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Abstract This paper is devoted, first of all, to give a complete unified proof of the characteri-
zation theorem for compact generalized Kähler manifolds. The proof is based on the classical
duality between “closed” positive forms and “exact” positive currents. In the last part of the
paper we approach the general case of non compact complex manifolds, where “exact” pos-
itive forms seem to play a more significant role than “closed” forms. In this setting, we state
the appropriate characterization theorems and give some interesting applications.
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1 Introduction

In his fundamental work [35], D. Sullivan started to study compact complex manifolds using
‘cycles’ and, more generally, positive currents. As he says in the Introduction:

“The idea is to consider currents which are ‘directed’ by an a-priori given field of cones in
the spaces of tangent p-vectors. Such a positivity condition leads to a compact convex cone of
currents with a compact convex subcone of cycles (closed currents) (…) Moreover, because
of the compactness one can apply the basic tools of linear analysis such as the theorems of
Hahn–Banach and Choquet. The former allows one to construct closed C∞-forms satisfying
positivity conditions (on the cone field) because of the duality between forms and currents.”
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218 L. Alessandrini

He observed that a compact complex n-dimensional manifold M has natural cone struc-
tures, definedby the complex structure J : at a point x ,C p(x) is the compact (i.e.,with compact
basis, see Definition I.1 ibidem) convex cone in �2p(T ′

x M) generated by the positive com-
binations of p-dimensional complex subspaces. Moreover, a smooth form � ∈ E2p(M) is
transversal to the cone structure C p if, for every x ∈ M , and for every v ∈ C p(x), v �= 0, it
holds �(v) > 0 (see Definitions I.3 and I.4 ibidem).

The cone C of structure currents associated to the cone structure C p is the closed convex
cone of currents generated by the Dirac currents associated to elements of C p(x), x ∈ M . In
C, the closed currents are called structure cycles.

Sullivan proved, simply using the Hahn–Banach theorem, that on a compact complex
manifold M (Theorem I.7):

(a) If no closed transverse form exists, some non-trivial structure cycle is homologous to
zero in M .

(b) If no non-trivial structure cycle exists, some transversal closed form is cohomologous
to zero.

He gave some relevant applications: to symplectic structures on a compact complex manifold
(sections 10 and 11), and, partially, to compact Kähler manifolds (III.15 and III.16).

Later on, Harvey and Lawson [25] and Michelsohn [26] apply the same ideas to compact
Kähler and balancedmanifolds, getting an ‘intrinsic characterization’ of Kähler and balanced
compact manifolds. While Sullivan considered a transversal symplectic 2-form, in duality
with null-homologous structure cycles, Harvey and Lawson want to characterize by means of
positive currents the Kähler condition, i.e. the datum of a closed strictly positive (1, 1)-form.
It turns out that the right space of currents is that of positive currents of bidimension (1, 1),
which are (1, 1)-components of boundaries (i.e., T = (d S)1,1); such currents are structure
currents in the sense of Sullivan, but no more structure cycles! (see [25, p. 170]). Hence they
are no more flat currents, in general, and the closeness of the space of (1, 1)-components of
boundaries has to be proved, to allow the use of a separation theorem.

The same considerations apply to (n − 1, n − 1)-components of boundaries in the work
of Michelsohn [26] and to the case 1 < p < n − 1, which has been studied starting from
[4], using both closed transverse (p, p)-forms (p-Kähler forms) and closed real transverse
2p-forms (p-symplectic forms).

Some years later, also other “closeness” conditions on the fundamental forms of hermitian
metrics have been studied: in particular, pluriclosed (i.e. closed with respect to the operator
i∂∂)metrics (see [18]); suchmetrics are often called strong Kähler metrics with torsion (SKT)
(see among others [19] or [20]). Moreover, (n − 1)-symplectic metrics are called strongly
Gauduchon metrics (sG) by Popovici (see [28,29]), while (n − 1)-pluriclosed metrics are
called standard or Gauduchon metrics.

Hence we proposed in [1] a unified vision of the whole subject, by introducing for every
p, 1 ≤ p ≤ n − 1, the four classes of generalized p-Kähler manifolds (see Sect. 3).

This paper is devoted, first of all, to give a complete unified proof of the characterization
theorem for compact generalized p-Kähler manifolds. The proof is based on the classical
duality between “closed” positive forms and “exact” positive currents.

We develop this kind of ideas in the other parts of the paper in two directions: reversing
the role of closeness and exactness (“closed” positive currents and “exact” positive forms),
and approaching the general case of non compact complex manifolds.
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As a matter of fact, the natural environment of “exact” p-Kähler forms is that of non
compact manifolds; indeed, Cn and Stein manifolds are Kähler with a form ω = i∂∂u (u is
a smooth strictly plurisubharmonic function).

Moreover,q-completemanifolds, and1-convexmanifoldswith exceptional set S of dimen-
sion q − 1, are p-Kähler for ever p ≥ q , with a ∂∂-exact form.

Thus in Sect. 8 we state the convenient characterization theorems in the non compact case
and give some interesting applications.

The plane of the paper is as follows:
In Sect. 2 we discuss the notion of positivity of forms, vectors and currents, while in

Sect. 3we introduce the generalized p-Kählermanifolds and their characterization by “exact”
positive currents in the compact case. The complete proof of the characterization Theorem3.2
is given in Sect. 4, where we introduce also the machinery of exact sequences of suitable
sheaves, that we shall use also in the second part of the paper.

In Sect. 5 we propose a characterization theoremwith “closed” currents and “exact” forms
on compact manifolds, also inspired by the work of Sullivan, which makes sense for p > 1.

From Sect. 6 on, we try to put exact generalized p-Kähler forms, or also ‘locally’ gen-
eralized closed p-Kähler forms, on some classes of non compact manifolds. We collect in
Sect.7 the machinery to get some information about Bott–Chern and Aeppli cohomology,
and in Sect. 8 the characterization theorems on non compact manifolds.

2 Basic tools

Let X be a complexmanifold of dimension n ≥ 2, let p be an integer, 1 ≤ p ≤ n. The purpose
of this section is to discuss positivity of (p, p)-forms, (p, p)-vectors and (p, p)-currents:
we refer to [17,24] as regards notation and terminology.

Positivity involves only multi-linear algebra; therefore, take a complex vector space E of
dimension n, its associated vector spaces of (p, q)-forms�p,q(E∗), and a basis {ϕ1, . . . , ϕn}
for E∗.

Let us denote by ϕI the product ϕi1 ∧ · · · ∧ ϕi p , where I = (i1, . . . , i p) is an increasing

multi-index. Call σp := i p22−p; thus, if ζ, η ∈ �p,0(E∗), then σpζ ∧ η̄ = σpη ∧ ζ̄ , so
that σpη ∧ η̄ is real; hence we get obviously that {σpϕI ∧ ϕI , |I | = p} is a basis for
�

p,p
R

(E∗) := {
 ∈ �p,p(E∗);
 = 
} and that

dv =
(

i

2
ϕ1 ∧ ϕ1

)
∧ · · · ∧

(
i

2
ϕn ∧ ϕn

)
= σnϕI ∧ ϕI , I = (1, . . . , n)

is a volume form. We call a (n, n)-form τ positive (strictly positive) if τ = c dv, c ≥ 0 (c >

0). We shall write τ ≥ 0 (τ > 0).
From now on, let 1 ≤ p ≤ n − 1 and let k := n − p.

Definition 2.1 (1) η ∈ �p,0(E∗) is called simple (or decomposable) if and only if there are
{ψ1, . . . , ψp} ∈ E∗ such that η = ψ1 ∧ · · · ∧ ψp .

(2) � ∈ �
p,p
R

(E∗) is called strongly positive (� ∈ S P p) if and only if � = σp
∑

j η j ∧η j ,

with η j simple.
(3) � ∈ �

p,p
R

(E∗) is called positive (� ∈ P p) if and only if for all η ∈ �k,0(E∗), the
(n, n)-form τ := � ∧ σkη ∧ η is positive.

(4) � ∈ �
p,p
R

(E∗) is called weakly positive (� ∈ W P p) if and only if for all ψ j ∈ E∗, and
for all I = (i1, . . . , ik), � ∧ σkψI ∧ ψI is a positive (n, n)-form. It is called transverse
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220 L. Alessandrini

when it is strictly weakly positive, that is, when � ∧ σkψI ∧ ψI is a strictly positive
(n, n)-form for σkψI ∧ ψI �= 0 (i.e. ψi1 , . . . , ψik linearly independent).

2.1.1 Remarks

(a) The sets P p, S P p, W P p and their interior parts are indeed convex cones; moreover,
there are obvious inclusions: S P p ⊆ P p ⊆ W P p ⊆ �

p,p
R

(E∗)
(b) When p = 1 or p = n − 1, the three cones coincide, since every (1, 0)-form is simple

(and hence also every (n−1, 0)-form is simple). In the intermediate cases, 1 < p < n−1,
the inclusions are strict [24].

(c) Using the volume form dv, we get the pairing

f : �p,p(E∗) × �k,k(E∗) → C, f (�,
)dv = � ∧ 
.

Thus:

� ∈ W P p ⇐⇒ ∀ 
 ∈ S Pk,� ∧ 
 ≥ 0.

� ∈ S P p ⇐⇒ ∀ 
 ∈ W Pk,� ∧ 
 ≥ 0.

(d) Moreover, it holds also (see [24, Theorem 1.2])

� ∈ P p ⇐⇒ ∀ 
 ∈ Pk,� ∧ 
 ≥ 0.

As regards vectors, consider �p,q(E), the space of (p, q)-vectors: as before, V ∈ �p,0(E)

is called a simple vector if V = v1 ∧ . . . ∧ vp for some v j ∈ E ; in this case, when V �= 0,
σ−1

p V ∧V is called a strictly strongly positive (p, p)-vector. We can identify strictly strongly
positive (p, p)-vectorswith p-planes inCn , i.e. with the elements ofGC(p, n); to every plane
corresponds a unique unit vector.

Proposition 2.2 � ∈ �
p,p
R

(E∗) is transverse if and only if �(σ−1
p V ∧ V ) > 0 for every

V ∈ �p,0(E), V �= 0 and simple.

Proof Using the pairing f , we get an isomorphism g : �p,p(E) → �k,k(E∗) given as:
f (�, g(A)) = �(A), i.e.

f (�, g(A))dv = � ∧ g(A) := �(A)dv, ∀A ∈ �p,p(E),∀� ∈ �p,p(E∗).

If {e1, . . . , en} denotes the dual basis of {ϕ1, . . . , ϕn}, it is not hard to check that for all
I = (i1, . . . , i p), g(σ−1

p eI ∧ eI ) = σkϕJ ∧ ϕJ with J = {1, . . . , n} − I.

Thus the isomorphism g transforms (p, p)-vectors of the form σ−1
p V ∧V , with V simple,

into strongly positive (k, k)-forms (of the form σkη ∧ η, with η simple). Hence we get

�(σ−1
p V ∧ V )dv = � ∧ g(σ−1

p V ∧ V ) = � ∧ σkη ∧ η

and the statement follows. ��
Let us turn back to a manifold X ; for 0 ≤ p ≤ n, we denote by D p,p(X)R the space of

compactly supported real (p, p)-forms on X and by E p,p(X)R the space of real (p, p)-forms
on X .

