
Abh. Math. Semin. Univ. Hambg. (2017) 87:289–297
DOI 10.1007/s12188-016-0167-9

On a theorem of Halin

Wilfried Imrich1 · Simon M. Smith2

Received: 5 May 2015 / Published online: 23 December 2016
© The Author(s) 2016

Abstract This note presents a new, elementary proof of a generalization of a theorem of
Halin to graphs with unbounded degrees, which is then applied to show that every connected,
countably infinite graph G, with ℵ0 ≤ |Aut(G)| < 2ℵ0 and subdegree-finite automorphism
group, has afinite set F of vertices that is setwise stabilizedonly by the identity automorphism.
A bound on the size of such sets, which are called distinguishing, is also provided. To put
this theorem of Halin and its generalization into perspective, we also discuss several related
non-elementary, independent results and their methods of proof.
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1 Introduction

This is an homage to Halin and his seminal paper from 1973 on automorphisms and endo-
morphisms of infinite, locally finite graphs [9]. It focusses on Theorem 6 of that paper, which
asserts that a locally finite, connected graph with infinite automorphism group has a finite
base if and only if its automorphism group is countable.

Halin and most graphs theorists were seemingly not aware of the fact that stronger forms
of this theorem, which did not need the assumption of local finiteness, had already been
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published in 1968 in the language of infinitary languages by Kueker ([11, Theorem 2.1])
and 1970 in the language of mathematical logic by Reyes ([12, Theorem 2.2.2]). In 1987,
Evans ([8, Theorem 1.1]) published a version more accessible to graph theorists in Archiv
der Mathematik. It implies that Halin’s Theorem 6 from [9] holds without the assumption of
local finiteness. We formulate this as Theorem 2 and derive it with an elementary argument
inspired by Halin’s original proof.

We then apply this result to show that every graph with a finite base and infinite automor-
phism group that is subdegree finite1 contains a set that is (setwise) stabilized only by the
identity automorphism2 and that the size of this set is less than three times the size of the
base, see Theorem 3. This generalizes [4, Theorem 3.2] from locally finite graphs to graphs
of larger valence.

In the last sectionwediscussEvans’ and other approaches inmore detail. These approaches
take recourse to results about topological and metric spaces, including a theorem of Baire,
and usually yield more general results.

We conclude with the problem of extending Halin’s theorem to uncountable graphs.

2 Preliminaries

We focus on connected, countably infinite graphs G with unbounded degrees and are inter-
ested in sets of vertices that are only (setwise) stabilized by the trivial automorphism. Such
sets are called distinguishing. Not every graph has such a set, but if it does, then we call
the minimum size of such a set the distinguishing cost ρ(G) of G. There are large classes
of infinite graphs that have such sets, and often ρ(G) is finite. These are the graphs we are
interested in.

The distinguishing cost was introduced and studied by Boutin [3] for finite graphs. Infinite
graphs with finite cost were treated for the first time in [4]. These investigations did not cover
graphs with infinite degrees, that is, they were restricted to locally finite graphs.

Recall that the set stabilizer of S ⊆ V (G), denoted Aut(G)S , is the set of all automor-
phisms ϕ for which

ϕ(x) ∈ S ⇐⇒ x ∈ S.

We also say that S is invariant under ϕ, or that ϕ preserves S, and write ϕ(S) = S. The point
stabilizer of S, denoted by Aut(G)(S) is the set of all ϕ ∈ Aut(G) for which ϕ(x) = x for
all x ∈ S. If A is a set of automorphisms and x ∈ V (G), then the orbit A(x) of x under the
action of A is the set {ϕ(x) : ϕ ∈ A}.

A base ofAut(G) is a set of vertices Swhose point stabilizer is trivial, and the determining
number of the graph G, denoted by det(G), is the minimum size of a base of G. Clearly
every distinguishing set also is a base. Theorem 3 below estimates the cost as a function of
the size of det(G). It generalizes [4, Theorem 3.2] for locally finite graphs.

Notice that every base S has the property that whenever ϕ,ψ ∈ Aut(G) so that ϕ(x) =
ψ(x) for all x ∈ S, then ϕ = ψ . Thus every automorphism of G is uniquely determined by
its action on the vertices of a base.

