when p = n—1,
as remarked also in [28]).

3.1.2 Remark 1PL corresponds to pluriclosed [18] or SKT [20]; 1S to hermitian sym-
plectic [34], 1K to Kihler. Moreover, (n — 1)PL manifolds (or metrics) are called standard
or Gauduchon; (n — 1)S corresponds to strongly Gauduchon [28,36], (n — 1) WK manifolds
are called superstrong Gauduchon [31], (n — 1)K corresponds to balanced [26].

Let us go to the characterization theorem. As in the work of Harvey and Lawson [25],
some questions arise about the natural operators as i 39, d, d + 9: do they have closed range?
Let us recall how the problem is solved in [25] when M is compact, to emphasize the crucial
points of the general case. The authors prove in Sect. 2 that, when M is compact:

(1) For every p, dimHP(M,H) < oo, where H is the sheaf of germs of pluriharmonic
functions; this is due to the finite dimensionality of H/ (M, R) and H/ (M, ©), using
the exact sequence (4.11) in Sect. 4.

(2) The image of d : ELXY(M)r — ZV 1 (M)p = (¥ € (21 (M) & EV2(M))r/dy = 0}
has finite codimensionin Z'! (M)g, because H>(M, H) ~ Z"1 (M)r/dE"! (M)R. This
fact is due to the cohomology sequences coming from the exact sequence of sheaves
(4.1) in Sect. 4.

(3) The operator d : 81’1(M)R — (52‘1(M) &b 51’2(M))R has closed range, since by (2)
the image of d is closed in ZLH M.

(4) On currents, let 7 : Eé (M) — 51,1 (M)R be the natural projection; the operator dj ; :
(&1 (M) & E] ,(M))r — & (M) given by di,1 = 7 o d restricted to (&5 (M) &
&} ,(M))R, is the adjoint operator to d : EM1(M)r — EXN M) ® E2(M))g, so that
it has closed range [see (4.8) and Sect. 4].
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Forms and currents defining generalized p-Kéihler structures 223

(5) Thus Imd, i, that is, the space of currents which are (1, 1)-components of a boundary,
is closed in &] | (M)R.

We shall develop these steps to get the proof of the general characterization theorem.
Thus, in the same vein, we prove:

Theorem 3.2 (1) Characterization of compact p-Kihler (pK) manifolds.

M has a strictly weakly positive (p, p)-form Q with 3Q2 = 0, if and only if M has no
strongly positive currents T # 0, of bidimension (p, p), such that T = 9S + 9S for
some current S of bidimension (p, p+1) (i.e. T is the (p, p)-component of a boundary).

(2) Characterization of compact weakly p-Kihler (p WK) manifolds.

M has a strictly weakly positive (p, p)-form Q with Q2 = 9da for some form «, if
and only if M has no strongly positive currents T # 0, of bidimension (p, p), such that
T = S + 3S for some current S of bidimension (p, p + 1) with 39S = 0 (i.e. T is
closed and is the (p, p)-component of a boundary).

(3) Characterization of compact p-symplectic (pS) manifolds.

M has a real 2p-form ¥V = Za+b:2P Wb such that dV = 0 and the (p, p)-form
Q 1= WPP s strictly weakly positive, if and only if M has no strongly positive currents
T # 0, of bidimension (p, p), suchthat T = dR for some current R (i.e. T is a boundary,
that is, T = 39S 4 08 with S = 0).

(4) Characterization of compact p-pluriclosed (pPL) manifolds.

M has a strictly weakly positive (p, p)-form Q with 39Q = 0, if and only if M has no
strongly positive currents T # 0, of bidimension (p, p), such that T = 00A for some
current A of bidimension (p + 1, p + 1).

Remarks Theorem 3.2(1) for p = 1 was proved in [25, Theorem 14];

Theorem 3.2(1) for p = n — 1 was proved in [26, Theorem 4.7];

Theorem 3.2(1) for a generic p was proved in [4, Theorem 1.17];

Theorem 3.2(2) for p = 1 was proved in [25, Theorem 38]; in fact, Theorem 3.2(2) is
related to a question posed by Harwey and Lawson in their paper (Section 5 in [25]), about the
use of closed currents in characterization theorems (this is important because closed positive
currents are flat in the sense of Federer).

Theorem 3.2(3) for p = 1 was proved in [35, Theorems I11.2 and III.11];

Theorem 3.2(3) for a generic p was proved in [4, Theorem 1.17];

Theorem 3.2(3) for p = n — 1 is proved also in [28, Proposition 3.3].

Theorem 3.2(4) for p = 1 is proved in [18, Theorem 3.3].

Recall also a result of Gauduchon [21] (for p = n — 1), who proved that every compact
n-dimensional manifold is (n — 1) PL. As a matter of fact, this result is now a corollary of
the previous theorem, since for p = n — 1, the current A in Theorem 3.2(4) reduces to a
plurisubharmonic global function on a compact complex manifold, hence to a constant. Such
a metric is also called a standard (or Gauduchon) metric.

We shall give a complete proof of all statements in the next section.
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224 L. Alessandrini

4 Proof of the characterization Theorem 3.2

Let us firstly recall some well-known facts about Fréchet topological vector spaces and
Fréchet sheaves that we shall use here and in Sects. 5 and 8.

Lemma 4.1 (see [32, IV.7.7]) Let L, M be Fréchet spaces, and let f : L — M be a
continuous linear map. Then f is a topological homomorphism if and only if f has closed
range, that is, if and only if % is a Hausdorff (hence Fréchet) t.v.s.

Lemma 4.2 (see[33,p.21]) Let L, M be Fréchet spaces, andlet f : L — M be a continuous
linear map whose image has finite codimension. Then f is a topological homomorphism (i.e.
Imf is Hausdorff, i.e. Imf is closed in M).

Lemma 4.3 Let L, M be Fréchet spaces, let f : L — M be a continuous surjective linear
map. Let N be a closed subspace of L with finite codimension. Then f(N) is closed.

Proof Consider the induced map g : % — LN) which is surjective: hence f(N) has finite
codimension in M. Now N is a Fréchet space, and f|y : N — M satisfies Lemma 4.2, thus
f(N) is Hausdorff. O

Theorem 4.4 (Hahn-Banach Theorem, see [32, Theorem I1.3.1]) Let E be a topological
vector space, let F be a linear manifold in E, and let A be a non-empty convex open subset
of E, not intersecting F. There exists a closed hyperplane in E, containing F and not
intersecting A.

Theorem 4.5 (Separation theorem, see [32, Theorem I1.9.2]) Let E be a locally convex space,
let A, B non-empty disjoint convex subsets of E, such that A is closed and B is compact.
There exists a closed hyperplane in E, strictly separating A and B.

Let us go now to the preliminaries of the proof of Theorem 3.2.

Let X be a complex n-dimensional manifold; for n > p,q > 0, consider the spaces
EP1(X), endowed with the usual topology of the uniform convergence on compact sets: they
are Fréchet spaces. Their topological dual spaces (with the weak topology) are the spaces
5;,’(1 (X), and the pairing is denoted by S(«) or (S, ) forevery S € E;,,q (X)anda € EP9(X).
If F C £P9(X), S € F* means that (S, ) =0 foralla € F.

Moreover, we denote as usual by Eﬁ’q the sheaf of germs of real (p, g)-forms, and by Q/
the sheaf of germs of holomorphic j-forms.

Notice that in [25, Proposition 1] only the following resolution of the sheaf H is needed:

i90
,0 e 1

0—H g 'L @ethn S et — . “.1)

where j is the standard inclusion. On the contrary, our situation is much more complicated,
because it involves in the resolution of 7 also sheaves whose cohomology is not trivial (see
f.i. [8, p. 259]; the notation stems mainly from [11,12]).