Their dual spaces are:D′
p,p(X)R (also denoted byD′k,k

(X)R, where p+k = n), the space
of real currents of bidimension (p, p) or bidegree (k, k), which we call (k, k)-currents, and
E ′

p,p(X)R (also denoted by E ′k,k
(X)R), the space of compactly supported real (k, k)-currents

on X .
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Forms and currents defining generalized p-Kähler structures 221

Definition 2.3 The form � ∈ E p,p(X)R is called strongly positive (resp. positive, weakly
positive, transverse or strictly weakly positive) if:

∀ x ∈ X, �x ∈ S P p(T ′
x X∗) (resp. P p(T ′

x X∗), W P p(T ′
x X∗), (W P p(T ′

x X∗))int ).

These spaces of forms are denoted by S P p(X), P p(X), W P p(X), (W P p(X))int .

Definition 2.4 Let T ∈ E ′
p,p(X)R be a current of bidimension (p, p) on X . Let us define:

weakly positive currents T ∈ W Pp(X) ⇐⇒ T (�) ≥ 0 ∀ � ∈ S P p(X).
positive currents T ∈ Pp(X) ⇐⇒ T (�) ≥ 0 ∀ � ∈ P p(X).
strongly positive currents T ∈ S Pp(X) ⇐⇒ T (�) ≥ 0 ∀ � ∈ W P p(X).

Notation � ≥ 0 denotes that � is weakly positive; � > 0 denotes that � is transverse;
T ≥ 0 means that T is strongly positive. Thus:
2.4.1 Claim � > 0 if and only if T (�) > 0 for every T ≥ 0, T �= 0.

Remarks Obviously the previous cones of currents satisfy: S Pp(X) ⊆ Pp(X) ⊆
W Pp(X). The classical positivity for currents (i.e. “positive in the sense of Lelong”) is
strong positivity; Demailly [17, Definition III.1.13] does not consider Pp(X), and indicates
W Pp(X) as the cone of positive currents; there is no uniformity of notation in the papers of
Alessandrini and Bassanelli.

Moreover, let us recall that, if f is a holomorphic map, and T ≥ 0, then f∗T ≥ 0.

The differential operators d, ∂, ∂ extends naturally to currents by duality; thuswe have two
De Rham complexes, (E∗, d) and ((D′)∗, d); but the embedding i : (E∗, d) → ((D′)∗, d)

induces an isomorphism at the cohomology level. This fact applies also to other cohomolo-
gies, as Bott–Chern and Aeppli. Since the notation has changed during the last 50years, we
recall them below:

Hk,k
∂∂

(X,R) = �
k,k
R

(X) = Hk,k
BC (X,R) := {ϕ ∈ Ek,k(X)R; dϕ = 0}

{i∂∂α;α ∈ Ek−1,k−1(X)R}
Hk,k

∂+∂
(X,R) = V k,k

R
(X) = Hk,k

A (X,R) := {ϕ ∈ Ek,k(X)R; i∂∂ϕ = 0}
{ϕ = ∂α + ∂α;α ∈ Ek,k−1(X)}

Hk,k
d (X,R) := {ϕ ∈ Ek,k(X)R; dϕ = 0}

{ϕ ∈ Ek,k(X)R;ϕ = dη; η ∈ E2k−1(X)R}
H j

DR(X,R) := {ζ ∈ E j (X)R; dζ = 0}
{ζ ∈ E j (X)R; ζ = dη; η ∈ E j−1(X)R} .

In general,when the class of a formor a current vanishes in one of the previous cohomology
groups, we say that the form or the current “bounds” or is “exact”.

3 Generalized p-Kähler conditions on compact manifolds

We introduced p-Kähler manifolds in [4] and then in [5], and studied them mainly in the
compact case: p-Kähler manifolds enclose Kähler and balanced manifolds, and seem to be
the better generalization of the Kähler setting. Later on, also pluriclosed (SKT) manifolds
have been proposed as a good generalization of Kähler manifolds.

Thus a deep investigation of this type of structures (no more metrics, in general) was
needed: we proposed in [1] a general setting, those of generalized p-Kähler manifolds, which
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222 L. Alessandrini

enclose all the known classes of non-Kähler manifolds that can be characterized by a trans-
verse “closed” form. In the last years, some of them have been studied (not with the same
name!) by other authors: hence we give in Remark 3.1.2 a sort of dictionary; moreover, a brief
survey of the whole history can be seen looking at the proofs of the suitable characterization
theorems, as we indicate in the remarks after Theorem 3.2.

Definition 3.1 Let X be a complex manifold of dimension n ≥ 2, let p be an integer,
1 ≤ p ≤ n − 1.

(1) X is a p-Kähler (pK) manifold if it has a closed transverse (i.e. strictly weakly positive)
(p, p)-form � ∈ E p,p(X)R.

(2) X is a weakly p-Kähler (pWK) manifold if it has a transverse (p, p)-form � with ∂� =
∂∂α for some form α.

(3) X is a p-symplectic (pS) manifold if it has a closed transverse real 2p-form
 ∈ E2p(X);
that is, d
 = 0 and � := 
 p,p (the (p, p)-component of 
) is transverse.

(4) X is a p-pluriclosed (pPL) manifold if it has a transverse (p, p)-form � with ∂∂� = 0.

Notice that: pK �⇒ pW K �⇒ pS �⇒ pP L; as regards examples and differences
under these classes of manifolds, see [1–3].

When X satisfies one of these definitions, it is called a generalized p-Kähler manifold;
the form �, called a generalized p-Kähler form, is said to be “closed”.

3.1.1 Remark As regards Definition 3.1(3), let us write the condition d
 = 0 in terms
of a condition on ∂�, as in the other statements; when 
 = ∑

a+b=2p 
a,b, then d
 = 0 is
equivalent to:

(i) ∂
n− j,2p−n+ j + ∂
n− j−1,2p−n+ j+1 = 0, for j = 0, . . . , n − p −1, when n ≤ 2p and
(ii) ∂
2p,0 = 0, ∂
2p− j, j + ∂
2p− j−1, j+1 = 0, for j = 0, . . . , p − 1, when n > 2p.

In particular, ∂� = ∂
 p,p = −∂
 p+1,p−1 (which is the only condition when p = n −1,
as remarked also in [28]).

3.1.2 Remark 1PL corresponds to pluriclosed [18] or SKT [20]; 1S to hermitian sym-
plectic [34], 1K to Kähler. Moreover, (n − 1)PL manifolds (or metrics) are called standard
or Gauduchon; (n − 1)S corresponds to strongly Gauduchon [28,36], (n − 1)WKmanifolds
are called superstrong Gauduchon [31], (n − 1)K corresponds to balanced [26].

Let us go to the characterization theorem. As in the work of Harvey and Lawson [25],
some questions arise about the natural operators as i∂∂, d, ∂ + ∂: do they have closed range?
Let us recall how the problem is solved in [25] when M is compact, to emphasize the crucial
points of the general case. The authors prove in Sect. 2 that, when M is compact:

(1) For every p, dim H p(M,H) < ∞, where H is the sheaf of germs of pluriharmonic
functions; this is due to the finite dimensionality of H j (M,R) and H j (M,O), using
the exact sequence (4.11) in Sect. 4.

(2) The image of d : E1,1(M)R → Z1,1(M)R = {ψ ∈ (E2,1(M) ⊕ E1,2(M))R/dψ = 0}
hasfinite codimension in Z1,1(M)R, because H2(M,H) � Z1,1(M)R/dE1,1(M)R. This
fact is due to the cohomology sequences coming from the exact sequence of sheaves
(4.1) in Sect. 4.

(3) The operator d : E1,1(M)R → (E2,1(M) ⊕ E1,2(M))R has closed range, since by (2)
the image of d is closed in Z1,1(M)R.

(4) On currents, let π : E ′
2(M)R → E ′

1,1(M)R be the natural projection; the operator d1,1 :
(E ′

2,1(M) ⊕ E ′
1,2(M))R → E ′

1,1(M)R given by d1,1 = π ◦ d restricted to (E ′
2,1(M) ⊕

E ′
1,2(M))R, is the adjoint operator to d : E1,1(M)R → (E2,1(M) ⊕ E1,2(M))R, so that

it has closed range [see (4.8) and Sect. 4].
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Forms and currents defining generalized p-Kähler structures 223

(5) Thus I md1,1, that is, the space of currents which are (1, 1)-components of a boundary,
is closed in E ′

1,1(M)R.

We shall develop these steps to get the proof of the general characterization theorem.
Thus, in the same vein, we prove:

Theorem 3.2 (1) Characterization of compact p-Kähler (pK) manifolds.

M has a strictly weakly positive (p, p)-form � with ∂� = 0, if and only if M has no
strongly positive currents T �= 0, of bidimension (p, p), such that T = ∂S + ∂S for
some current S of bidimension (p, p+1) (i.e. T is the (p, p)-component of a boundary).

(2) Characterization of compact weakly p-Kähler (pWK) manifolds.

M has a strictly weakly positive (p, p)-form � with ∂� = ∂∂α for some form α, if
and only if M has no strongly positive currents T �= 0, of bidimension (p, p), such that
T = ∂S + ∂S for some current S of bidimension (p, p + 1) with ∂∂S = 0 (i.e. T is
closed and is the (p, p)-component of a boundary).

(3) Characterization of compact p-symplectic (pS) manifolds.

M has a real 2p-form 
 = ∑
a+b=2p 
a,b, such that d
 = 0 and the (p, p)-form

� := 
 p,p is strictly weakly positive, if and only if M has no strongly positive currents
T �= 0, of bidimension (p, p), such that T = d R for some current R (i.e. T is a boundary,
that is, T = ∂S + ∂S with ∂S = 0).

(4) Characterization of compact p-pluriclosed (pPL) manifolds.

M has a strictly weakly positive (p, p)-form � with ∂∂� = 0, if and only if M has no
strongly positive currents T �= 0, of bidimension (p, p), such that T = ∂∂ A for some
current A of bidimension (p + 1, p + 1).

Remarks Theorem 3.2(1) for p = 1 was proved in [25, Theorem 14];
Theorem 3.2(1) for p = n − 1 was proved in [26, Theorem 4.7];
Theorem 3.2(1) for a generic p was proved in [4, Theorem 1.17];
Theorem 3.2(2) for p = 1 was proved in [25, Theorem 38]; in fact, Theorem 3.2(2) is

related to a question posed byHarwey and Lawson in their paper (Section 5 in [25]), about the
use of closed currents in characterization theorems (this is important because closed positive
currents are flat in the sense of Federer).

Theorem 3.2(3) for p = 1 was proved in [35, Theorems III.2 and III.11];
Theorem 3.2(3) for a generic p was proved in [4, Theorem 1.17];
Theorem 3.2(3) for p = n − 1 is proved also in [28, Proposition 3.3].
Theorem 3.2(4) for p = 1 is proved in [18, Theorem 3.3].
Recall also a result of Gauduchon [21] (for p = n − 1), who proved that every compact

n-dimensional manifold is (n − 1)P L . As a matter of fact, this result is now a corollary of
the previous theorem, since for p = n − 1, the current A in Theorem 3.2(4) reduces to a
plurisubharmonic global function on a compact complex manifold, hence to a constant. Such
a metric is also called a standard (or Gauduchon) metric.

We shall give a complete proof of all statements in the next section.
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224 L. Alessandrini

4 Proof of the characterization Theorem 3.2

Let us firstly recall some well-known facts about Fréchet topological vector spaces and
Fréchet sheaves that we shall use here and in Sects. 5 and 8.