Furthermore, for F ⊆ V (G), an automorphism ϕ ∈ Aut(G)F can be thought of as a
permutation in Sym(F) by restricting the action of ϕ to F , denoted ϕ|F . Thus we have a
natural map Aut(G)F → Aut(G)|F ≤ Sym(F). Note that this map is injective if and only

1 A permutation group is subdegree-finite if its point stabilizers have finite orbits.
2 Such sets are called distinguishing sets.
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if F is a base for G. In this case Aut(G)F ∼= Aut(G)|F . If F is a finite base for Aut(G),
then Aut(G)F is a finite group.

The class of connected, locally finite, infinite graphs is usually denoted by �. Graphs in �

have the property that the orbits of all point stabilizers are finite. Automorphism groups with
this property are called subdegree-finite. We do not require subdegree-finiteness for Theorem
2, but for Theorem 3 it is essential.

The motion of an automorphism ϕ ∈ Aut(G), denoted m(ϕ), is the number of vertices
moved by ϕ. The motion of the graph G, denoted by m(G), is the minimum motion of the
nontrivial elements of Aut(G).

The vertices of a graph with a distinguishing set obviously admit a 2-coloring that is only
preserved by the identity automorphism. Such a coloring is called a distinguishing 2-coloring.
These colorings are a special case of distinguishing d-colorings, where the vertices of a graph
G are labeled with the integers 1, . . . , d in such a way that only the trivial automorphism
preserves the colors. A graph with such a coloring is called d-distinguishable. This concept
was introduced by Albertson and Collins [1] and initiated a wealth of results for both finite
and infinite graphs. For infinite graphs, [10] gives a good introduction with numerous further
references to finite and infinite graphs. But, we also wish to point out a paper of Babai [2]
from 1977, in which he proves, in a different setting, deep results about distinguishing infinite
graphs.

3 Halin’s theorem for graphs with unbounded degrees

In this section we extend Halin’s theorem, which is listed below, to countable, connected
graphs that are not in �.

Theorem 1 (Halin [9]) A connected, locally finite, infinite graph G has uncountableAut(G)

if and only if for every finite F ⊂ V (G) there exists a nontrivial automorphism ϕ of G such
that ϕ(v) = v for each v ∈ F.

In other words, this theorem says that a graph G ∈ � has countable automorphism group
if and only if it has a finite base. We are interested in graphs with infinite automorphism
group and prove the following extension to Halin’s Theorem, which is the graph theoretic
version of Kueker [11, Theorem 2.1] and Evans [8, Theorem 1.1]. Notice that Kueker’s result
precedes that of Halin, but not the one of Evans. Interestingly, Evans’ paper also contains an
outline of an elegant proof of Evans’ Theorem suggested by Theo Grundhöfer which invokes
Baire’s Theorem (see Sect. 5).

We now give the extension of Theorem 1 and its elementary combinatorial proof.

Theorem 2 Let G be a graph with countably many vertices. Then Aut(G) is countable or
has cardinality 2ℵ0 , with Aut(G) countable if and only if Aut(G) has a finite base.

Proof The theorem is obviously true ifG is finite. Suppose F ⊆ V (G). The set of images of F
underAut(G) has cardinality |Aut(G) : Aut(G)F | ≤ ℵ0. If F is a finite base forAut(G), then
Aut(G)F is a finite group and |Aut(G)| = |Aut(G) : Aut(G)F | · |Aut(G)F : Aut(G)(F)|.
Hence Aut(G) is countable.

Assume that Aut(G) has no finite base, that is, to every finite set F ⊆ V (G) there
exists a nontrivial automorphism of G that fixes every element of F . Fix some enumeration
{v0, v1, v2, . . .} of V (G). Let E be the set of all infinite sequences {ε = (ε0, ε1, ε2, . . .) :
εi ∈ {0, 1}}.