For every p > 0, we consider the following resolution of the sheaf H:

p p—1

Op.—1 0p.0 _
0—H = 0% crl

L ptl Opapst Op2p+2 2p+4
5]§+ p+1 r2p (gp+2,p+l@5p+1,P+2)R pp ng+ — ... “4.2)

_1 9p.2p-1 0p,2
Br B T gl I
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Here,
=@ e @_g e

S = (@ eI Ry forp < j<2p—1

)R, forO0 < j<p-—1;

and the maps are, respectively,

(1) op,—1(h) = (—dh, h, —dh),
2) for0<j<p—-2(3fp>1):

j+1 j—k,k\J —j+1
Up,j(‘pj+ ’ {aj }]](_ ,(PJJF )

— (_a(pj-i-l, 8()[];0 +(/JJ+1 {aak+1 ,j—k— 1+8O[k] k}[ 1 7]_5_1 +5O[0’j, _5¢j+1);
. _1— -1 —
(3) for j = p—l:op p_1(?, fa?~ TR0 GP)

— (9?10 P (JaP 1k aap—2—k,k+l}ll€7=—g’¢p + 30PNy, |
@) forp<j<2p—1. inyj(ia”*k*-/:p*k}iigi]) = ({daP—ki=ptk 4 gop—k=li=prhtlpr =l
(in particular, op2p-1(B, B) = (0B + 9B))
(5) for j =2p:op2p =100;
(6) for j =2p+1land j =2p+2:0p2p+1 = 0p2pt2 =d.

. o ody g
Moreover, we shall denote by d the operator d acting on s-forms: £y = é‘ﬁ"'l.

When p = 0, we shall use sequence (4.1), i.e.

0— 15 g0 el

M (@2l ge )y et — ...

Let us explain this complicated notation, where maps have two indices: p > Oand j > —1.
The firstindex, p, is related to the domain of the operator: o}, _ means that we are considering
the pth resolution of the sheaf H, where there are p sheaves of type £ and p sheaves of type
BB before 8]15’1’ , which is followed by Eﬂlgﬂ’p 1 For instance, if p = 2, the resolution is

02,0 02,1 022 023 22024

0>H S LB BB E 2

5 3,

The second index, j, which depends on p, indicates the position of the operator in the sequence
(starting from j = —1), and therefore this index gives the definition of the operator, according
to the rules (1)—(6). For instance, 07 3 is the fifth operator in the above sequence, so that by
rule (4) we have

0238, B) = 0p2p—1(B, B) = (0B + 0P),
while o7 > is the fourth operator and by the same rule we get

(7232(“2’0, a],]’ a0,2) — O—p,2p—2({ap_kyp_2+k}]2(‘=0) — (5“2’0 _"_ aa],]’gal,l + aao,Z).

Example p = 1.
The exact sequence of sheaves (4.2) becomes

1.1 012

01,3
— &y = 522

10 1 01,1

0> HS 0% 5 E? PR — ... (4.3)
i.e.

0->HS Q@ a0 ) Y Vet B el W22 (3 2ged)y..
(4.4)
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where the maps are, respectively,

o1,—1(h) = (=0h,h,—0h), oio(p, f,9,)=(p+3f.df +9),
o1,1(8.B) = 3B+ 0B), 012=1i0d9 o013 =4d, and so on.

Atsection’s level, the operators (but the differential operator d) are named with the ‘capital
sigma’; in particular, we shall use:

p I2p+]

PP (0g TS EPP (X)z Ertreerrth(Xr 45
where X, 12,(0) = 1000, Tp12p11(R) = (02, 59),

112111

Errt e er~t (X EPP(XR I e (X (4.6)
where £, 2,-1(8, B) = 3B + 9P, zp,z,,(sz) =00,
2071 0r B e (0 21 (0. 47
We consider also their dual operators, acting on currents, in particular:

]1 1217+I

p—1,2
Epitp ®E, pr) R &, NXR =t € 1, DXR, (48
where ), 5 (S,8) =98 +8S, X, (T)=iddT,

p 2p p 2p—1

(Epi1 prD R = (€, NXR (€)1 © &1 X (4.9)
where X/ , (T) =i83T. ¥/, (T)=(dT.dT),
d/ /
(&, 1) (XR Ed E)XR = (Szp DX)R. (4.10)

Using this notation, we can rewrite the statements of Theorem 3.2 in a useful manner: f.i.,
in statement (1), looking at (4.5) and (4.8), the condition 42 = O (which implies d2 = 0
since €2 is real), is equivalent to: 2 € KerX,_ 2,41 and, on the other hand, T = S +9S
means T € Im)Z);j_l,2 41

Moreover, in statement (2) of Theorem 3.2, it is not hard to check that the condition
9Q = 99« can be expressed as: 2 € (KerX,_12p41+ImX, 7,_1), while the condition on
T (closed and the (p, p)-component of a boundary) means exactly that T € (ImX’ N
Kery ), and so on.

p—1.2p+1
p.2p—1
Summing up, we get the following version of Theorem 3.2:

Theorem (3.2)’ Let M be a compact complex manifold of dimensionn > 2 andletl < p <
n—1.

(1) There is a real transverse (p, p)-form € on M such that Q € KerX, 2,41 (ie.
02 vanishes) <= there are no non trivial currents 7 € 5;), p(X)R, T >0, T e
Im 2;71,2p+1 (i.e. T is the component of a boundary).

(2) There is a real transverse (p, p)-form € on M such that Q@ € (KerX,_j2p4+1 +
ImX,2p-1) (€. 0Qis 9d-exact)) <= there are nonon trivial currents 7 € Eé’p(X)R,
T>0,T e (KerZ’p!zp_1 n ImZ;_lysz) (i.e. T is closed and the component of a
boundary).

(3) Thereisareal2p-form W with WP+P := Q transverseon M suchthat ¥ € Kerd;, <=
there are no non trivial currents 7 € Eé’p(X)R, T>0,Te Imdép.
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(4) There is a real transverse (p, p)-form € on M such that 2 € KerX,», (i.e. Qis 90-
closed) <= there are no non trivial currents 7' € 51: p(X)R, T>0,T¢cImX’

(i.e. T is dd-exact).

P2p

Remark Notice that the kind of positivity of forms and currents (see Definitions 2.3 and 2.4)
is not relevant: indeed, we could carry on the proof also with the cones P, (M) or W P, (M)
(and the corresponding dual cones of forms), as the forthcoming proof shows.

Proof (of Theorem 3.2 or (3.2)’). In all cases, one part of the proof is simple: if there exist
both the form €2 and the current T as given in the theorem, we would have by Claim 2.4.1:
(T, 2) > 0. But:
Case (1) (T,2) = 0 because @ € KerX,_12p4+1 and T € Im%’
(KerSp_10p4)™ _ _ o _
Case (2) (T, Q) = (05 + 95, Q) = (5,099Q) + (S,02) = (S, 00a) + (S, —dda)
—(00S,a) + (008, @) = 0.
Case (3) (T, 2) = 0 because (T,Q2) = (T,¥) and ¥ € Kerdyp, T € Imdép
(Kerdyp)*.
Case (4) (T, 2) = O because 2 € KerX,,,and T € ImE;)’zl7 C (Ker)]p,zp)l.

N

p—12p+1

IN

Let us prove now the converses (the technical details, which we shall prove all together
in Proposition 4.6, are collected in the Claims). We refer to sequences (4.5) - (4.10).

Case (1) Let us denote by P(M) := SP,(M) the closed convex cone of strongly positive
currents of bidimension (p, p).

Consider on M a hermitian metric 4 with associated (1, 1)-form y, and let

P(M):={T € P(M); (T, y?) = 1};

it is a compact convex basis for P (M) (in the sense of §ullivan [35, Prop. L.5]).

Our hypothesis can be written as: Im 2;71’2])“ NPM)=9

Claim (1) Im E;—1,2p+1 is a closed linear subspace of Eé,!p(M)R.

Let us conclude the proof: by the separation Theorem 4.5, there exists a closed hyperplane
in 5’ (M)]R, strictly separating Im Ep 12p+1 and P(M). Thus we geta (p, p)-form 2 such
that (T Q) >0foral T e P(M) and (T,Q2) =0forall T € ImEp 12p+1°

This last condition means precisely that Q2 € (Im Ep—1,2p+l) =KerX, 12p+1.

As for the first one, it assures that €2 is transverse. In fact, consider T' € SP,(M), T # 0;
then (7, yP) = ¢ > 0, since y? is a transverse form, and this implies that T € I3(M),
thus (2, ¢~ !7) > 0 and also (2, T) > 0; this is sufficient by the Claim 2.4.1.