Lemma 4.1 (see [32, IV.7.7]) Let L , M be Fréchet spaces, and let f : L → M be a
continuous linear map. Then f is a topological homomorphism if and only if f has closed
range, that is, if and only if M

I m f is a Hausdorff (hence Fréchet) t.v.s.

Lemma 4.2 (see [33, p. 21])Let L , M be Fréchet spaces, and let f : L → M be a continuous
linear map whose image has finite codimension. Then f is a topological homomorphism (i.e.

M
I m f is Hausdorff, i.e. I m f is closed in M).

Lemma 4.3 Let L , M be Fréchet spaces, let f : L → M be a continuous surjective linear
map. Let N be a closed subspace of L with finite codimension. Then f (N ) is closed.

Proof Consider the induced map g : L
N → M

f (N )
which is surjective: hence f (N ) has finite

codimension in M . Now N is a Fréchet space, and f |N : N → M satisfies Lemma 4.2, thus
M

f (N )
is Hausdorff. ��

Theorem 4.4 (Hahn–Banach Theorem, see [32, Theorem II.3.1]) Let E be a topological
vector space, let F be a linear manifold in E, and let A be a non-empty convex open subset
of E, not intersecting F. There exists a closed hyperplane in E, containing F and not
intersecting A.

Theorem 4.5 (Separation theorem, see [32, Theorem II.9.2])Let E be a locally convex space,
let A, B non-empty disjoint convex subsets of E, such that A is closed and B is compact.
There exists a closed hyperplane in E, strictly separating A and B.

Let us go now to the preliminaries of the proof of Theorem 3.2.
Let X be a complex n-dimensional manifold; for n ≥ p, q ≥ 0, consider the spaces

E p,q(X), endowed with the usual topology of the uniform convergence on compact sets: they
are Fréchet spaces. Their topological dual spaces (with the weak topology) are the spaces
E ′

p,q(X), and the pairing is denoted by S(α) or (S, α) for every S ∈ E ′
p,q(X) andα ∈ E p,q(X).

If F ⊂ E p,q(X), S ∈ F⊥ means that (S, α) = 0 for all α ∈ F .
Moreover, we denote as usual by E p,q

R
the sheaf of germs of real (p, q)-forms, and by � j

the sheaf of germs of holomorphic j-forms.
Notice that in [25, Proposition 1] only the following resolution of the sheaf H is needed:

0 → H j→ E0,0
R

i∂∂→ E1,1
R

d→ (E2,1 ⊕ E1,2)R
d→ E4(M)R → . . . (4.1)

where j is the standard inclusion. On the contrary, our situation is much more complicated,
because it involves in the resolution of H also sheaves whose cohomology is not trivial (see
f.i. [8, p. 259]; the notation stems mainly from [11,12]).

For every p > 0, we consider the following resolution of the sheaf H:

0 → H σp,−1→ L0 σp,0→ . . .Lp−1 σp,p−1→ B p σp,p→ . . .B2p−1 σp,2p−1→ E p,p
R

σp,2p→
E p+1,p+1
R

σp,2p+1→ (E p+2,p+1 ⊕ E p+1,p+2)R
σp,2p+2→ E2p+4

R
→ . . . . (4.2)
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Here,

L j := (� j+1 ⊕ (⊕ j
k=0E j−k,k) ⊕ �

j+1
)R, for 0 ≤ j ≤ p − 1;

B j := (⊕2p− j
k=0 E p−k, j−p+k)R, for p ≤ j ≤ 2p − 1

and the maps are, respectively,

(1) σp,−1(h) = (−∂h, h,−∂h),
(2) for 0 ≤ j ≤ p − 2 (if p > 1):

σp, j (ϕ
j+1, {α j−k,k} j

k=0, ϕ
j+1)

= (−∂ϕ j+1, ∂α j,0 + ϕ j+1, {∂αk+1, j−k−1 + ∂αk, j−k} j−1
k=0, ϕ

j+1 + ∂α0, j ,−∂ϕ j+1);
(3) for j = p − 1: σp,p−1(ϕ

p, {α p−1−k,k}p−1
k=0 , ϕ p)

= (∂α p−1,0 + ϕ p, {∂α p−1−k,k + ∂α p−2−k,k+1}p−2
k=0 , ϕ p + ∂α0,p−1);

(4) for p ≤ j ≤ 2p − 1: σp, j ({α p−k, j−p+k}2p− j
k=0 ) = ({∂α p−k, j−p+k + ∂α p−k−1, j−p+k+1}2p− j−1

k=0 );
(in particular, σp,2p−1(β, β) = (∂β + ∂β))

(5) for j = 2p: σp,2p = i∂∂;
(6) for j = 2p + 1 and j = 2p + 2: σp,2p+1 = σp,2p+2 = d .

Moreover, we shall denote by ds the operator d acting on s-forms: Es
R

ds→ Es+1
R

.

When p = 0, we shall use sequence (4.1), i.e.

0 → H σ0,−1→ E0,0
R

σ0,0→ E1,1
R

σ0,1→ (E2,1 ⊕ E1,2)R
σ0,2→ E4(M)R → . . .

Let us explain this complicated notation,wheremaps have two indices: p ≥ 0 and j ≥ −1.
The first index, p, is related to the domain of the operator: σp,− means that we are considering
the pth resolution of the sheafH, where there are p sheaves of type L and p sheaves of type
B before E p,p

R
, which is followed by E p+1,p+1

R
. For instance, if p = 2, the resolution is

0 → H σ2,−1→ L0 σ2,0→ L1 σ2,1→ B3 σ2,2→ B4 σ2,3→ E2,2
R

σ2,4→ E3,3
R

→ . . .

The second index, j ,which depends on p, indicates the position of the operator in the sequence
(starting from j = −1), and therefore this index gives the definition of the operator, according
to the rules (1)–(6). For instance, σ2,3 is the fifth operator in the above sequence, so that by
rule (4) we have

σ2,3(β, β) = σp,2p−1(β, β) = (∂β + ∂β),

while σ2,2 is the fourth operator and by the same rule we get

σ2,2(α
2,0, α1,1, α0,2) = σp,2p−2({α p−k,p−2+k}2k=0) = (∂α2,0 + ∂α1,1, ∂α1,1 + ∂α0,2).

Example p = 1.
The exact sequence of sheaves (4.2) becomes

0 → H σ1,−1→ L0 σ1,0→ B1 σ1,1→ E1,1
R

σ1,2→ E2,2
R

σ1,3→ (E3,2 ⊕ E2,3)R → . . . (4.3)

i.e.

0 → H σ1,−1→ (�1 ⊕ E0,0 ⊕ �
1
)R

σ1,0→ (E1,0 ⊕ E0,1)R
σ1,1→ E1,1

R

σ1,2→ E2,2
R

σ1,3→ (E3,2 ⊕ E2,3)R . . .

(4.4)
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where the maps are, respectively,

σ1,−1(h) = (−∂h, h,−∂h), σ1,0(ϕ, f, ϕ, ) = (ϕ + ∂ f, ∂ f + ϕ),

σ1,1(β, β) = (∂β + ∂β), σ1,2 = i∂∂ σ1,3 = d, and so on.

At section’s level, the operators (but the differential operator d) are namedwith the ‘capital
sigma’; in particular, we shall use:

E p−1,p−1(X)R
�p−1,2p→ E p,p(X)R

�p−1,2p+1→ (E p+1,p ⊕ E p,p+1)(X)R (4.5)

where �p−1,2p(θ) = i∂∂θ, �p−1,2p+1(�) = (∂�, ∂�),

(E p,p−1 ⊕ E p−1,p)(X)R
�p,2p−1→ E p,p(X)R

�p,2p→ E p+1,p+1(X)R (4.6)

where �p,2p−1(β, β) = ∂β + ∂β, �p,2p(�) = i∂∂�,

E2p−1(X)R
d2p−1→ E2p(X)R

d2p→ E2p+1(X)R. (4.7)

We consider also their dual operators, acting on currents, in particular:

(E ′
p+1,p ⊕ E ′

p,p+1)(X)R
�′

p−1,2p+1→ (E ′
p,p)(X)R

�′
p−1,2p→ (E ′

p−1,p−1)(X)R, (4.8)

where �′
p−1,2p+1(S, S) = ∂S + ∂S, �′

p−1,2p(T ) = i∂∂T ,

(E ′
p+1,p+1)(X)R

�′
p,2p→ (E ′

p,p)(X)R
�′

p,2p−1→ (E ′
p,p−1 ⊕ E ′

p−1,p)(X)R (4.9)

where �′
p,2p(T ) = i∂∂T, �′

p,2p−1(T ) = (∂T, ∂T ),

(E ′
2p+1)(X)R

d ′
2p→ (E ′

2p)(X)R
d ′
2p−1→ (E ′

2p−1)(X)R. (4.10)

Using this notation, we can rewrite the statements of Theorem 3.2 in a useful manner: f.i.,
in statement (1), looking at (4.5) and (4.8), the condition ∂� = 0 (which implies d� = 0
since � is real), is equivalent to: � ∈ K er�p−1,2p+1 and, on the other hand, T = ∂S + ∂S
means T ∈ I m�′

p−1,2p+1.
Moreover, in statement (2) of Theorem 3.2, it is not hard to check that the condition

∂� = ∂∂α can be expressed as:� ∈ (K er�p−1,2p+1+ I m�p,2p−1), while the condition on
T (closed and the (p, p)-component of a boundary)means exactly that T ∈ (I m�′

p−1,2p+1∩
K er�′

p,2p−1), and so on.

Summing up, we get the following version of Theorem 3.2:
Theorem (3.2)’ Let M be a compact complex manifold of dimension n ≥ 2 and let 1 ≤ p ≤
n − 1.

(1) There is a real transverse (p, p)-form � on M such that � ∈ K er�p−1,2p+1 (i.e.
∂� vanishes) ⇐⇒ there are no non trivial currents T ∈ E ′

p,p(X)R, T ≥ 0, T ∈
I m�′

p−1,2p+1 (i.e. T is the component of a boundary).
(2) There is a real transverse (p, p)-form � on M such that � ∈ (K er�p−1,2p+1 +

I m�p,2p−1) (i.e. ∂� is ∂∂-exact)) ⇐⇒ there are no non trivial currents T ∈ E ′
p,p(X)R,

T ≥ 0, T ∈ (K er�′
p,2p−1 ∩ I m�′

p−1,2p+1) (i.e. T is closed and the component of a
boundary).

(3) There is a real 2p-form
 with
 p,p := � transverse on M such that
 ∈ K erd2p ⇐⇒
there are no non trivial currents T ∈ E ′

p,p(X)R, T ≥ 0, T ∈ I md ′
2p.
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(4) There is a real transverse (p, p)-form � on M such that � ∈ K er�p,2p (i.e. � is ∂∂-
closed) ⇐⇒ there are no non trivial currents T ∈ E ′

p,p(X)R, T ≥ 0, T ∈ I m�′
p,2p

(i.e. T is ∂∂-exact).

RemarkNotice that the kind of positivity of forms and currents (see Definitions 2.3 and 2.4)
is not relevant: indeed, we could carry on the proof also with the cones Pp(M) or W Pp(M)

(and the corresponding dual cones of forms), as the forthcoming proof shows.

Proof (of Theorem 3.2 or (3.2)’). In all cases, one part of the proof is simple: if there exist
both the form � and the current T as given in the theorem, we would have by Claim 2.4.1:
(T,�) > 0. But:

Case (1) (T,�) = 0 because � ∈ K er�p−1,2p+1 and T ∈ I m�′
p−1,2p+1 ⊆

(K er�p−1,2p+1)
⊥.