123



292 W. Imrich, S.M. Smith

We will presently be defining inductively, for each integer i ≥ 0, a finite set Fi , a vertex
xi , and an automorphism ϕi which fixes each vertex in Fi but does not fix xi . To simplify our
notation, for each ε = (ε0, ε1, . . .) ∈ E , let αε

i denote the automorphism ϕ
ε0
0 · · · ϕεi

i and let
α−ε
i denote the automorphism ϕ

−εi
i · · · ϕ−ε0

0 ; write αE
i := {αε

i : ε ∈ E} and α−E
i := {α−ε

i :
ε ∈ E}. Note that αE

i and α−E
i are finite sets of automorphisms and each set contains the

identity automorphism. We will write αE
i (Fi ) (resp. α

−E
i (Fi )) to denote the set of all images

of vertices in Fi under automorphisms in αE
i (resp. α−E

i ). Note that αE
i (Fi ) and α−E

i (Fi )
are also finite sets.

Let us now begin our inductive construction. Take F0 to be any finite set of vertices
containing v0 and let ϕ0 be an automorphism that fixes every vertex of F0, but which is not
the identity. Then there exists a vertex x0 that is moved by ϕ0.

Let F1 be a finite set of vertices containing αE
0 (F0)∪α−E

0 (F0)∪{x0, v1}. By assumption,
there exists an automorphism ϕ1 which fixes every vertex in F1 but does not fix some vertex
x1.

Suppose, in addition, that for all integers i satisfying 1 < i ≤ k we have chosen a finite
set Fi which contains αE

i−1(Fi−1)∪α−E
i−1(Fi−1)∪{xi−1, vi }, and we have chosen a nontrivial

automorphism ϕi which fixes every vertex in Fi but does not fix xi . Let Fk+1 be a finite
set of vertices containing αE

k (Fk) ∪ α−E
k (Fk) ∪ {xk, vk+1}. By assumption, there exists an

automorphism ϕk+1 which fixes every vertex in Fk+1 but does not fix some vertex xk+1.
Thus, we have vk ∈ Fk for all k ≥ 0, with F0 ⊆ F1 ⊆ · · · and

⋃∞
k=0 Fk = V (G). If

� > k ≥ 0 and ε ∈ E , then for all v ∈ Fk we have α±ε
k (v) ∈ Fk+1 ⊆ F�. Hence, one may

easily verify that

αε
k (v) = αε

�(v) and α−ε
k (v) = α−ε

� (v).

We now define, for each ε ∈ E , a map αε : V (G) → V (G) via

αε(vk) := αε
k (vk) for all k ≥ 0.

Each map is well-defined on its domain V (G) = {v0, v1, . . .}. For all vk, v� ∈ V (G) choose
an integer N > max(k, �) and note that the following statements hold:

αε(vk) = αε
N (vk), αε(v�) = αε

N (v�).

Since αε
N ∈ Aut(G) it follows immediately that αε is injective. If v� = α−ε

k (vk), then
v� = α−ε

N (vk) and so αε(v�) = αε
N (v�) = αε

N (α−ε
N (vk)) = vk . Hence αε is also surjective,

and so we may be certain that αε is a permutation of V (G).
For any (finite) ordered n-tuple (w1, . . . , wn) of elements in V (G), there exists N ∈ N

such that {w1, . . . , wn} ⊆ {v0, . . . , vN }, and so:

αε ((w1, . . . , wn)) = αε
m ((w1, . . . , wn)) for all m > N . (1)

It is now easy to see that αε is an automorphism of G: the image of any edge or non-edge
{w1, w2} in G under αε is the same as its image under the automorphism αε

N+1.
Finally, we wish to show that απ �= αε for any pair ε, π of distinct elements in E . For, let

k be the smallest index such that πk �= εk . We can assume that ϕεk
k = ϕk and ϕ

πk
k = id.