Case (4) is very similar, since now Im Z;) 2p N IS(M ) = . To conclude as above, we
have only to prove:
Claim (4) Im E;),Zp is a closed linear subspace of 5’ oy (M)R.

Case (2) Our hypothesis is (ImZP 12p41 N KerY pap—1) N P(M) = 0.

Claim (2a) ImEp 12p+1 N KerZP’ 2p—1 isa closed linear subspace of Sp’p(M)]R.

By the separation Theorem 4.5, there exists a closed hyperplane in 5;,’ p (M), strictly
separating Imi);_1 2p+1 N KerE;ﬂp_l and P(M). Thus we get a (p, p)-form € such
that (T,2) > Oforall T € ﬁ(M) (that is, Q2 is transverse) and (7, 2) = O forall T €
ImE —12p+1 N Keer 21> that is, Q2 € (ImZ —12p+1 N KerZ l) which is the
closure of the linear subspace (KerX, 12p+1 + ImX,2p-1), and we conclude by the
following Claim:
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Claim (2b) ImX ), 2,1 and (KerX,_1 2,41+ ImX, 2,_1) are closed linear subspaces.

Case (3) Let us consider the Frechet space Eép (M)r = (EBle:sz;,b(M))R, and denote
by m the projection on the addendum & ;,7 »(M)r. Moreover, consider the closed convex cone
P'(M) = {R € Eép(M)R/R = 7(R), n(R) € P(M)}, and its compact basis P'(M) :=
{R € P/(M)/(R, y?) = 1}. Our hypothesis is: Imdép NP (M)=0.

Claim (3) Imd} » 18 a closed linear subspace of & »(M)R.

By the separation Theorem 4.5, we get a real 2p-form WV = Za+h:2p Wb such that
dV = 0, since ¥V € (Imdép)l = Kerd,,. Moreover, for every R € P/ (M), (R, V) =
(R, WP-P) > 0; this assures as in case (1) that the (p, p)-form Q := WP? is transverse.

We end the proof by the following remark. O

Remark 4.5.1 All the previous claims are proved, if we check that the following lin-
ear subspaces are closed: Im%,_1 2p+1, ImXp 251, ImX, 2, Imd,p, and moreover that
ImXp 2,1 has finite codimension in KerX, 2, (this is done in Proposition 4.6).

In fact notice that, by the Closed Range Theorem (see f.i. [32, II1.7.7]), we can always
switch from the dual operator to the operator itself (as regards the closure of the image).

Moreover, let us consider (Ker X, 1 2p+1+ImX, 2p—1) in Claim (2b): both addenda are
KerXpop
KerXp_12p+1°
it is a continuous surjective linear map, thus by Lemma 4.3, f(ImX,2,-1) is closed in
KerXpap
Kerzp—l.Z]H»l

closed subspaces of Ker X, »,. Consider the quotient map f : KerX,», —

, and so

f_l(f(lmzp,prl)) = (Ker2p71,2p+l + Imzp,prl)
is closed in KerX, »p, and thus in E7°7 (M)R.

Proposition 4.6 The following linear subspaces are closed: ImX, 12,11, ImX, 2,1,
ImZ), 2p, Imds ), and moreover Im%, 2,1 has finite codimension in KerXp 2.

Proof By Lemma 4.2, it is enough to prove (for suitable spaces and maps) that % is finite
dimensional. Now recall that, since M is compact:

Kerd M
dime,’;“(M,R):dim—( erdzp+1)(M)

(Imdy,) (M)
K M Ker¥
dimHZ P 0 R) = dim KT op2p VM) KerEpopi
0 (Imap,2p)(M) Im%, 2,
K M KerX
dimH"? (M. ) _ gim Keropap)M) . KerZpap
+ Umop2p—1)(M) ImXp0p—1

As for the last assertions one may look at [11], or at some other papers concerning Bott—Chern
and Aeppli cohomology.
It remains to check ImX ;1 2,+1; as said before, we need:
(Kerop_1,2p4+2)(M)
Umop—12p+1)(M)

dim

When p > 1, let us consider the sheaves involved in sequence (4.2). Since M is compact,
it is well known that H*(M, B/) = 0 for k > 0, and dimH*(M, L) < oo, since the
sheaves Q/ are coherent. For k > 0, dim H*(M, H) < oo, using the cohomology sequence
associated to

0s-R508n0 4.11)
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where i(c) =ic, c e R,and 2Ref(z) = f(z) + f(2).
From the following short exact sequences arising from (4.2) (case p — 1),

0> H—> L0 Kerop,_11 — 0,
0— Kerop_1,1 — Ll — Kero, 12— 0,
0— Kerop—12 — £r— Kerop, 13— 0,

0— Kero,_12p — Sﬂgfl’pfl — Kerop_12p41 — 0, (4.12)

we get: by the firstone, dim H*(M, Kerop_1,1) < oofork > 0, whichimplies, by the second
(Kerop—1,2p+2)(M)

one,dimH"(M, Kero,_13) < oofork > 0,and soon. And finally dim oy 12y (3T)
oo since dimH' (M, Kerop_12p+1) < 00.

When p = 1, we use the sequence (4.1) to get the same result. O

Thus we ended the proof of Theorem 3.2.

5 Exact generalized p-Kihler forms

Let us begin with an example. It is well known that a 1K form on a compact Kéhler manifold
cannot be exact, because on the contrary we would have:

0<wm@=/aﬂ=/damw4=fdmAw*pm.
M M M

But this is no more true when p > 1. We recall here an example proposed by Yachou [37],
which illustrates the following result (see [22, pp. 506-507]): If G is a complex connected
semisimple Lie group, it has a discrete subgroup I' such that the homogeneous manifold
M := G/T is compact, holomorphically parallelizable and does not have hypersurfaces
(since a(M) = 0).

Example 5.1 Take G = SL(2,C), I' = SL(2,7Z), and consider the holomorphic 1-forms
n, o, Bon M := G/ T induced by the standard basis for g*: it holds

da=-2nAa, dB=2nApB, dn=aApP.

The standard fundamental form, given by w = %(a AT+ B AB+nAT), satisfies dw® = 0,
so that w? is a balanced form: but it is exact, since
2y Af+lﬂmﬁ+1Af
= —a ANda+ — - .
16 16 PR

Hence this manifold does not support not only hypersurfaces, but also closed positive (1, 1)-
currents.

As a matter of fact, Sullivan considered also exact forms in [35, Theorem 1.7] (see in
the Introduction the second part of the cited result of Sullivan), but this argument was not
developed further by Harvey and Lawson, since on compact manifolds no Kahler form can
be exact.

We just showed that when p > 1 the situation is very different, hence we shall study
the general case in the following theorem, concerning “exact” generalized p-Kéhler forms.
Some remarks on this theorem are collected after the proof.
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Theorem 5.1 Let M be a compact complex manifold of dimension n > 2, and let p be an
integer; 1 < p <n — 1. Then:

(1) There is a transverse (p, p)-form Q on M such that Q2 € ImX, 1, (that is, Q2 is 99-
exact) <= there are no non trivial currents T € Eg,p(M)R, T>0Tc¢e KerE;Fl’zp
(that is, T is 39-closed).

(2) There is a transverse (p, p)-form Q on M such that Q2 € Imdy, | <= there are no
real currents R € 5ép(M)R, Ry, =T=>0,T#0,Re Kerdép_l.

(3) There is a transverse (p, p)-form Q on M such that @ € ImX ), 2,1 N KerX, 12p+1
(that is, 2 is closed and the component of a boundary) <= there are no non trivial
currents T € Eé’p(M)R, T>0T e (ImZ;FL2er1 + KerE;,zpfl) (that is, oT is
99-exact).

(4) there is a transverse (p, p)-form Q on M such that Q € Im% ), 2,1 (that is, Q is the
component of a boundary) <= there are no non trivial currents T € 5;,,1,(M)R,
T>0Te KerZ;,’zp_l (that is, T is closed).

Proof As in Theorem 3.2, one side is straightforward. Also the other side of the proof is
similar to that of Theorem (3.2)’: in the present case, we shall separate positive currents from
“closed” currents, so that the separating hyperplane turns out to be a transverse “exact” form.
What we need is a result similar to Proposition 4.6.