Case (2) (T,�) = (∂S + ∂S,�) = (S, ∂�) + (S, ∂�) = (S, ∂∂α) + (S,−∂∂α) =
−(∂∂S, α) + (∂∂S, α) = 0.
Case (3) (T,�) = 0 because (T,�) = (T, 
) and 
 ∈ K erd2p , T ∈ I md ′

2p ⊆
(K erd2p)

⊥.
Case (4) (T,�) = 0 because � ∈ K er�p,2p and T ∈ I m�′

p,2p ⊆ (K er�p,2p)
⊥.

Let us prove now the converses (the technical details, which we shall prove all together
in Proposition 4.6, are collected in the Claims). We refer to sequences (4.5) - (4.10).

Case (1) Let us denote by P(M) := S Pp(M) the closed convex cone of strongly positive
currents of bidimension (p, p).

Consider on M a hermitian metric h with associated (1, 1)-form γ , and let

P̃(M) := {T ∈ P(M); (T, γ p) = 1};
it is a compact convex basis for P(M) (in the sense of Sullivan [35, Prop. I.5]).

Our hypothesis can be written as: I m�′
p−1,2p+1 ∩ P̃(M) = ∅.

Claim (1) I m�′
p−1,2p+1 is a closed linear subspace of E ′

p,p(M)R.
Let us conclude the proof: by the separation Theorem 4.5, there exists a closed hyperplane

in E ′
p,p(M)R, strictly separating I m�′

p−1,2p+1 and P̃(M). Thus we get a (p, p)-form� such

that (T,�) > 0 for all T ∈ P̃(M) and (T,�) = 0 for all T ∈ I m�′
p−1,2p+1.

This last condition means precisely that � ∈ (I m�′
p−1,2p+1)

⊥ = K er�p−1,2p+1.
As for the first one, it assures that � is transverse. In fact, consider T ∈ S Pp(M), T �= 0;

then (T, γ p) = c > 0, since γ p is a transverse form, and this implies that c−1T ∈ P̃(M),
thus (�, c−1T ) > 0 and also (�, T ) > 0; this is sufficient by the Claim 2.4.1.

Case (4) is very similar, since now I m�′
p,2p ∩ P̃(M) = ∅. To conclude as above, we

have only to prove:
Claim (4) I m�′

p,2p is a closed linear subspace of E ′
p,p(M)R.

Case (2) Our hypothesis is (I m�′
p−1,2p+1 ∩ K er�′

p,2p−1) ∩ P̃(M) = ∅.

Claim (2a) I m�′
p−1,2p+1 ∩ K er�′

p,2p−1 is a closed linear subspace of E ′
p,p(M)R.

By the separation Theorem 4.5, there exists a closed hyperplane in E ′
p,p(M)R, strictly

separating I m�′
p−1,2p+1 ∩ K er�′

p,2p−1 and P̃(M). Thus we get a (p, p)-form � such

that (T,�) > 0 for all T ∈ P̃(M) (that is, � is transverse) and (T,�) = 0 for all T ∈
I m�′

p−1,2p+1 ∩ K er�′
p,2p−1, that is, � ∈ (I m�′

p−1,2p+1 ∩ K er�′
p,2p−1)

⊥, which is the
closure of the linear subspace (K er�p−1,2p+1 + I m�p,2p−1), and we conclude by the
following Claim:
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Claim (2b) I m�p,2p−1 and (K er�p−1,2p+1 + I m�p,2p−1) are closed linear subspaces.

Case (3) Let us consider the Frechet space E ′
2p(M)R = (⊕a+b=2pE ′

a,b(M))R, and denote
by π the projection on the addendum E ′

p,p(M)R. Moreover, consider the closed convex cone

P ′(M) = {R ∈ E ′
2p(M)R/R = π(R), π(R) ∈ P(M)}, and its compact basis P̃ ′(M) :=

{R ∈ P ′(M)/(R, γ p) = 1}. Our hypothesis is: I md ′
2p ∩ P̃ ′(M) = ∅.

Claim (3) I md ′
2p is a closed linear subspace of E ′

2p(M)R.

By the separation Theorem 4.5, we get a real 2p-form 
 = ∑
a+b=2p 
a,b, such that

d
 = 0, since 
 ∈ (I md ′
2p)

⊥ = K erd2p . Moreover, for every R ∈ P̃ ′(M), (R, 
) =
(R, 
 p,p) > 0; this assures as in case (1) that the (p, p)-form � := 
 p,p is transverse.

We end the proof by the following remark. ��
Remark 4.5.1 All the previous claims are proved, if we check that the following lin-

ear subspaces are closed: I m�p−1,2p+1, I m�p,2p−1, I m�p,2p , I md2p , and moreover that
I m�p,2p−1 has finite codimension in K er�p,2p (this is done in Proposition 4.6).

In fact notice that, by the Closed Range Theorem (see f.i. [32, III.7.7]), we can always
switch from the dual operator to the operator itself (as regards the closure of the image).

Moreover, let us consider (K er�p−1,2p+1+ I m�p,2p−1) in Claim (2b): both addenda are

closed subspaces of K er�p,2p . Consider the quotient map f : K er�p,2p → K er�p,2p
K er�p−1,2p+1

:
it is a continuous surjective linear map, thus by Lemma 4.3, f (I m�p,2p−1) is closed in

K er�p,2p
K er�p−1,2p+1

, and so

f −1( f (I m�p,2p−1)) = (K er�p−1,2p+1 + I m�p,2p−1)

is closed in K er�p,2p , and thus in E p,p(M)R.

Proposition 4.6 The following linear subspaces are closed: I m�p−1,2p+1, I m�p,2p−1,
I m�p,2p, I md2p, and moreover I m�p,2p−1 has finite codimension in K er�p,2p.

Proof By Lemma 4.2, it is enough to prove (for suitable spaces and maps) that E
I m f is finite

dimensional. Now recall that, since M is compact:

dim H2p+1
DR (M,R) = dim

(K erd2p+1)(M)

(I md2p)(M)
< ∞

dim H p+1,p+1
∂∂

(M,R) = dim
(K erσp,2p+1)(M)

(I mσp,2p)(M)
= dim

K er�p,2p+1

I m�p,2p
< ∞

dim H p,p
∂+∂

(M,R) = dim
(K erσp,2p)(M)

(I mσp,2p−1)(M)
= dim

K er�p,2p

I m�p,2p−1
< ∞.

As for the last assertions onemay look at [11], or at some other papers concerningBott–Chern
and Aeppli cohomology.

It remains to check I m�p−1,2p+1; as said before, we need:

dim
(K erσp−1,2p+2)(M)

(I mσp−1,2p+1)(M)
< ∞.

When p > 1, let us consider the sheaves involved in sequence (4.2). Since M is compact,
it is well known that Hk(M,B j ) = 0 for k > 0, and dim Hk(M,L j ) < ∞, since the
sheaves � j are coherent. For k > 0, dim Hk(M,H) < ∞, using the cohomology sequence
associated to

0 → R
i→ O Re→ H → 0 (4.11)
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where i(c) = ic, c ∈ R , and 2Ref (z) = f (z) + f (z).
From the following short exact sequences arising from (4.2) (case p − 1),

0 → H → L0 → K erσp−1,1 → 0,

0 → K erσp−1,1 → L1 → K erσp−1,2 → 0,

0 → K erσp−1,2 → L2 → K erσp−1,3 → 0, . . .

0 → K erσp−1,2p → E p−1,p−1
R

→ K erσp−1,2p+1 → 0, (4.12)

weget: by thefirst one,dim Hk(M, K erσp−1,1) < ∞ for k > 0,which implies, by the second

one, dim Hk(M, K erσp−1,2) < ∞ for k > 0, and so on. And finally dim
(K erσp−1,2p+2)(M)

(I mσp−1,2p+1)(M)
<

∞ since dim H1(M, K erσp−1,2p+1) < ∞.

When p = 1, we use the sequence (4.1) to get the same result. ��
Thus we ended the proof of Theorem 3.2.

5 Exact generalized p-Kähler forms

Let us begin with an example. It is well known that a 1K form on a compact Kähler manifold
cannot be exact, because on the contrary we would have:

0 < vol(M) =
∫

M
ωn =

∫
M

dα ∧ ωn−1 =
∫

M
d(α ∧ ωn−1) = 0.

But this is no more true when p > 1. We recall here an example proposed by Yachou [37],
which illustrates the following result (see [22, pp. 506–507]): If G is a complex connected
semisimple Lie group, it has a discrete subgroup � such that the homogeneous manifold
M := G/� is compact, holomorphically parallelizable and does not have hypersurfaces
(since a(M) = 0).

Example 5.1 Take G = SL(2,C), � = SL(2,Z), and consider the holomorphic 1-forms
η, α, β on M := G/� induced by the standard basis for g∗: it holds

dα = −2η ∧ α, dβ = 2η ∧ β, dη = α ∧ β.

The standard fundamental form, given by ω = i
2 (α ∧α +β ∧β + η ∧ η), satisfies dω2 = 0,

so that ω2 is a balanced form: but it is exact, since

ω2 = d

(
1

16
α ∧ dα + 1

16
β ∧ dβ + 1

4
η ∧ dη

)
.

Hence this manifold does not support not only hypersurfaces, but also closed positive (1, 1)-
currents.

As a matter of fact, Sullivan considered also exact forms in [35, Theorem I.7] (see in
the Introduction the second part of the cited result of Sullivan), but this argument was not
developed further by Harvey and Lawson, since on compact manifolds no Kähler form can
be exact.

We just showed that when p > 1 the situation is very different, hence we shall study
the general case in the following theorem, concerning “exact” generalized p-Kähler forms.
Some remarks on this theorem are collected after the proof.
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Theorem 5.1 Let M be a compact complex manifold of dimension n ≥ 2, and let p be an
integer, 1 ≤ p ≤ n − 1. Then:

(1) There is a transverse (p, p)-form � on M such that � ∈ I m�p−1,2p (that is, � is ∂∂-
exact) ⇐⇒ there are no non trivial currents T ∈ E ′

p,p(M)R, T ≥ 0, T ∈ K er�′
p−1,2p

(that is, T is ∂∂-closed).
(2) There is a transverse (p, p)-form � on M such that � ∈ I md2p−1 ⇐⇒ there are no

real currents R ∈ E ′
2p(M)R, Rp,p := T ≥ 0, T �= 0, R ∈ K erd ′

2p−1.

(3) There is a transverse (p, p)-form � on M such that � ∈ I m�p,2p−1 ∩ K er�p−1,2p+1

(that is, � is closed and the component of a boundary) ⇐⇒ there are no non trivial
currents T ∈ E ′

p,p(M)R, T ≥ 0, T ∈ (I m�′
p−1,2p+1 + K er�′

p,2p−1) (that is, ∂T is

∂∂-exact).
(4) there is a transverse (p, p)-form � on M such that � ∈ I m�p,2p−1 (that is, � is the

component of a boundary) ⇐⇒ there are no non trivial currents T ∈ E ′
p,p(M)R,

T ≥ 0, T ∈ K er�′
p,2p−1 (that is, T is closed).

Proof As in Theorem 3.2, one side is straightforward. Also the other side of the proof is
similar to that of Theorem (3.2)’: in the present case, we shall separate positive currents from
“closed” currents, so that the separating hyperplane turns out to be a transverse “exact” form.
What we need is a result similar to Proposition 4.6.