We know that there is some v ∈ Fk+1 such that v �= ϕk(v) = ϕ
εk
k (v). Now v = v� for

some integer � ≥ 0. Since v� ∈ F�, we must have � > k. Hence αε(v) = αε
�(v) = αε

k+1(v).
Because v = ϕ

πk
k (v) we infer
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αε(v) = (ϕ
ε0
0 ϕ

ε1
1 · · · ϕεk−1

k−1 )ϕ
εk
k (v)

= (ϕ
π0
0 ϕ

π1
1 · · · ϕπk−1

k−1 )ϕ
εk
k (v)

�= (ϕ
π0
0 ϕ

π1
1 · · · ϕπk−1

k−1 )ϕπk (v)

= απ(v)

This means that the 2ℵ0 automorphisms αε , for ε ∈ E , are all distinct. ��
We do not know how to extend Theorem 2 to graphs of higher cardinality although this

may be feasible by the results of Kueker [11] and Reyes [12] (see Section 5.1).

4 A bound on the distinguishing cost

Given a graph with finite base it is not a priori clear whether it has finite 2-distinguishing
cost. We show in Theorem 3 that this is the case for graphs that have subdegree-finite auto-
morphisms groups.

We need several lemmas for the proof of Theorem 3. The first one is easy and well-known.

Lemma 1 If G has a finite base and if Aut(G) is subdegree-finite, then all stabilizers of
finite sets of vertices are finite.

Proof Suppose F is a finite set of vertices. Clearly |Aut(G)F : Aut(G)(F)| is finite, and so
Aut(G)F is finite if and only if Aut(G)(F) is finite.

Let B be a finite base for G and suppose Aut(G) is subdegree-finite. For any vertex
v, the set C = Aut(G)v(B) is finite because all orbits of Aut(G)v are finite. Because C
contains B, it is a base for G. Hence, distinct automorphisms in Aut(G)C cannot induce the
same permutation of the finite set C , so Aut(G)C must be finite. Because C is stabilized by
Aut(G)v , it follows that Aut(G)v is finite. Therefore the point stabilizer Aut(G)(F) is finite.

��
Lemma 2 Suppose G is a graph with a finite base. If the automorphism group of G is infinite,
then it has an infinite orbit.

Proof Let B be a finite base of G, and suppose all orbits of Aut(G) are finite. Then D :=
Aut(G)(B) is a finite setwhich is stabilized byAut(G).Moreover, D is a base forG because it
contains B. Since no two distinct automorphisms in Aut(G) can induce the same permutation
of D, it follows immediately that Aut(G) is finite. ��

The following two lemmas are similar to Lemma 2.1 and Theorem 3.4 (iii) of [10].

Lemma 3 If Aut(G) is subdegree-finite and has an infinite orbit then, for any two finite sets
of vertices Y, Z of G, there exists an element α ∈ Aut(G) such that Y ∩ α(Z) = ∅.
Proof Suppose a vertex x lies in an infinite orbit of Aut(G). Then there exists an infinite
sequence S = {αi ∈ Aut(G) : i ∈ N} ⊆ Aut(G) such thatα−1

i x = α−1
j x if and only if i = j .

Suppose there exist finite sets of vertices Y and Z such that Y ∩αi (Z) �= ∅ for infinitely many
i ∈ N. Then there exist y ∈ Y and z ∈ Z and an infinite subsequence {αi j : j ∈ N} ⊆ S

such that αi j z = y. For each j ∈ N define β j := αi1a
−1
i j

, and notice that β j belongs to the
stabilizer Aut(G)y . However, β j x = βk x if and only if j = k, and so Aut(G)y has an infinite
orbit, a contradiction. ��
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Lemma 4 If G has a finite base and Aut(G) is infinite and subdegree-finite, then G has
infinite motion.

Proof Let G be a graph with a finite base Y such that Aut(G) is infinite and subdegree-finite.
Suppose β ∈ Aut(G) has finite motion. Then there exists a finite set Z of vertices such that
β fixes no element in Z and fixes (pointwise) every vertex not in Z . By Lemma 3, there is
an α ∈ Aut(G) such that α(Z) ∩ Y = ∅. Hence αβα−1 fixes Y pointwise, and so β is the
identity. ��

Lemma 5 Suppose G is a graphwith a finite base such thatAut(G) is infinite and subdegree-
finite. If Y is a finite set of at least two vertices whose stabilizer is nontrivial, then there exist
infinitely many vertices v such that the stabilizer of Y ∪ {v} is a proper subgroup of the
stabilizer of Y .