Let us give the details. As for the case (4), first of all notice that we require a transverse
(p, p)-form € on M such that Q = 38 + 38, or, which is the same, a 2 p-form ¥ = 4T such
that W77 := Q > 0. Thus W, but not €2, is exact in the classical sense (see Remark 5.2.4).

Let us denote by P(M) := SP,(M) the closed convex cone of strongly positive currents
of bidimension (p, p). Consider on M a hermitian metric 4 with associated (1, 1)-form y,
and let i’(M) :={T € P(M); (T, y?) = 1}: it is a compact convex basis for P(M).

Our hypothesis can be written as: Ker 2;,2,7—1 NnPM) =4 By the separation Theo-
rem 4.5, there exists a closed hyperplane in £ ;,’ p (M), strictly separating K er 2;32 -1 and

P(M). Thus we geta (p, p)-form € such that (', Q) > Oforall T € P(M) and (T, ) = 0
forall T € KerX' 2p—1- This last condition means precisely that Q € (Keri];,’zpil)l
which is the closure of ImX ), 2,_1.

As for the first condition, it assures that €2 is transverse. In fact, consider T €
SPy(M), T # 0; then (T, y?) = ¢ > 0, since y? is a transverse form, and this implies
that ¢c~!'T € P(M), thus (2, ¢~!T) > 0 and also (€2, T) > 0; this is sufficient by Claim
2.4.1. Thus it remains to prove:

Claim (4) ImX,, 7, is a closed linear subspace of £/ (M ).

Case (1) is very similar, since now Ker 2;7—1,2;; N f’(M) = . To conclude as above, we
have only to prove:

Claim (1) ImX,_; 7p is a closed linear subspace of 77 (M)g.

Case (3). Notice that the hypothesis on € is equivalent to Q2 = 38 + 38, with 338 = 0,
while the condition on T assures that 37 = 995.

Therefore we start from (ImZ’PfL2er1 + KerE’p’zpfl) NPM) =0.

Claim (3a) ImY’/ + Kery! | is a closed linear subspace of E;,,p(M)R.

p—1,2p+1 p.2p—
By the separation Theorem 4.5, there exists a closed hyperplane in 5;,! p (M), strictly

separating 1m2;71’2p+1 + KerE;,’zpf1 and P(M). Thus we get a (p, p)-form € such
that (7, Q) > O for all T € P(M) (that is, S is transverse) and (T, Q) = O forall T €

ImE;)_sz+1 + KerZ;),zp_l, thatis, Q € (ImE;)_sz_i_1 —I—KerE;!zp_l)J-, which is given
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by KerX,_12,+1 intersected with the closure of the linear subspace ImX, 7,1, and we
conclude by the following Claim:
Claim (3b) ImX), 7,1, Im E;—1,2p+1 are closed linear subspaces.

Case (2) Let us consider the Frechet space £ (Mg = (Batb=2 pS“'b (M))Rr, and denote
by 7 the projection on the addendum £7-” (M)R. Moreover, consider the set

A= {V € E2P(M)g; 3¢ > 0 such that 7 (V) > cy P}

(the condition obviously means that 7 (W) — cy? is strictly weakly positive).
It is easy to control that A is a non-empty convex open subset in the topological vector
space £2P (X)g. If there is no form €2 as stated in the theorem, then we get also

(ANEPP(X)r) N Imday,—y = 0.

Claim (2) Imd,) 1 is a closed linear subspace of SZP(M)R.
By the Hahn-Banach Theorem 4.4, we get a separating closed hyperplane, which is
nothing but a current R € é‘ép (X)R, for which we can suppose:
R € (Imdy, )" = Kerdy, .
(R, Q) = (Rp,p, Q) > 0forevery Q € (ANEPP(X)R) (thus T := R, , # 0).

Letus check that 7 > 0,i.e. (T, Q) > 0, VQ € WPP-P(X).Foreverye > 0, 2+¢cy? € A,
thus

(T.Q) = (T. lim @+ ey?) = lim (T, Q +ey”) > 0.
£~ e—
We end the proof by using the forthcoming Proposition 5.2. O

Proposition 5.2 The following linear subspaces are closed: ImX, 12,11, ImX%p 2,1,
ImX,_12p, Imdyp_1, and moreover ImE;PLzI7+l has finite codimension in KerE;,fl’zp.
Proof See the proof of Proposition 4.6. Notice moreover that, for p + k = n,
T eg, ,(X)r1iddT =0}  (Kero,_,,,)(M)

MRy~ —2L - = -
(0S+38;8€¢, (X)) Umo, 5, )(M)

k.k
Ha+5(

since the cohomology groups can be described using either forms or currents of the same
bidegree.

5.2.1 Remark Notice that, as before, 5.1(1) — 5.12) — 5.1(3) =— 5.1(4), and
moreover, for every j, 5.1(j) = 3.2(j). The stronger condition, 5.1(1), is in fact a p-
Kihler condition with exact (that means d9-exact) form.

5.2.2 Remark The statement of Theorem 1.7 in [35] is the following: ““ If no non-trivial
structure cycle exists, some transversal closed form is cohomologous to zero”. Of course,
also the converse holds.

It can be translated in our situation (where M is a compact complex manifold) as follows:
“M has a real 2p-form ¥ = Za+b:2p Wb guch that W = dT and the (p, p)-form Q :=
W PP ig transversal, if and only if M has no strongly positive currents 7" # 0, of bidimension
(p, p),such thatdT = 0.

The condition on the form €2 is equivalent to say that there is a real (p, p)-form Q > 0
with @ = 9B + 3 for some (p, p — 1)- form B: this means Q@ € Im%,, 5,1, while dT =0
is equivalent to the condition 7 € Ker X ;,2 -1 Thus the statement of Sullivan is 5.1(4).
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5.2.3 Remark Sullivan noticed also in III.10 that for p = 1, there are always non trivial
structure cycles, so that on a compact manifold there is no hermitian metric & whose Kéhler
form is the (1, 1)-component of a boundary in the sense of 5.1(4).

If we look at the whole Theorem 5.1, we can prove in fact that when p = 1, it reduces
to the existence of “closed” positive currents, since “exact” transverse forms never exist,
due to the compactness of M. This is obvious for the statement 5.1(1), since we would have
w =199 f > 0, a non-constant plurisubharmonic function on a compact manifold.

Butin general, if o € ImX, 2,1, thenw := wl’l ,the (1, 1)-component of an exact form
¥ = dy. Thus it would give: 0 = [, (dy)" = [, v" = [,,&" > 0.

When p > 1, the situation changes, as seen in Example 5.1; there, it is easy to check that

2 2 = i85y, so that all conditions in Theorem 5.1 make sense, for

w” € ImZ,_172p, 1€ @
p=2.

5.2.4 Remark It is also interesting to notice that the above conditions on forms can
be described as: “The null class in cohomology contains a transverse form”, where the
cohomology groups are: Hg%”’ (M, R) for 5.1(1), H}"" (M, R) for 5.1(2), H;J;%(M, R) for
5.1(4). For 5.1(3) the class is that of g(£2), where g is the map induced by the identity:
g:H'"(M,R) — H;;%(M, R).

For the case p = n—1, Popovici denotes this property of H;:g’"fl (M, R) as “The Gaudu-
chon cone of M degenerates” (see [30, Proposition 5.4]), but the statement of Proposition
5.4 is incorrect, the correct one is our Theorem 5.1(4).

6 The non-compact case

While a 2K form can be exact on a compact manifold (as we have seen in the previous
section), the natural environment of “exact” generalized p-Kidhler forms is that of non-
compact manifolds; indeed, C" and Stein manifolds are Kihler with a form w = iddu (u is
a smooth strictly plurisubharmonic function).

Other classes of non-compact manifolds where one could look for generalized p-Kéhler
structures are g-complete and ¢g-convex manifolds. Let us recall here the definitions, which
are not uniform in the literature (see also [17], IX.(2.7) for analytic schemes).

Definition 6.1 A manifold X of complex dimension r is said to be strongly g-convex (for
brevity, g-convex) if it has a smooth exhaustion function ¥ : X — R which is strongly
g-convex outside an exceptional compact set K C X (this means that X — K has an atlas
such that, in local coordinates, (139 )(x) has at least (n — q + 1) positive eigenvalues, for
all x € X).

We say that X is g-complete if Y can be chosen so that K = .