Let us give the details. As for the case (4), first of all notice that we require a transverse
(p, p)-form� on M such that� = ∂β +∂β, or, which is the same, a 2p-form
 = d� such
that 
 p,p := � > 0. Thus 
, but not �, is exact in the classical sense (see Remark 5.2.4).

Let us denote by P(M) := S Pp(M) the closed convex cone of strongly positive currents
of bidimension (p, p). Consider on M a hermitian metric h with associated (1, 1)-form γ ,
and let P̃(M) := {T ∈ P(M); (T, γ p) = 1}: it is a compact convex basis for P(M).

Our hypothesis can be written as: K er�′
p,2p−1 ∩ P̃(M) = ∅. By the separation Theo-

rem 4.5, there exists a closed hyperplane in E ′
p,p(M)R, strictly separating K er�′

p,2p−1 and

P̃(M). Thus we get a (p, p)-form � such that (T,�) > 0 for all T ∈ P̃(M) and (T,�) = 0
for all T ∈ K er�′

p,2p−1. This last condition means precisely that � ∈ (K er�′
p,2p−1)

⊥
which is the closure of I m�p,2p−1.

As for the first condition, it assures that � is transverse. In fact, consider T ∈
S Pp(M), T �= 0; then (T, γ p) = c > 0, since γ p is a transverse form, and this implies
that c−1T ∈ P̃(M), thus (�, c−1T ) > 0 and also (�, T ) > 0; this is sufficient by Claim
2.4.1. Thus it remains to prove:

Claim (4) I m�p,2p−1 is a closed linear subspace of E p,p(M)R.
Case (1) is very similar, since now K er�′

p−1,2p ∩ P̃(M) = ∅. To conclude as above, we
have only to prove:

Claim (1) I m�p−1,2p is a closed linear subspace of E p,p(M)R.
Case (3). Notice that the hypothesis on � is equivalent to � = ∂β + ∂β, with ∂∂β = 0,

while the condition on T assures that ∂T = ∂∂S.
Therefore we start from (I m�′

p−1,2p+1 + K er�′
p,2p−1) ∩ P̃(M) = ∅.

Claim (3a) I m�′
p−1,2p+1 + K er�′

p,2p−1 is a closed linear subspace of E ′
p,p(M)R.

By the separation Theorem 4.5, there exists a closed hyperplane in E ′
p,p(M)R, strictly

separating I m�′
p−1,2p+1 + K er�′

p,2p−1 and P̃(M). Thus we get a (p, p)-form � such

that (T,�) > 0 for all T ∈ P̃(M) (that is, � is transverse) and (T,�) = 0 for all T ∈
I m�′

p−1,2p+1+ K er�′
p,2p−1, that is,� ∈ (I m�′

p−1,2p+1+ K er�′
p,2p−1)

⊥, which is given
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by K er�p−1,2p+1 intersected with the closure of the linear subspace I m�p,2p−1, and we
conclude by the following Claim:

Claim (3b) I m�p,2p−1, I m�′
p−1,2p+1 are closed linear subspaces.

Case (2) Let us consider the Frechet space E2p(M)R = (⊕a+b=2pEa,b(M))R, and denote
by π the projection on the addendum E p,p(M)R. Moreover, consider the set

A := {
 ∈ E2p(M)R; ∃c > 0 such that π(
) > cγ p}
(the condition obviously means that π(
) − cγ p is strictly weakly positive).

It is easy to control that A is a non-empty convex open subset in the topological vector
space E2p(X)R. If there is no form � as stated in the theorem, then we get also

(A ∩ E p,p(X)R) ∩ I md2p−1 = ∅.

Claim (2) I md2p−1 is a closed linear subspace of E2p(M)R.
By the Hahn–Banach Theorem 4.4, we get a separating closed hyperplane, which is

nothing but a current R ∈ E ′
2p(X)R, for which we can suppose:

R ∈ (I md2p−1)
⊥ = K erd ′

2p−1,

(R,�) = (Rp,p,�) > 0 for every � ∈ (A ∩ E p,p(X)R) (thus T := Rp,p �= 0).

Let us check that T ≥ 0, i.e. (T,�) ≥ 0, ∀� ∈ W P p,p(X). For every ε > 0,�+ εγ p ∈ A,
thus

(T,�) = (T, lim
ε→0

� + εγ p) = lim
ε→0

(T,� + εγ p) ≥ 0.

We end the proof by using the forthcoming Proposition 5.2. ��
Proposition 5.2 The following linear subspaces are closed: I m�p−1,2p+1, I m�p,2p−1,
I m�p−1,2p, I md2p−1, and moreover I m�′

p−1,2p+1 has finite codimension in K er�′
p−1,2p.

Proof See the proof of Proposition 4.6. Notice moreover that, for p + k = n,

Hk,k
∂+∂

(M,R) � {T ∈ E ′
p,p(X)R; i∂∂T = 0}

{∂S + ∂S; S ∈ E ′
p,p+1(X)} = (K erσ ′

p−1,2p)(M)

(I mσ ′
p−1,2p+1)(M)

since the cohomology groups can be described using either forms or currents of the same
bidegree.

5.2.1 Remark Notice that, as before, 5.1(1) �⇒ 5.1(2) �⇒ 5.1(3) �⇒ 5.1(4), and
moreover, for every j , 5.1( j) �⇒ 3.2( j). The stronger condition, 5.1(1), is in fact a p-
Kähler condition with exact (that means ∂∂-exact) form.

5.2.2 Remark The statement of Theorem I.7 in [35] is the following: “ If no non-trivial
structure cycle exists, some transversal closed form is cohomologous to zero”. Of course,
also the converse holds.

It can be translated in our situation (where M is a compact complex manifold) as follows:
“M has a real 2p-form 
 = ∑

a+b=2p 
a,b, such that 
 = d� and the (p, p)-form � :=

 p,p is transversal, if and only if M has no strongly positive currents T �= 0, of bidimension
(p, p), such that dT = 0”.

The condition on the form � is equivalent to say that there is a real (p, p)-form � > 0
with � = ∂β + ∂β for some (p, p −1)- form β: this means � ∈ I m�p,2p−1, while dT = 0
is equivalent to the condition T ∈ K er�′

p,2p−1. Thus the statement of Sullivan is 5.1(4).
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5.2.3 Remark Sullivan noticed also in III.10 that for p = 1, there are always non trivial
structure cycles, so that on a compact manifold there is no hermitian metric h whose Kähler
form is the (1, 1)-component of a boundary in the sense of 5.1(4).

If we look at the whole Theorem 5.1, we can prove in fact that when p = 1, it reduces
to the existence of “closed” positive currents, since “exact” transverse forms never exist,
due to the compactness of M . This is obvious for the statement 5.1(1), since we would have
ω = i∂∂ f > 0, a non-constant plurisubharmonic function on a compact manifold.

But in general, ifω ∈ I m�p,2p−1, thenω := ψ1,1, the (1, 1)-component of an exact form
ψ = dγ . Thus it would give: 0 = ∫

M (dγ )n = ∫
M ψn = ∫

M ωn > 0.
When p > 1, the situation changes, as seen in Example 5.1; there, it is easy to check that

ω2 ∈ I m�p−1,2p , i.e. ω2 = i∂∂γ , so that all conditions in Theorem 5.1 make sense, for
p = 2.

5.2.4 Remark It is also interesting to notice that the above conditions on forms can
be described as: “The null class in cohomology contains a transverse form”, where the
cohomology groups are: H p,p

∂∂
(M,R) for 5.1(1), H p,p

d (M,R) for 5.1(2), H p,p
∂+∂

(M,R) for
5.1(4). For 5.1(3) the class is that of g(�), where g is the map induced by the identity:
g : H p,p

d (M,R) → H p,p
∂+∂

(M,R).

For the case p = n−1, Popovici denotes this property of Hn−1,n−1
∂+∂

(M,R) as “TheGaudu-
chon cone of M degenerates” (see [30, Proposition 5.4]), but the statement of Proposition
5.4 is incorrect, the correct one is our Theorem 5.1(4).

6 The non-compact case

While a 2K form can be exact on a compact manifold (as we have seen in the previous
section), the natural environment of “exact” generalized p-Kähler forms is that of non-
compact manifolds; indeed, Cn and Stein manifolds are Kähler with a form ω = i∂∂u (u is
a smooth strictly plurisubharmonic function).

Other classes of non-compact manifolds where one could look for generalized p-Kähler
structures are q-complete and q-convex manifolds. Let us recall here the definitions, which
are not uniform in the literature (see also [17], IX.(2.7) for analytic schemes).

Definition 6.1 A manifold X of complex dimension n is said to be strongly q-convex (for
brevity, q-convex) if it has a smooth exhaustion function ψ : X → R which is strongly
q-convex outside an exceptional compact set K ⊂ X (this means that X − K has an atlas
such that, in local coordinates, (i∂∂ψ)(x) has at least (n − q + 1) positive eigenvalues, for
all x ∈ X ).

We say that X is q-complete if ψ can be chosen so that K = ∅.

Thus q = 1 is the strongest property, and 1-complete manifolds corresponds to Stein man-
ifolds, since the strongly 1-convex functions are just the strictly plurisubharmonic functions.

By convention, a compact manifold M is said to be (strongly) 0-convex (with K = M).

6.1.1 Remark Let F ∈ Coh(X), i.e. let F be a coherent sheaf on X . Then (see f.i. [17,
IX.4] and [9, n. 20]):

(1) If X is compact, then dim H j (X,F) < ∞ ∀ j ;
(2) If X is q-convex, then dim H j (X,F) < ∞ when j ≥ q;
(3) If X is q-complete, then H j (X,F) = 0 when j ≥ q .
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In fact, the 1-convex spaces can be characterized by that property, and also by the existence
of the Remmert reduction, as the following theorem shows [16]:

Theorem The following statements are equivalent, for a complex analytic space X:

(1) X is 1-convex;
(2) For every F ∈ Coh(X), dim H j (X,F) < ∞ when j ≥ 1;
(3) X is obtained from a Stein space by blowing up finitely many points (this is called the

Remmert reduction).

As for q-complete manifolds, Barlet proved in [10, Proposition 3] the following fact:

Proposition 6.2 Let X be a complex manifold, and let ψ : X → R
+ be a smooth proper

function which is strongly q-convex at each point of X. Then there is a transverse (q, q)-form
� such that � = i∂∂θ for some real (q − 1, q − 1)-form θ .

This gives an interesting result:

Corollary 6.3 A q-complete manifold X is p-Kähler for ever p ≥ q, with a ∂∂-exact form.

Hence we have here a remarkable class of balanced manifolds (with a ∂∂-exact form;
moreover, it is not hard to verify that � is in fact strictly positive): that of q-complete
manifolds (q < n).

As regards q-convexmanifolds, a similar result does not hold, in general, alsowhen q = 1.
Classical results due to Coltoiu [15] asserts that a 1-convex manifold X , with an irreducible
curve S as exceptional set, is Kähler when dim X �= 3 or when S is not a rational curve.
Moreover, we characterized in [7, Theorem I], precisely those 1-convex threefolds, with 1-
dimensional exceptional set, that admit a Kähler metric, that is: “When S is an irreducible
curve, then X isKähler if and only if the fundamental class of S does not vanish in H2n−2

c (X)”.
When dimS > 1, we got some results in [8] as regards p-Kähler structures, as we

shall explain now. A 1-convex manifold X of dimension n is given by a desingularization
f : X → Y of a Stein space Y which has just a finite number of (isolated) singularities ( f is
the Remmert reduction, see Remark 6.1.1); the exceptional set S, which is f −1(SingY ), has
dimension k ≤ n − 2 and is the maximal compact analytic subset of X . Obviously, X − S
carries an exact 1K form ωS = i∂∂ f ∗u coming from Y - Sing Y ; but when n ≥ 3, in general
we cannot extend ωS to a closed transverse form ω across S: indeed, there are quite simple
examples of non-Kähler 1-convex threefolds.