Thus g = 1 is the strongest property, and 1-complete manifolds corresponds to Stein man-
ifolds, since the strongly 1-convex functions are just the strictly plurisubharmonic functions.
By convention, a compact manifold M is said to be (strongly) O-convex (with K = M).

6.1.1 Remark Let 7 € Coh(X), i.e. let F be a coherent sheaf on X. Then (see f.i. [17,
I1X.4] and [9, n. 20]):

(1) If X is compact, then dim H/ (X, F) < 00V j;
(2) If X is g-convex, then dimH’ (X, F) < oo when j > ¢q;
(3) If X is g-complete, then H/ (X, F) = 0 when j > g.
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In fact, the 1-convex spaces can be characterized by that property, and also by the existence
of the Remmert reduction, as the following theorem shows [16]:

Theorem The following statements are equivalent, for a complex analytic space X :

(1) X is 1-convex;

(2) Forevery F € Coh(X), dimH' (X, F) < oo when j > 1;

(3) X is obtained from a Stein space by blowing up finitely many points (this is called the
Remmert reduction).

As for g-complete manifolds, Barlet proved in [10, Proposition 3] the following fact:

Proposition 6.2 Let X be a complex manifold, and let  : X — R™ be a smooth proper
Jfunction which is strongly q-convex at each point of X. Then there is a transverse (q, q)-form
Q such that Q = 1000 for some real (q — 1,q — 1)-form 6.

This gives an interesting result:
Corollary 6.3 A g-complete manifold X is p-Kéhler for ever p > q, with a 39-exact form.

Hence we have here a remarkable class of balanced manifolds (with a 99-exact form;
moreover, it is not hard to verify that €2 is in fact strictly positive): that of g-complete
manifolds (¢ < n).

Asregards g-convex manifolds, a similar result does not hold, in general, also wheng = 1.
Classical results due to Coltoiu [15] asserts that a 1-convex manifold X, with an irreducible
curve S as exceptional set, is Kdhler when dimX # 3 or when S is not a rational curve.
Moreover, we characterized in [7, Theorem I], precisely those 1-convex threefolds, with 1-
dimensional exceptional set, that admit a Kahler metric, that is: “When § is an irreducible
curve, then X is Kéhler if and only if the fundamental class of S does not vanish in HCZ”_2 (X)”.

When dimS > 1, we got some results in [8] as regards p-Kihler structures, as we
shall explain now. A 1-convex manifold X of dimension # is given by a desingularization
f : X — Y of a Stein space Y which has just a finite number of (isolated) singularities (f is
the Remmert reduction, see Remark 6.1.1); the exceptional set S, which is f -1 (SingY), has
dimension k£ < n — 2 and is the maximal compact analytic subset of X. Obviously, X — S
carries an exact 1K form wg = idd f*u coming from Y- Sing ¥; but when n > 3, in general
we cannot extend wg to a closed transverse form w across S: indeed, there are quite simple
examples of non-Kéhler 1-convex threefolds.

Nevertheless, we got, among others:

Theorem 6.4 (see Theorem 4.2, Proposition 4.4 and Theorem 4.12 in [8])

(1) Let X be a complex n-dimensional manifold, let S be an exceptional subvariety of X,
such that X — S has a 39-exact Kéhler form. Then X is p-Kchler for every p > dimS,
with a d9-exact p-Kdhler form.

(2) Let X be a I-convex manifold with exceptional set S of dimension k. Then X is p-Kdhler
for every p > k, with a 3d-exact p-Kdhler form; in particular, a 1-convex manifold is
always balanced (with a d9-exact form). Moreover, ifk > ”2;1, then X is also k-Kdihler.

The proof of these assertions is based on classical separation’s results between forms and
compactly supported currents: this is the tool that we would like to develop in what follows,
looking at generalized p-Kéhler structures: maybe this kind of use of the duality could be
interesting from his own.
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Let X be a complex manifold of dimension n. A positive (analytic) g-cycle of X is a finite
linear combination of irreducible g-dimensional compact subvarieties of X, with positive
integers as coefficients; we shall write: Y =) n;Y; € C;‘(X ).

The spaces C;(X ) € SP,;(X) have been intensively studied in the period 1960-1970 (by
Andreotti, Norguet, Barlet and others), and gave a motivation to the study of positive (closed)
currents with compact support on non-compact manifolds. For example, in [10] Barlet proved
that: “If X is a g-complete analytic space, then C;ll (X) is a Stein space”.

As we noted above, when X is compact, all relevant cohomology groups are finite dimen-
sional, while this is not the case in general; some remarkable cases (Stein, g-complete,
g-convex) have been studied in the sixties and seventies.

We can go on following two ways: one way is to assure finite dimensionality of the right
cohomology groups, and then proceed as in Proposition 4.6. In this setting, let us recall the
following result (Propositions (5.3), (5.4), but see also (5.3)’, (5.4)’, (5.5), (5.5)” in [27],
which correct a wrong statement in [11]):

Proposition 6.5 Let X be a strongly q-convex manifold of dimension n, let s > q, then:

(1) IfdimHp (X, C) < oo, then dimH,''(X) < oo.
(2) IfdimHZE,(X, C) < 0o, then dimHy?' (X) < oo.

But it seems more interesting to notice that in Proposition 4.6 what we actually need is
the closeness of some subspaces, to use separation’s theorems in the proof of Theorem 3.2;
and this condition is equivalent to ask that the involved cohomology groups are Hausdorff
(i.e. Fréchet), or to ask that some operators (d, 0 + 9,09) are topological homomorphisms,
which is the same.

Serre pointed out [33, pp. 22—23] that the behavior of the operator d = d; : £%(X) —
E5T1(X) is very different from that of the operator : while d is always a topological homo-
morphism, this is not the case for 9 (see the simple example given ibidem, n. 14). A sufficient
condition is given in [33, Proposition 6]:

Proposition 6.6 If dimH? (X, QP) < oo, then d : EP1~1(X) — £P4(X) is a topological
homomorphism.

Notice that the proof of this result is straightforward: the statement

dimHaf’q(X) < o0

is equivalent to say that the space of boundaries with respect to the operator 3 has finite
codimension in the space of cycles, which is closed. Hence 9 is a topological homomorphism
by Lemma 4.2.

Our situation is much more complicated: nevertheless we can get the required topological
homomorphisms more or less in the same hypotheses of Proposition 6.6, as we shall prove
in the next section. Since dimH/ (X, Qk) < oo when j > ¢ for a g-convex manifold X, as
said in Remark 6.1.1, let us go on along this way.

7 H:_;_kg(X » R) and H :5k (X, R) are Hausdorff

It is well known that, for every complex manifold X, the De Rham cohomology groups
H i/) (X, R) are Hausdorff topological vector spaces, i.e. the differential operator d is a
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topological homomorphism; but this is not the case, for instance, for the operator 9, as we
said above. Thus we shall study from this point of view the operators that appear in sequence
4.2).

Let us recall the notation and consider some preliminary results on topological vector
spaces; we refer to [13,14].

Definition 7.1 (see [13, p. 311]) A sheaf F of t.v.s. on a complex manifold X is called a
Fréchet sheaf if for every open subset U of X, F(U) is a Fréchet space, and for every open
subset V of X such that U C V, then the map p(‘]/ : F(V) — F(U) is continuous.

If 7 and G are Fréchet sheaves, and o : F — G is a sheaf homomorphism, o is called
a Fréchet homomorphism if for every open subset U of X, o(U) : F(U) — G(U) is
continuous.

7.1.1 Remark The sequences (4.1) and (4.2) are exact sequences of Fréchet sheaves and
Fréchet homomorphisms (recall that H(U) = Ker i39 : Ey°(U) — &y (U)).

If F is a Fréchet sheaf on X and { is a countable covering for X, for every ¢ > 0 we puton
C4(U, F) the product topology, which is Fréchet. The maps 87 : C4(U, F) — CIT U, F)
becomes continuous. Moreover,

Z1U,F)  Kerd?
BIU,F)  Im§a~!

is endowed with the quotient topology (which is Fréchet if and only if it is Hausdorff), and

HIU,F) =

HY(X,F)=lm H!U, F)
is endowed with the direct limit topology.

Definition 7.2 (see [13, p. 313]) A Fréchet sheaf F is normal if there is a covering A of X,
which is a Leray (i.e. acyclic) covering for F, such that, for every covering U/ of X, there is
a covering V C A which is a refinement of /.

Proposition 7.3 There exists a covering A of X which is a Leray covering for all sheaves
involved in the sequences (4.11) and (4.12). Moreover, all these sheaves are normal (with
respect to A).

Proof We adapt a construction given in [14], Appendix 1. Fix a riemannian metric on X, and
denote by B(x, a) the geodesic ball of center x and radius a.

Choose a locally finite open covering of X, U = {U;, ¢; }ier, such that, Vi, every geodesic
ball B(x, a) C U; has a convex image in ¢ (U;); thus B(x, a) is an open Stein subset of U;,
because its image in ¢ (U;) is holomorphically convex.

For every x € X, call

r(x) = supf{a; B(x,a) C U; for somei € I}.

Then choose an exaustion sequence {K;};>; of compact subsets of X and a decreasing
sequence of real numbers {c;} ;> such that0 < ¢; < d(K;, X — (Kj+1)i”t).

For every x € X, let us denote by /(x) the index such that x € Kj(x) — K;(x)—1, and let us
fix a(x) > 0 such that

1 1
B(x,a(x)) C U Ui, alx) <min {=cix), 7 min r(x)¢.
YeU: 3 3 XEK]()(H»Z
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Let A = {B(x, a)}xex, a<a(x): to prove that Ais a Leray covering for all sheaves involved
in the sequences (4.11) and (4.12), we shall check that every finite intersection of elements
of A is Stein and contractible. First of all, every element of A satisfies the request, so that
also the finite intersections of elements of A are Stein.

Take

B = B(xg,a0) N---N B(xp,ap) #9, p=1;

it is enough to show that B(xo, ag) U - - - U B(x,, ap) is contained in a fixed chart (U, ¢o)
of the covering U/, because in that case every ball becomes, via the biholomorphic map ¢y, a
convex set in ¢o(Up), so that also the intersection of the image of the balls is convex there,
and also contractible.

It is easy to check that, since B # @, forevery h, k € {0, ..., p}, the intergers Iy := [(xx)
and [y, := I(xp) satisfy |lx — [ < 1.

Moreover, for every k € {1, ..., p}, Vx € B(x, a) it holds

dist (x,x0) <2ar +ag < % min r + l min » < minr < r(xp),
3 Ki+2 Kiy+2 Ky,
since xg € Ky,. So for all k, B(xk, ar) € B(xo, r(xp)) C U;.

We proved that, if V is a finite intersection of elements of A, V is Stein and contractible;
hence for all j > 0, H/(V,R) =0and H/(V,G) =0V G € Coh(X). From the sequence
(4.11), also H/(V,H) = 0 for all j > 0, which implies that in (4.12) HI(V,Ker 01) =0
for all j > 0, and so on, as in the proof of Proposition 4.6. Moreover, by construction all
these sheaves are normal with respect to A. O

Proposition 7.4 (see [13, pp. 312-313]) Let
0-F > F—-F'"=0

be an exact sequence of Fréchet sheaves and Fréchet homomorphisms. If U is a countable
Leray covering of X for F', then the maps 8% : HIU, F') — HIT' (U, F') are continuous.
If moreover H1T\ (U, F) is Hausdorff, then 8 is a topological homomorphism.

Let G be a normal Fréchet sheaf and V a countable Leray covering of X for G; then
HY1(V,G) - HY(X, G) is atopological isomorphism for every q.

Corollary 7.5 Let
0>F >F—->F"=0

be an exact sequence of normal Fréchet sheaves (with respect to a countable Leray covering U
of X) and Fréchet homomorphisms. If H1 (U, F) = H 9+, F) = 0, then the coboundary
map 8 : H1(X, F") — HIY\ (X, F') is a topological isomorphism.

Proposition 7.6 Let
0>F > FSF -0

be an exact sequence of normal Fréchet sheaves (with respect to a countable Leray covering
U of X), and Fréchet homomorphisms.

@) Ifdim H1(X, F) < oo, then H1(X, F) is Hausdor{f.
(i) Ifdim H1(X, F) < oo and H1T\ (X, F') is Hausdorff, then H1(X, F") is Hausdorff.
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Proof By Proposition 7.4, there is a topological isomorphism HY (U, F) — H4(X, F) for
every g , hence we can argue on HY (U, F) = %ﬁ;

Ifqg =0, HOU, F) = Z2°U,F) = Kers" is Hausdorff; if ¢ > 0, we get (i) by
Lemma 4.2 since the map 891 c1 YU, F) - Z9U, F) is continuous between Fréchet
spaces.

To prove (ii), consider the following diagram (for ¢ > 0):
Cr\u, F)y — ¢\ U, F'y - 0
\ \
Z0U. F) % Z0U, Fy
In this diagram, o, (B4 (U, F)) = B4(U, F") and 0, (Z4 (U, F)) = Ker (81 o ), where
29U, F') — HIU, F"yand 81 : HIWU, F") — HIT U, F)).
By part (i), BY(U, F) is closed and has finite codimension in Z4(U, F); moreover,
Ker (8 o) is a closed subspace of Z9 (U4, F") (because H91! (4, ') is Hausdorff), hence
it is Hausdorff. Thus we can apply Lemma 4.3 to o, : Z9(U, F) — Ker 82 o 1), with

N = B4(U, F); this implies that o, (B (U, F)) = B1(U, F") is closed, hence H? (U, F")
is Hausdorff. O

Let us use now these results to get some information on cohomology; a particular case of
the following theorem is Corollary 2.5 in [8] (compare also with Proposition 6.6).

Theorem 7.7 Let X be a complex manifold.

(1) For every p = 0, ifdim HI (X, Q**17)) < 00 Vj e {p+1,...,2p + 1}, then
Ha";‘ P X R) is Hausdorff,

(2) Forevery p > 1, ifdim HI (X, Q*~/) < 0o Vj e {p,...,2p}, then H;J;%(X, R) is
Hausdorff.

Proof (a) Take a countable covering of X as in Proposition 7.3, and consider the exact
sequence (4.11). It gives:

. > H/(X,0) > H(X,H) - HT'(X,R) > HT'(X,0) > ....

Notice that H ‘j +1(X, R) is a Cech cohomology group, isomorphic to the De Rham cohomol-
ogy group H {,J,;l (X, R), which is Hausdorff. This isomorphism is given by a composition of
coboundary maps, coming out from the short exact sequences associated to the sequence

0> R —> &% > g — ..

(see f.i. [23, p. 44]). '

By Corollary 7.5, H/*1(X,R) ~ Hl]);l (X,R) is a topological isomorphism, so that
H/*(X,R) is Hausdorff for every j > 0; when dim H’/(X, ©) < oo, by Proposition 7.6
(ii), also H/ (X, H) is Hausdorff. In our hypotheses, this is true when j = 2p + 1 in case (1)
and when j = 2p in case (2).

(b) Let us consider case (1). If p = 0, let us recall the exact sequence (4.1):

0> H DO 4 (21 gel2yy 4 by — ...

and recall also that

oLl x R = KerdX)
a X1 (Imidd)(X)
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Thus we have

0—>H> g”"’-?Ke d—0

which gives:

Y 50
0 > H'X.H) — HOX.&2%) X HOX. Kerd) 5 H'(X.H) — 0.

Take a suitable covering .A of X as in Proposition 7.3; by Corollary 7.5, 82 is a topological
homomorphism, and it gives a topological isomorphism

HO(X,Kerd) H%X,Kerd) {

HY (X, H) ~ = - = H'(X, R).
( ) Ker 89 (Im i39)(X) a5 X R)

Since we know that dim H'(X, ©) < oo we get by a) that, if p = 0, H;’g Lrtlox Ry is
Hausdorff.

If p > 0, we use the short exact sequences arising from (4.2) (case p), like those in (4.12),
and the fact that 82 is a topological homomorphism.

From

- — o1,1
0— Keropap—1 — (EPP Lger-tryy = Keropa, = 0

we get:

(Kerapap+1)(X)
(Imaop,2p)(X)

Repeating this feature back and back, we get a topological isomorphism

H;%“”’“(X, R) = ~ H' (X, Kero,ap).