Nevertheless, we got, among others:

Theorem 6.4 (see Theorem 4.2, Proposition 4.4 and Theorem 4.12 in [8])

(1) Let X be a complex n-dimensional manifold, let S be an exceptional subvariety of X,
such that X − S has a ∂∂-exact Kähler form. Then X is p-Kähler for every p > dimS,
with a ∂∂-exact p-Kähler form.

(2) Let X be a 1-convex manifold with exceptional set S of dimension k. Then X is p-Kähler
for every p > k, with a ∂∂-exact p-Kähler form; in particular, a 1-convex manifold is
always balanced (with a ∂∂-exact form). Moreover, if k > n−1

2 , then X is also k-Kähler.

The proof of these assertions is based on classical separation’s results between forms and
compactly supported currents: this is the tool that we would like to develop in what follows,
looking at generalized p-Kähler structures: maybe this kind of use of the duality could be
interesting from his own.
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Let X be a complex manifold of dimension n. A positive (analytic) q-cycle of X is a finite
linear combination of irreducible q-dimensional compact subvarieties of X , with positive
integers as coefficients; we shall write: Y = ∑

n j Y j ∈ C+
q (X).

The spaces C+
q (X) ⊆ S Pq(X) have been intensively studied in the period 1960–1970 (by

Andreotti, Norguet, Barlet and others), and gave a motivation to the study of positive (closed)
currents with compact support on non-compactmanifolds. For example, in [10] Barlet proved
that: “If X is a q-complete analytic space, then C+

q−1(X) is a Stein space”.
As we noted above, when X is compact, all relevant cohomology groups are finite dimen-

sional, while this is not the case in general; some remarkable cases (Stein, q-complete,
q-convex) have been studied in the sixties and seventies.

We can go on following two ways: one way is to assure finite dimensionality of the right
cohomology groups, and then proceed as in Proposition 4.6. In this setting, let us recall the
following result (Propositions (5.3), (5.4), but see also (5.3)’, (5.4)’, (5.5), (5.5)’ in [27],
which correct a wrong statement in [11]):

Proposition 6.5 Let X be a strongly q-convex manifold of dimension n, let s > q; then:

(1) If dim H2s+1
DR (X,C) < ∞, then dim Hs,s

∂+∂
(X) < ∞.

(2) If dim H2s
DR(X,C) < ∞, then dim Hs,s

∂∂
(X) < ∞.

But it seems more interesting to notice that in Proposition 4.6 what we actually need is
the closeness of some subspaces, to use separation’s theorems in the proof of Theorem 3.2;
and this condition is equivalent to ask that the involved cohomology groups are Hausdorff
(i.e. Fréchet), or to ask that some operators (d, ∂ + ∂, ∂∂) are topological homomorphisms,
which is the same.

Serre pointed out [33, pp. 22–23] that the behavior of the operator d = ds : Es(X) →
Es+1(X) is very different from that of the operator ∂: while d is always a topological homo-
morphism, this is not the case for ∂ (see the simple example given ibidem, n. 14). A sufficient
condition is given in [33, Proposition 6]:

Proposition 6.6 If dim Hq(X,�p) < ∞, then ∂ : E p,q−1(X) → E p,q(X) is a topological
homomorphism.

Notice that the proof of this result is straightforward: the statement

dim H p,q
∂

(X) < ∞
is equivalent to say that the space of boundaries with respect to the operator ∂ has finite
codimension in the space of cycles, which is closed. Hence ∂ is a topological homomorphism
by Lemma 4.2.

Our situation is much more complicated: nevertheless we can get the required topological
homomorphisms more or less in the same hypotheses of Proposition 6.6, as we shall prove
in the next section. Since dim H j (X,�k) < ∞ when j ≥ q for a q-convex manifold X , as
said in Remark 6.1.1, let us go on along this way.

7 Hk,k
∂+∂

(X,R) and Hk,k
∂∂

(X,R) are Hausdorff

It is well known that, for every complex manifold X , the De Rham cohomology groups
H j

DR(X,R) are Hausdorff topological vector spaces, i.e. the differential operator d is a
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topological homomorphism; but this is not the case, for instance, for the operator ∂ , as we
said above. Thus we shall study from this point of view the operators that appear in sequence
(4.2).

Let us recall the notation and consider some preliminary results on topological vector
spaces; we refer to [13,14].

Definition 7.1 (see [13, p. 311]) A sheaf F of t.v.s. on a complex manifold X is called a
Fréchet sheaf if for every open subset U of X , F(U ) is a Fréchet space, and for every open
subset V of X such that U ⊆ V , then the map ρV

U : F(V ) → F(U ) is continuous.
If F and G are Fréchet sheaves, and σ : F → G is a sheaf homomorphism, σ is called

a Fréchet homomorphism if for every open subset U of X , σ(U ) : F(U ) → G(U ) is
continuous.

7.1.1 Remark The sequences (4.1) and (4.2) are exact sequences of Fréchet sheaves and
Fréchet homomorphisms (recall that H(U ) = K er i∂∂ : E0,0

R (U ) → E1,1
R (U )).

IfF is a Fréchet sheaf on X and U is a countable covering for X , for every q ≥ 0 we put on
Cq(U,F) the product topology, which is Fréchet. The maps δq : Cq(U,F) → Cq+1(U,F)

becomes continuous. Moreover,

Hq(U,F) = Zq(U,F)

Bq(U,F)
= K erδq

I mδq−1

is endowed with the quotient topology (which is Fréchet if and only if it is Hausdorff), and

Hq(X,F) = lim→ Hq(U,F)

is endowed with the direct limit topology.

Definition 7.2 (see [13, p. 313]) A Fréchet sheaf F is normal if there is a covering A of X ,
which is a Leray (i.e. acyclic) covering for F , such that, for every covering U of X , there is
a covering V ⊂ A which is a refinement of U .

Proposition 7.3 There exists a covering A of X which is a Leray covering for all sheaves
involved in the sequences (4.11) and (4.12). Moreover, all these sheaves are normal (with
respect to A).

Proof We adapt a construction given in [14], Appendix 1. Fix a riemannian metric on X , and
denote by B(x, a) the geodesic ball of center x and radius a.

Choose a locally finite open covering of X , U = {Ui , ϕi }i∈I , such that, ∀i , every geodesic
ball B(x, a) ⊂ Ui has a convex image in ϕ(Ui ); thus B(x, a) is an open Stein subset of Ui ,
because its image in ϕ(Ui ) is holomorphically convex.

For every x ∈ X , call

r(x) = sup{a; B(x, a) ⊂ Ui for some i ∈ I }.
Then choose an exaustion sequence {K j } j≥1 of compact subsets of X and a decreasing
sequence of real numbers {c j } j≥1 such that 0 < c j < d(K j , X − (K j+1)

int ).
For every x ∈ X , let us denote by l(x) the index such that x ∈ Kl(x) − Kl(x)−1, and let us

fix a(x) > 0 such that

B(x, a(x)) ⊂
⋃

x∈Ui

Ui , a(x) < min

{
1

3
cl(x),

1

3
min

x∈Kl(x)+2
r(x)

}
.
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LetA = {B(x, a)}x∈X, a<a(x): to prove thatA is a Leray covering for all sheaves involved
in the sequences (4.11) and (4.12), we shall check that every finite intersection of elements
of A is Stein and contractible. First of all, every element of A satisfies the request, so that
also the finite intersections of elements of A are Stein.

Take

B = B(x0, a0) ∩ · · · ∩ B(x p, ap) �= ∅, p ≥ 1;
it is enough to show that B(x0, a0) ∪ · · · ∪ B(x p, ap) is contained in a fixed chart (U0, ϕ0)

of the covering U , because in that case every ball becomes, via the biholomorphic map ϕ0, a
convex set in ϕ0(U0), so that also the intersection of the image of the balls is convex there,
and also contractible.

It is easy to check that, since B �= ∅, for every h, k ∈ {0, . . . , p}, the intergers lk := l(xk)

and lh := l(xh) satisfy |lk − lh | ≤ 1.
Moreover, for every k ∈ {1, . . . , p} , ∀x ∈ B(xk, ak) it holds

dist (x, x0) < 2ak + a0 <
2

3
min
Klk +2

r + 1

3
min
Kl0+2

r ≤ min
Kl0

r ≤ r(x0),

since x0 ∈ Kl0 . So for all k, B(xk, ak) ⊆ B(x0, r(x0)) ⊂ Ui .
We proved that, if V is a finite intersection of elements of A, V is Stein and contractible;

hence for all j > 0, H j (V,R) = 0 and H j (V,G) = 0 ∀ G ∈ Coh(X). From the sequence
(4.11), also H j (V,H) = 0 for all j > 0, which implies that in (4.12) H j (V, K er σ1) = 0
for all j > 0, and so on, as in the proof of Proposition 4.6. Moreover, by construction all
these sheaves are normal with respect to A. ��
Proposition 7.4 (see [13, pp. 312–313]) Let

0 → F ′ → F → F ′′ → 0

be an exact sequence of Fréchet sheaves and Fréchet homomorphisms. If U is a countable
Leray covering of X for F ′, then the maps δ

q∗ : Hq(U,F ′′) → Hq+1(U,F ′) are continuous.
If moreover Hq+1(U,F) is Hausdorff, then δ

q∗ is a topological homomorphism.
Let G be a normal Fréchet sheaf and V a countable Leray covering of X for G; then

Hq(V,G) → Hq(X,G) is a topological isomorphism for every q.

Corollary 7.5 Let

0 → F ′ → F → F ′′ → 0

be an exact sequence of normal Fréchet sheaves (with respect to a countable Leray coveringU
of X) and Fréchet homomorphisms. If Hq(U,F) = Hq+1(U,F) = 0, then the coboundary
map δ

q∗ : Hq(X,F ′′) → Hq+1(X,F ′) is a topological isomorphism.

Proposition 7.6 Let

0 → F ′ → F σ→ F ′′ → 0

be an exact sequence of normal Fréchet sheaves (with respect to a countable Leray covering
U of X), and Fréchet homomorphisms.

(i) If dim Hq(X,F) < ∞, then Hq(X,F) is Hausdorff.
(ii) If dim Hq(X,F) < ∞ and Hq+1(X,F ′) is Hausdorff, then Hq(X,F ′′) is Hausdorff.
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Proof By Proposition 7.4, there is a topological isomorphism Hq(U,F) → Hq(X,F) for
every q , hence we can argue on Hq(U,F) = Zq (U,F)

Bq (U,F)
.

If q = 0, H0(U,F) = Z0(U,F) = K erδ0 is Hausdorff; if q > 0, we get (i) by
Lemma 4.2 since the map δq−1 : Cq−1(U,F) → Zq(U,F) is continuous between Fréchet
spaces.

To prove (ii), consider the following diagram (for q > 0):

Cq−1(U,F) → Cq−1(U,F ′′) → 0

↓ ↓
Zq(U,F)

σq→ Zq(U,F ′′)

In this diagram, σq(Bq(U,F)) = Bq(U,F ′′) and σq(Zq(U,F)) = K er (δ
q∗ ◦ π), where

π : Zq(U,F ′′) → Hq(U,F ′′) and δ
q∗ : Hq(U,F ′′) → Hq+1(U,F ′).

By part (i), Bq(U,F) is closed and has finite codimension in Zq(U,F); moreover,
K er (δ

q∗ ◦π) is a closed subspace of Zq(U,F ′′) (because Hq+1(U,F ′) is Hausdorff), hence
it is Hausdorff. Thus we can apply Lemma 4.3 to σq : Zq(U,F) → K er (δ

q∗ ◦ π), with
N = Bq(U,F); this implies that σq(Bq(U,F)) = Bq(U,F ′′) is closed, hence Hq(U,F ′′)
is Hausdorff. ��

Let us use now these results to get some information on cohomology; a particular case of
the following theorem is Corollary 2.5 in [8] (compare also with Proposition 6.6).

Theorem 7.7 Let X be a complex manifold.

(1) For every p ≥ 0, if dim H j (X,�2p+1− j ) < ∞ ∀ j ∈ {p + 1, . . . , 2p + 1}, then
H p+1,p+1

∂∂
(X,R) is Hausdorff.

(2) For every p ≥ 1, if dim H j (X,�2p− j ) < ∞ ∀ j ∈ {p, . . . , 2p}, then H p,p
∂+∂

(X,R) is
Hausdorff.

Proof (a) Take a countable covering of X as in Proposition 7.3, and consider the exact
sequence (4.11). It gives:

. . . → H j (X,O) → H j (X,H) → H j+1(X,R) → H j+1(X,O) → . . . .

Notice that H j+1(X,R) is a C̆ech cohomology group, isomorphic to the De Rham cohomol-
ogy group H j+1

DR (X,R), which is Hausdorff. This isomorphism is given by a composition of
coboundary maps, coming out from the short exact sequences associated to the sequence

0 → R → E0 → E1 → . . .

(see f.i. [23, p. 44]).
By Corollary 7.5, H j+1(X,R) � H j+1

DR (X,R) is a topological isomorphism, so that
H j+1(X,R) is Hausdorff for every j ≥ 0; when dim H j (X,O) < ∞, by Proposition 7.6
(ii), also H j (X,H) is Hausdorff. In our hypotheses, this is true when j = 2p + 1 in case (1)
and when j = 2p in case (2).

(b) Let us consider case (1). If p = 0, let us recall the exact sequence (4.1):

0 → H j→ E0,0
R

i∂∂→ E1,1
R

d→ (E2,1 ⊕ E1,2)R
d→ E4(M)R → . . .

and recall also that

H1,1
∂∂

(X,R) = (K erd)(X)

(I m i∂∂)(X)
.
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Thus we have

0 → H j→ E0,0
R

i∂∂→ K erd → 0

which gives:

0 → H0(X,H) → H0(X, E0,0
R

)
(i∂∂)→ H0(X, K er d)

δ0∗→ H1(X,H) → 0.

Take a suitable coveringA of X as in Proposition 7.3; by Corollary 7.5, δ0∗ is a topological
homomorphism, and it gives a topological isomorphism

H1(X,H) � H0(X, K er d)

K er δ0∗
= H0(X, K er d)

(I m i∂∂)(X)
= H1,1

∂∂
(X,R).

Since we know that dim H1(X,O) < ∞ we get by a) that, if p = 0, H p+1,p+1
∂∂

(X,R) is
Hausdorff.

If p > 0, we use the short exact sequences arising from (4.2) (case p), like those in (4.12),
and the fact that δ0∗ is a topological homomorphism.

From

0 → K erσp,2p−1 → (E p,p−1 ⊕ E p−1,p)R
σ1,1→ K erσp,2p → 0

we get:

H p+1,p+1
∂∂

(X,R) = (K erσp,2p+1)(X)

(I mσp,2p)(X)
� H1(X, K erσp,2p).

Repeating this feature back and back, we get a topological isomorphism

H p+1,p+1
∂∂

(X,R) � H p+1(X, K erσp,p).

From here on, we have to take in account the sheaves � j .
Consider in (4.2) the first short exact sequence

0 → H → L0 → K erσp,1 → 0,

which gives:

. . . → H2p(X,L0) → H2p(X, K erσp,1)
δ
2p∗→ H2p+1(X,H) → . . . .

Since by assumption dim H2p(X,�1) < ∞ and dim H2p+1(X,O) < ∞, so that
H2p+1(X,H) is Hausdorff, then H2p(X, K erσp,1) is Hausdorff by Proposition 7.6.

Using the second short exact sequence arising from (4.2), we can prove that also
H2p−1(X, K erσp,2) is Hausdorff, and so on until H p+1(X, K erσp,p) � H p+1,p+1

∂∂
(X,R),

which becomes Hausdorff. What is needed at every step is contained in the hypothesis:

dim H j (X,�2p+1− j ) < ∞ ∀ j ∈ {p + 1, . . . , 2p + 1}.
c) Let us consider case (2). If p = 1, let us recall the exact sequence (4.4):

0 → H σ1,−1→ (�1 ⊕ E0,0 ⊕ �
1
)R

σ1,0→ (E1,0 ⊕ E0,1)R
σ1,1→

E1,1
R

σ1,2→ E2,2
R

σ1,3→ (E3,2 ⊕ E2,3)R → . . .
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and also recall that

H1,1
∂+∂

(X,R) = (K erσ1,2)(X)

(I mσ1,1)(X)

Thus we have:

0 → H σ1,−1→ (�1 ⊕ E0,0 ⊕ �
1
)R

σ1,0→ K erσ1,1 → 0

0 → K erσ1,1 → (E1,0 ⊕ E0,1)R
σ1,1→ K erσ1,2 → 0,

so that:

. . . → H1(X,H) → H1(X, (�1 ⊕ E0,0 ⊕ �
1
)R) → H1(X, K erσ1,1)

δ1∗→ H2(X,H) → . . . .

and

0 → H0(X, K erσ1,1) → H0(X, (E1,0 ⊕ E0,1)R) → H0(X, K erσ1,2)

δ0∗→ H1(X, K erσ1,1) → 0.

From the second sequence, we get as before, using the topological homomorphism δ0∗ , that

H1(X, K erσ1,1) � H0(X, K erσ1,2)

K er δ0∗
= H0(X, K erσ1,2)

H0(X, I mσ1,1)
= H1,1

∂+∂
(X,R).

From the first sequence, using Proposition 7.6(ii), we get that H1(X, K erσ1,1) is Hausdorff
when dim H2(X,O) < ∞ and dim H1(X,�1) < ∞, which is precisely our hypothesis.

As for H p,p
∂+∂

(X,R) = (K erσp,2p)(X)

(I mσp,2p−1)(X)
, when p > 1, use the short exact sequences arising

from (4.2) (case p), like those in (4.12), starting from

0 → K erσp,2p−1 → B2p−1 → K erσp,2p → 0 ,

which gives:

0 → H0(X, K erσp,2p−1) → H0(X,B2p−1) → H0(X, K erσp,2p)

δ0∗→ H1(X, K erσp,2p−1) → 0.

Since as above δ0∗ becomes a topological homomorphism, we get

H p,p
∂+∂

(X,R) � H1(X, K erσp,2p−1).

Repeating this feature, we get topological isomorphisms

H p,p
∂+∂

(X,R) � H1(X, K erσp,2p−1) � H2(X, K erσp,2p−2) � · · · � H p(X, K erσp,p).

On the other hand, consider in (4.2) the first short exact sequence

0 → H → L0 → K erσp,1 → 0 ,

which gives

. . . → H2p−1(X,L0) → H2p−1(X, K erσp,1)
δ
2p−1∗→ H2p(X,H) → H2p(X,L0) → . . . .
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Since by the hypothesis, dim H j (X,�2p− j ) < ∞ ∀ j ∈ {p, . . . , 2p}, and thus
H2p(X,H) is Hausdorff, then H2p−1(X, K erσp,1) is Hausdorff by Proposition 7.6.

Using the next exact sequences arising from (4.2) we get that H p(X, K erσp,p) is Haus-
dorff, hence we conclude that H p,p

∂+∂
(X,R) is Hausdorff. ��

Proposition 7.8 Let X be a complex manifold, let p ≥ 1. If

dim H j (X,�2p+2− j ) < ∞ ∀ j ∈ {p + 2, . . . , 2p + 2},
then W p+2,p+1

R
(X) := (K er σp−1,2p+2)(X)

(I m σp−1,2p+1)(X)
is Hausdorff.

Proof The proof is very similar to that of Theorem 7.7, taking in account also the proof of
Proposition 4.6. ��

By comparing Theorem 7.7 and Proposition 7.8 with Proposition 4.6, one gets the follow-
ing result:

Corollary 7.9 Let X be a complex manifold.

(1) If dim H j (X,�2p+1− j ) < ∞ ∀ j ∈ {p + 1, . . . , 2p + 1}, then �p,2p is a topological
homomorphism, thus I m�p,2p is a closed subspace.

(2) If dim H j (X,�2p+2− j ) < ∞ ∀ j ∈ {p + 2, . . . , 2p + 2}, then �p−1,2p+1 is a topo-
logical homomorphism, thus I m�p−1,2p+1 is a closed subspace.

(3) If dim H j (X,�2p− j ) < ∞ ∀ j ∈ {p, . . . , 2p}, then �p,2p−1 is a topological homo-
morphism, thus I m�p,2p−1 is a closed subspace.

8 Duality on non compact manifolds

For a generic manifold X , E ′
p,p(X)R �= D′

p,p(X)R; hence to get informations as before about
the existence of a suitable (p, p)-form, we need to fix a compact K in X as a “bound” for the
support of the currents. In this setting, we give the following list of characterization theorems,
whose geometric signification we shall explain with a couple of examples after the proofs.
Notice that we use here transverse forms and strongly positive currents, but we could have
chosen also the other notions of positivity. Let us denote the closure of a linear subspace L
(in the weak topology) by (L)−.

Theorem 8.1 Let X be a complex manifold of dimension n ≥ 2, let K be a compact subset
of X and let 1 ≤ p ≤ n − 1. Then:

(1) There is a real (p, p)-form � on X such that � ∈ I m�p−1,2p and �x > 0 ∀x ∈
K ⇐⇒ there are no non trivial currents T ∈ E ′

p,p(X)R, T ≥ 0, T ∈ K er�′
p−1,2p

suppT ⊆ K .

(2) There is a real (p, p)-form � on X such that � ∈ I md2p−1 and �x > 0 ∀x ∈ K ⇐⇒
there are no currents R ∈ E ′

2p(X)R, R ∈ K erd ′
2p−1, suppR ⊆ K with Rp,p := T ≥

0, T �= 0.
(3) Suppose that �p,2p−1 is a topological homomorphism, so that I m�p,2p−1 is a closed

subspace of E p,p(X)R. Then:
There is a real (p, p)-form � on X such that � ∈ I m�p,2p−1 ∩ K er�p−1,2p+1 and
�x > 0 ∀x ∈ K ⇐⇒ there are no non trivial currents T ∈ E ′

p,p(X)R, T ∈
((I m�′

p−1,2p+1)
− + K er�′

p,2p−1)
−, T ≥ 0, suppT ⊆ K .
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(4) There is a real (p, p)-form � on X such that � ∈ I m�p,2p−1 and �x > 0 ∀x ∈
K ⇐⇒ there are no non trivial currents T ∈ E ′

p,p(X)R, T ≥ 0, T ∈ K er�′
p,2p−1

and suppT ⊆ K .