HINPH (X R) > HPN(X, Keray, ).

From here on, we have to take in account the sheaves /.
Consider in (4.2) the first short exact sequence

0> H — L% = Kero,1 — 0,

which gives:

2P
.= H?(X, L% — H*(X,Kerop1) = H?» TN X, H) — ....

Since by assumption dim H?P(X, Q') < oo and dim H?*PT!(X,0) < oo, so that
H2r+l (X, H) is Hausdorff, then H?P (X, Keroy,1) is Hausdorff by Proposition 7.6.

Using the second short exact sequence arising from (4.2), we can prove that also
H?*P—1(X, Kero), ) is Hausdorff, and so on until HPH(X, Kerop p) =~ ngl.,pﬂ (X, R),
which becomes Hausdorff. What is needed at every step is contained in the hypothesis:

dim H/ (X, Q?PT1 ")y <00 Vje{p+1,....2p+1}.

c) Let us consider case (2). If p = 1, let us recall the exact sequence (4.4):

01,1

0K @ eeQ R o T

sﬂg’l‘lfs E2e R — ...

2012
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and also recall that

1.1 _ (Kero12)(X)
HymXR) = (Imay,1)(X)

Thus we have:
0->HS (@ e0q)r ™ Keror) — 0
0— Kerop; — W0 @y it Keroy, — 0,
so that:
> H'XH) > H'(X, (@' @ aQ)p) — H'(X, Kerop)
EI; H>(X,H) — ....
and
0 > HX,Kero1)) — H(X, ("0 @ &%) — HX,Keroyy)
% H'(X,Keroy1) — 0.
From the second sequence, we get as before, using the topological homomorphism 82, that

HOX, Keraip) _ H'(X, Kerowa) _ iy gy

HY (X, Keroy 1) ~ = B
( 1,1) Ker 60 HO(X, Imoy 1) o+o

From the first sequence, using Proposition 7.6(ii), we get that H' (X, K eroy,1) is Hausdorff
when dim H*(X, ©) < oo and dim H'(X, Q') < oo, which is precisely our hypothesis.
PP _ (Kero'p,2p)(x)

As for Ha+5(X’ R) = Umoy s DX

from (4.2) (case p), like those in (4.12), starting from

when p > 1, use the short exact sequences arising

0 — Keropop—1 — Bl Keropsp, — 0,
which gives:
0 — HY(X,Keropap—1) — HY(X,B* ") - HY(X,Kero,ap)
% H'(X,Keroppp-1) — 0.
Since as above 82 becomes a topological homomorphism, we get

HP(X.R) ~ H' (X, Keroy2p-1).

Repeating this feature, we get topological isomorphisms

HY (X, R) = HY(X,Keropop-1) =~ HX (X, Keropap-2) = --- =~ HP(X, Kero, ).

On the other hand, consider in (4.2) the first short exact sequence
0> H — L% = Kerop1 — 0,
which gives

2p—1

S HBPNX, L% > HPTNX, Kerop)) > HP(X.H) — HP(X. L% — ...
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Since by the hypothesis, dim H/(X,Q*’7/) < oo Vj € {p,...,2p}, and thus
H?P (X, H) is Hausdorff, then H2P~1(X, Kerop 1) is Hausdorff by Proposition 7.6.

Using the next exact sequences arising from (4.2) we get that H” (X, Kero), ) is Haus-
dorff, hence we conclude that H ;J;%(X , R) is Hausdorff. o

Proposition 7.8 Let X be a complex manifold, let p > 1. If
dim H/ (X, Q%P7 /)y <00 Vje{p+2,....2p+2},

p+2,p+1 . (Ker op—12p42)(X) .
then Wy (X) = m is Hausdorff.
Proof The proof is very similar to that of Theorem 7.7, taking in account also the proof of
Proposition 4.6. o

By comparing Theorem 7.7 and Proposition 7.8 with Proposition 4.6, one gets the follow-
ing result:

Corollary 7.9 Let X be a complex manifold.

(1) Ifdim Hi (X, Q*Pt1=/)y <00 Vje{p+1,...,2p+1}, then Xp2p is a topological
homomorphism, thus Im%, >, is a closed subspace.

() Ifdim HI (X, Q?P*?7))y <00 Vje{p+2,...,2p+2}, then £,_12p41 is a topo-
logical homomorphism, thus ImX, 12,41 is a closed subspace.

(3) Ifdim HI(X,Q?P~/) < 00 Vj e {p,...,2p}, then X p.2p—1 1s a topological homo-
morphism, thus Im%, 2,1 is a closed subspace.

8 Duality on non compact manifolds

For a generic manifold X, £ ;, » (R # D},’ »(X)r; hence to get informations as before about
the existence of a suitable (p, p)-form, we need to fix acompact K in X as a “bound” for the
support of the currents. In this setting, we give the following list of characterization theorems,
whose geometric signification we shall explain with a couple of examples after the proofs.
Notice that we use here transverse forms and strongly positive currents, but we could have
chosen also the other notions of positivity. Let us denote the closure of a linear subspace L
(in the weak topology) by (L)~.

Theorem 8.1 Let X be a complex manifold of dimension n > 2, let K be a compact subset
of Xandlet1 < p <n — 1. Then:

(1) There is a real (p, p)-form Q on X such that Q@ € ImX,_1, and 2, > 0 Vx €
K &= there are no non trivial currents T € E;LP(X)R’ T>0T € KerE;_l,zp
suppT C K.

(2) Thereisareal (p, p)-form Qon X suchthat 2 € Imdyp,—1 and Qy > 0Vx € K
there are no currents R € Sép(X)]R, R e Kerdép_l, suppR C K with Ry p =T >
0,7 #0.

(3) Suppose that ¥, 21 is a topological homomorphism, so that ImZ), 5,1 is a closed
subspace of EPP(X)r. Then:

There is a real (p, p)-form Q on X such that Q@ € ImX, 2,1 N KerX, 12,41 and
Q, > 0Vx € K < there are no non trivial currents T € Eé’p(X)R, T €
((1m2;71’2p+1)7 + KerZ;,’zpfl)’, T >0, suppT C K.
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(4) There is a real (p, p)-form Q on X such that Q@ € ImX,2,_1 and 2, > 0 Vx €
K &= there are no non trivial currents T € g;Lp(X)R’ T=>0T ¢ KerE;sz_l
and suppT C K.

Proof In all cases, one part of the proof is simple: if there exists the form 2 and also the
current 7' (or R) as given in the theorem, we would have in cases (1), (2) and (4):

(T, ) =0 (or (R, ) = 0) because (R or) T € KerL' = (ImL)' for some operator L.

Incase 3), T € ((ImZ;_l’sz)‘ + KerE;)’zp_l)_, that is, 7 = lim, (T} + T,) with
T! € KerE;,ZP_l, T/ =lim, Ts/,u with Ts/,u € ImE;_szH.

Hence (T, Q) = lim,(T/, Q) + lim, (7', ©); the first addendum vanishes because Q2 €
KerX, 1,2p+1, the second one because 2 € ImX), 7, 1.

Moreover, (T, 2) = (xx T, 2) > 0,since xx T > 0doesnot vanishand 2, > 0Vx € K.

Let us prove now the converses.

Case (4) Consider on X a hermitian metric & with associated (1, 1)-form y, and let
A={0O e &PP(X)Rr; Ic > O such that O, > ¢y Vx € K}

(the condition obviously means that ®, — ¢y is strictly weakly positive).

It is easy to control that A is a non empty convex open subset in the topological vector
space £7'P(X)g. If there is no form € as stated in the theorem, then AN ImX, 2, 1 =0,
where ImX ), 2,1 is a linear subspace in £7°7 (X)g.

By the Hahn—-Banach Theorem 4.4, we get a separating closed hyperplane, which is
nothing but a current 7' € 5;,’ » (XD, for which we can suppose:

T € (ImZp,zp_l)L = KerZ;,,zp_l, (T, ®) > 0forevery ® € A (thus T # 0).

Let us check that T > 0, i.e., by Definition 2.4, that (T, Q) > 0, VQ € WPP-P(X). For
every ¢ > 0, Q + ey? € A, thus

(T, 2) = (T, im(Q + ¢y?)) = lim (T, Q + ey?) > 0.
e—0 e—0

Moreover, suppT C K; indeed, let « € EP'7(X)r with supp a« € X — K; then for every
t € R,itholds to + y? € A. Therefore 0 < (T, ta + y?) = t(T, @) + (T, yP): this is not
possible for every ¢ € R, until (T, ) = 0, as required.

Case (1) is very similar, it is enough to replace X, 7,1 by ¥, _12),. This result was
proved by Theorem 3.2(i) in [8].

Case (3) We can proceed as above, replacing ImX ), 2,1 by ImX, 2, 1NKerX, 12p+1,
which is a linear subspace in 7P (X)R.

ThuswegetT € (ImX,2p—1 ﬂKerE,,,Lz,,H)J—: here we use the closure of Im X, 2,1
to go further (see f.i. [32, p. 127]), so we get, as required,

T e(ImSp2p-1 NKerSp 1254107 = (ImZp2p- 1) + (KerEp 1 2p41)7) "
= ((ImE;,fl’sz)* + KerE’p,zpfl)f.

Case (2). Let us consider the l.c.s. Eép(X)R = (@a+b:2p5;,b(x))R, and denote by 7 the
projection on the addendum 5;,’ p(X )r. Notice that 7 (K erdé p_l) is a closed convex non-
empty subset of S;LP (X)r.

Take

Px(X) = (T € &, ,(X)g: suppT € K. T = 0}
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which is a closed convex cone with a compact basis given by
Px(X)=(T € P;(T.y") = 1}.

By our hypothesis, n(Kerdé _pN Pr(X) =

Using the separation Theorem 4.5, we get a closed hyperplane in £, ,(X)r, strictly sep-
arating n(Kerdzp_l) and PK (X); hence we get 2 € EPP(X)Rr such that (T, 2) > 0 for
every T € Px(X), and Q € (w(Kerd;, ))*.

The first condition assures that Q, > 0 Vx € K. In fact, by Proposition 2.2 we have to
check that Qx((i_PZZP)V AV) > 0.forevery V e Apo(T{X), V # 0 and simple. But
given such a vector, the Dirac current 7' := (SX((i_l’2 2P)V A'V) € Pk (X), so that for some
¢>0,cT € Pg(X)and thus Q((i~7"2P)V A V) = T(Q) > 0

The second one implies that, for every current R € Kerdép_l, (R,Q) =@(R),2)=0
since Q € EPP(X)g. Thus Q € (Kerdép_l)J- = (Umdyp—1)" = Imdy,_1, because d is
always a topological homomorphism. O

8.1.1 Remark Notice that, as before, 8.1(1) =— 8.1(2) =— 8.1(3) =— 8.1(4). The
stronger condition, 8.1(1), is in fact a sort of ‘local’ p-Kihler condition with exact (that
means 93-exact) form.

8.1.2 Remark Every n-dimensional connected non compact manifold is n-complete; thus
itis n K with an exact form.

In particular, when M is a compact manifold, the above statement get simplified, as
Theorem 5.1 showed.
And finally, let us consider an analogue of Theorem 3.2 for non compact manifolds.

Theorem 8.2 Let X be a complex manifold of dimension n > 2, let K be a compact subset
of Xandlet1 < p <n—1.

(1) Suppose %,_12p+1 is a topological homomorphism.Then:
there is a real (p, p)-form Q on M such that Q@ € KerX, 12,41 and Q, > 0Vx €
K <= there are no non trivial currents T € S’ (X)R, T>0T¢clImY
and suppT C K.

(2) Suppose Xy 2p—1 and X1 2p41 are topological homomorphisms, and that Im%, 2,1
has finite codimension in Ker X, 2, Then:
there is a real (p, p)-form Q on M such that Q@ € (KerX,_12p+1+1ImX,2,-1) and
Q> 0Vx € K <= there are no non trivial currents T € Sé,p(X)R, T >0,
T € KerXY! 2p— ﬂlmZ 12p4l suppT € K.

(3) There is a real 2p -form \IJ with WPP = Q on M such that WV € Kerdy, and Q. >
OVx € K <<= there are no non trivial currents T € S;,yp(X)R, T >0,T €

Imdép, suppT C K.

(4) Suppose %, »p is a topological homomorphism.Then:
thereis areal (p, p)-form Q on M suchthat 2 € KerX,,and Qy > 0Vx € K <
there are no non trivial currents T € S;,yp(X)R, T=>0T e ImE;sz and suppT C K.

p—12p+1°

Proof As seen in the previous theorems, in all cases, one part of the proof is simple, and
does not require the hypotheses on topological homomorphims: if there exists the form
and also the current 7 as given in the theorem, we would have (T, ) > O on K.

But, in case (1), (T, 2) = 0 because 2 € KerX, 12p+1 and T € Im%’

(Ker Ep—l,2p+l) . The same holds in the other cases.

p—12p+1 S
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For the converses, we go on as in the proof of Theorem 8.1. Let us sketch here only major
changes.

Case (1) Consider the non empty convex open set A € EPP(X)g; if no ‘right’ form
Q exists, we get AN KerX, 12,41 = ¥, thus there is a current T € S’p’p(X)R, with

T € (Kerzp_l,zpﬂ)l = ImZ;)_l,sz, by the hypothesis, and (7, ®) > 0 for every
® € A. This gives T > 0, T # 0 and suppT C K, as seen in the proof of Theorem 8.1.

Case (1) was proved in [8, Theorem 3.2(ii)].

It is the same, more or less, in cases (2) and (4).

In case (3), we separate ﬁK (X), the compactbasis of Px (X) = {T € S;W(X)R; suppT <
K, T > 0}, from the closed convex set 7 (1 mdép) (notice that / mdﬁ » is closed because the
operator d is always a topological homomorphism).

Hence we get Q2 € (n(lma’ép))l. But (22, R) = (2, m(R)), since 2 has bidegree (p, p),
thus Q € (Imdép)L = Kerdy). o

8.2.1 Remark Notice that, as before, 8.2(1) — 8.2(2) — 8.2(3) =— 8.3(4).

8.2.2 Remark In [2] we use closed real (p, p)-forms, which are strictly weakly positive
on a fixed compact set, to give the definition of locally p-Kihler manifold (see [2, Definition
6.1]) and to study when, in a proper modification f : X — X with compact center, the
property of being locally (n — 1)-Kihler comes back from X to X.

Let us give a simple application of Theorem 8.1.

Suppose X has a compact (irreducible) analytic subspace Y of dimension m > 1. Then
T := [Y]isa“closed” positive non-vanishing current of bidimension (m, m) with supp T =
[Y]. Thus there are no “exact” (m, m)-forms on X with 2 > OonY.

Nevertheless, there are “exact” (p, p)-forms on X with 2 > 0 on Y for every p > m:
in fact, if not, by Theorem 8.1(1) there would exist a pluriharmonic (i.e. 33-closed) positive
current of bidimension (p, p), supported on Y, whose dimension is to small: hence 7 = 0
(see f.i. [6, Theorem 1.2]).

We end this paper showing how one can obtain the results we cited in Theorem 6.4 about
1-convex manifolds using a sort of p-Kihler form as given in Theorem 8.1. Let us prove only
the following result:

“Let X be a 1-convex manifold with exceptional set S of dimension k. Then X is p-Kihler
for every p > k, with a d9-exact p-Kihler form.”

Proof Let f : X — Y be the Remmert reduction of X (see Remark 6.1.1); Y is embeddable
in C", hence it carries a Kihler form o' = iddg. Let w := f*w'; w is positive on X and
transverse on X — S.

Consider a compactly supported current 7' € Eg,,p(X)R, T>0,T e KerZ;)_l,zp, ie.
i99T = 0, as in Theorem 8.1(1). Since w? € Im%, 12,5, T(@P) =0, so that suppT C S.
By Theorem 1.2 in [6], T = 0, because p > k.

Thus by Theorem 8.1(1) we get a real (p, p)-form Q on X such that @ € ImX,_1 ),
ie. Q=1i000,and Q, > 0Vx € S.

Take a compactly supporteﬁi smooth fugction x suchthat 0 < y <1, x = 1 on
S. For C >> 0, Cw? +i00(x6) is a d0d-exact real form, which is transverse on the
whole of X. O
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