Proof In all cases, one part of the proof is simple: if there exists the form � and also the
current T (or R) as given in the theorem, we would have in cases (1), (2) and (4):

(T,�) = 0 (or (R,�) = 0) because (R or) T ∈ K er L ′ = (I mL)⊥ for some operator L .
In case (3), T ∈ ((I m�′

p−1,2p+1)
− + K er�′

p,2p−1)
−, that is, T = limε(T ′

ε + T ′′
ε ) with

T ′′
ε ∈ K er�′

p,2p−1, T ′
ε = limμ T ′

ε,μ with T ′
ε,μ ∈ I m�′

p−1,2p+1.

Hence (T,�) = limε(T ′
ε ,�) + limε(T ′′

ε ,�); the first addendum vanishes because � ∈
K er�p−1,2p+1, the second one because � ∈ I m�p,2p−1.

Moreover, (T,�) = (χK T,�) > 0, sinceχK T ≥ 0 does not vanish and�x > 0 ∀x ∈ K .
Let us prove now the converses.

Case (4) Consider on X a hermitian metric h with associated (1, 1)-form γ , and let

A = {� ∈ E p,p(X)R; ∃c > 0 such that �x > cγ p
x ∀x ∈ K }

(the condition obviously means that �x − cγ p
x is strictly weakly positive).

It is easy to control that A is a non empty convex open subset in the topological vector
space E p,p(X)R. If there is no form � as stated in the theorem, then A ∩ I m�p,2p−1 = ∅,
where I m�p,2p−1 is a linear subspace in E p,p(X)R.

By the Hahn–Banach Theorem 4.4, we get a separating closed hyperplane, which is
nothing but a current T ∈ E ′

p,p(X)R, for which we can suppose:

T ∈ (I m�p,2p−1)
⊥ = K er�′

p,2p−1, (T,�) > 0 for every � ∈ A (thus T �= 0).

Let us check that T ≥ 0, i.e., by Definition 2.4, that (T,�) ≥ 0, ∀� ∈ W P p,p(X). For
every ε > 0, � + εγ p ∈ A, thus

(T,�) = (T, lim
ε→0

(� + εγ p)) = lim
ε→0

(T,� + εγ p) ≥ 0.

Moreover, suppT ⊆ K ; indeed, let α ∈ E p,p(X)R with supp α ⊆ X − K ; then for every
t ∈ R, it holds tα + γ p ∈ A. Therefore 0 < (T, tα + γ p) = t (T, α) + (T, γ p): this is not
possible for every t ∈ R, until (T, α) = 0, as required.

Case (1) is very similar, it is enough to replace �p,2p−1 by �p−1,2p . This result was
proved by Theorem 3.2(i) in [8].

Case (3)We can proceed as above, replacing I m�p,2p−1 by I m�p,2p−1∩K er�p−1,2p+1,
which is a linear subspace in E p,p(X)R.

Thus we get T ∈ (I m�p,2p−1∩K er�p−1,2p+1)
⊥: here we use the closure of I m�p,2p−1

to go further (see f.i. [32, p. 127]), so we get, as required,

T ∈ (I m�p,2p−1 ∩ K er�p−1,2p+1)
⊥ = ((I m�p,2p−1)

⊥ + (K er�p−1,2p+1)
⊥)−

= ((I m�′
p−1,2p+1)

− + K er�′
p,2p−1)

−.

Case (2). Let us consider the l.c.s. E ′
2p(X)R = (⊕a+b=2pE ′

a,b(X))R, and denote by π the
projection on the addendum E ′

p,p(X)R. Notice that π(K erd ′
2p−1) is a closed convex non-

empty subset of E ′
p,p(X)R.

Take

PK (X) = {T ∈ E ′
p,p(X)R; suppT ⊆ K , T ≥ 0}
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which is a closed convex cone with a compact basis given by

P̃K (X) = {T ∈ P; (T, γ p) = 1}.
By our hypothesis, π(K erd ′

2p−1) ∩ P̃K (X) = ∅.
Using the separation Theorem 4.5, we get a closed hyperplane in E ′

p,p(X)R, strictly sep-

arating π(K erd ′
2p−1) and P̃K (X); hence we get � ∈ E p,p(X)R such that (T,�) > 0 for

every T ∈ P̃K (X), and � ∈ (π(K erd ′
2p−1))

⊥.
The first condition assures that �x > 0 ∀x ∈ K . In fact, by Proposition 2.2 we have to

check that �x ((i−p22p)V ∧ V ) > 0. for every V ∈ �p,0(T ′
x X), V �= 0 and simple. But

given such a vector, the Dirac current T := δx ((i−p22p)V ∧ V ) ∈ PK (X), so that for some
c > 0, cT ∈ P̃K (X) and thus �((i−p22p)V ∧ V ) = T (�) > 0

The second one implies that, for every current R ∈ K erd ′
2p−1, (R,�) = (π(R),�) = 0

since � ∈ E p,p(X)R. Thus � ∈ (K erd ′
2p−1)

⊥ = (I md2p−1)
− = I md2p−1, because d is

always a topological homomorphism. ��
8.1.1 Remark Notice that, as before, 8.1(1) �⇒ 8.1(2) �⇒ 8.1(3) �⇒ 8.1(4). The

stronger condition, 8.1(1), is in fact a sort of ‘local’ p-Kähler condition with exact (that
means ∂∂-exact) form.

8.1.2 Remark Every n-dimensional connected non compact manifold is n-complete; thus
it is nK with an exact form.

In particular, when M is a compact manifold, the above statement get simplified, as
Theorem 5.1 showed.

And finally, let us consider an analogue of Theorem 3.2 for non compact manifolds.

Theorem 8.2 Let X be a complex manifold of dimension n ≥ 2, let K be a compact subset
of X and let 1 ≤ p ≤ n − 1.

(1) Suppose �p−1,2p+1 is a topological homomorphism.Then:
there is a real (p, p)-form � on M such that � ∈ K er�p−1,2p+1 and �x > 0 ∀x ∈
K ⇐⇒ there are no non trivial currents T ∈ E ′

p,p(X)R, T ≥ 0, T ∈ I m�′
p−1,2p+1,

and suppT ⊆ K .

(2) Suppose �p,2p−1 and �p−1,2p+1 are topological homomorphisms, and that I m�p,2p−1

has finite codimension in K er�p,2p.Then:
there is a real (p, p)-form � on M such that � ∈ (K er�p−1,2p+1 + I m�p,2p−1) and
�x > 0 ∀x ∈ K ⇐⇒ there are no non trivial currents T ∈ E ′

p,p(X)R, T ≥ 0,
T ∈ K er�′

p,2p−1 ∩ I m�′
p−1,2p+1, suppT ⊆ K .

(3) There is a real 2p-form 
 with 
 p,p := � on M such that 
 ∈ K erd2p and �x >

0 ∀x ∈ K ⇐⇒ there are no non trivial currents T ∈ E ′
p,p(X)R, T ≥ 0, T ∈

I md ′
2p, suppT ⊆ K .

(4) Suppose �p,2p is a topological homomorphism.Then:
there is a real (p, p)-form � on M such that � ∈ K er�p,2p and �x > 0 ∀x ∈ K ⇐⇒
there are no non trivial currents T ∈ E ′

p,p(X)R, T ≥ 0, T ∈ I m�′
p,2p and suppT ⊆ K .

Proof As seen in the previous theorems, in all cases, one part of the proof is simple, and
does not require the hypotheses on topological homomorphims: if there exists the form �

and also the current T as given in the theorem, we would have (T,�) > 0 on K .
But, in case (1), (T,�) = 0 because � ∈ K er�p−1,2p+1 and T ∈ I m�′

p−1,2p+1 ⊆
(K er�p−1,2p+1)

⊥. The same holds in the other cases.
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For the converses, we go on as in the proof of Theorem 8.1. Let us sketch here only major
changes.

Case (1) Consider the non empty convex open set A ∈ E p,p(X)R; if no ‘right’ form
� exists, we get A ∩ K er�p−1,2p+1 = ∅, thus there is a current T ∈ E ′

p,p(X)R, with

T ∈ (K er�p−1,2p+1)
⊥ = I m�′

p−1,2p+1, by the hypothesis, and (T,�) > 0 for every
� ∈ A. This gives T ≥ 0, T �= 0 and suppT ⊆ K , as seen in the proof of Theorem 8.1.

Case (1) was proved in [8, Theorem 3.2(ii)].
It is the same, more or less, in cases (2) and (4).
In case (3),we separate P̃K (X), the compact basis of PK (X) = {T ∈ E ′

p,p(X)R; suppT ⊆
K , T ≥ 0}, from the closed convex set π(I md ′

2p) (notice that I md ′
2p is closed because the

operator d is always a topological homomorphism).
Hence we get � ∈ (π(I md ′

2p))
⊥. But (�, R) = (�, π(R)), since � has bidegree (p, p),

thus � ∈ (I md ′
2p)

⊥ = K erd2p. ��
8.2.1 Remark Notice that, as before, 8.2(1) �⇒ 8.2(2) �⇒ 8.2(3) �⇒ 8.3(4).
8.2.2 Remark In [2] we use closed real (p, p)-forms, which are strictly weakly positive

on a fixed compact set, to give the definition of locally p-Kähler manifold (see [2, Definition
6.1]) and to study when, in a proper modification f : X̃ → X with compact center, the
property of being locally (n − 1)-Kähler comes back from X to X̃ .

Let us give a simple application of Theorem 8.1.
Suppose X has a compact (irreducible) analytic subspace Y of dimension m ≥ 1. Then

T := [Y ] is a “closed” positive non-vanishing current of bidimension (m, m)with supp T =
[Y ]. Thus there are no “exact” (m, m)-forms on X with � > 0 on Y .

Nevertheless, there are “exact” (p, p)-forms on X with � > 0 on Y for every p > m:
in fact, if not, by Theorem 8.1(1) there would exist a pluriharmonic (i.e. ∂∂-closed) positive
current of bidimension (p, p), supported on Y , whose dimension is to small: hence T = 0
(see f.i. [6, Theorem 1.2]).

We end this paper showing how one can obtain the results we cited in Theorem 6.4 about
1-convex manifolds using a sort of p-Kähler form as given in Theorem 8.1. Let us prove only
the following result:

“Let X be a 1-convex manifold with exceptional set S of dimension k. Then X is p-Kähler
for every p > k, with a ∂∂-exact p-Kähler form.”

Proof Let f : X → Y be the Remmert reduction of X (see Remark 6.1.1); Y is embeddable
in C

n , hence it carries a Kähler form ω′ = i∂∂g. Let ω := f ∗ω′; ω is positive on X and
transverse on X − S.

Consider a compactly supported current T ∈ E ′
p,p(X)R, T ≥ 0, T ∈ K er�′

p−1,2p , i.e.

i∂∂T = 0, as in Theorem 8.1(1). Since ωp ∈ I m�p−1,2p , T (ωp) = 0, so that suppT ⊆ S.
By Theorem 1.2 in [6], T = 0, because p > k.

Thus by Theorem 8.1(1) we get a real (p, p)-form � on X such that � ∈ I m�p−1,2p ,
i.e. � = i∂∂θ , and �x > 0 ∀x ∈ S.

Take a compactly supported smooth function χ such that 0 ≤ χ ≤ 1, χ = 1 on
S. For C >> 0, Cωp + i∂∂(χθ) is a ∂∂-exact real form, which is transverse on the
whole of X . ��
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