Proof Let Y be a finite set of at least two vertices such that Aut(G)Y is nontrivial, and let
D := {α ∈ Aut(G) : α(Y ) ∩ Y �= ∅}. Suppose D is infinite. Then there exists y ∈ Y and
an infinite subset {αi }i∈N ⊆ D such that αi (y) = α j (y) for all i, j ∈ N. The elements in
{α−1

i α1}i∈N are pairwise distinct automorphisms which stabilize y, and so the stabilizer of
y is infinite. However, all stabilizers of finite sets are finite by Lemma 1. Hence D must be
finite.

Let X := ⋃
α∈D α(Y ), and note that X is a finite set which contains Y . By Lemma 4,

Aut(G) has infinite motion, and therefore there exists a vertex v /∈ X such that α(v) �= v for
some nontrivial α ∈ Aut(G)Y . Note that we have infinitely many choices for v.

We show now that the stabilizer of Y ∪ {v} stabilizes Y . To see this, consider an automor-
phism γ which stabilizes Y ∪{v} but does not stabilize Y . Then v ∈ γ (Y ). The set γ (Y )∩Y is
nonempty because Y has at least two vertices, and thus γ (Y ) ⊆ X . But then v ∈ X , contrary
to its choice.

From this we infer that the stabilizer of Y ∪ {v} is contained in the stabilizer of Y , and
they cannot be equal since v is moved by the stabilizer of Y . ��

Theorem 3 SupposeG is agraphwhoseautomorphismgroup is infinite and subdegree-finite.

If G has a finite base B, then G has a finite distinguishing set with at most
⌈
5n
2

⌉
− b(n) − 1

elements, where n = |B| and b(n) denotes the number of 1s in the base-2 representation
of n.

Proof Let B be a finite base of G of size n. If n = 1, then G has a finite distinguishing set
of size 1 and the theorem holds. So, assume that B contains at least two vertices.

Let Y0 := B and note that either Aut(G)Y0 is trivial or, by Lemma 5, we can find a
vertex v1 /∈ Y0 such that the set Y1 := Y0 ∪ {v1} satisfies Aut(G)Y1 < Aut(G)Y0 . Since Y1
contains at least two vertices, we may repeat this process. Since Aut(G)B is finite, we will
eventually obtain a (possibly empty) finite set of vertices {v1, . . . , vk} such that the stabilizer
of Yk = B ∪ {v1, . . . , vk} is trivial and

{id} = Aut(G)Yk < · · · < Aut(G)Y1 < Aut(G)Y0 = Aut(G)B .

Now we observe that Aut(G)B is a subgroup of the symmetric group Sym(n) on n ele-
ments. By a theorem of Cameron et al. ([6]) the length of any chain of subgroups of Sym(n) is
bounded by

⌈ 3n
2

⌉−b(n)−1, where b(n) denotes the number of 1s in the base-2 representation

of n. Hence k ≤ ⌈ 3n
2

⌉ − b(n) − 1 and therefore |Yk | ≤
⌈
5n
2

⌉
− b(n) − 1. ��
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Despite the fact that we hold subdegree-finiteness to be essential for Theorem 3, we have
no example of an infinite, connected graph with finite base and infinite distinguishing cost.
We thus conclude this section with a question.

Question 4 Does there exist an infinite, connected graph with finite base and infinite distin-
guishing cost?

5 Non-elementary results and methods

Halin’s proof of Theorem 1 and our elementary proof of Theorem 2 rely on nested sets of
subgraphs, and these arguments are essentially topological. Such nested sets are used in the
definition of the permutation topology, which is utilized by Evans in [8]. We briefly describe
this topology below.

Let X be a countably infinite set and Sym(X) denote the symmetric group on X . Suppose
(Xi )i≥0 is a nested sequence of finite nonempty subsets of X that covers X . In other words,
Xi ⊂ Xi+1 and

⋃
i≥0 Xi = X .

For distinct permutations α, β ∈ Sym(X) one defines the confluent of α, β as

conf(α, β) = min{i ∈ N | ∃x ∈ Xi : αx �= βx}.
Hence, the confluent is the maximum i such that α and β coincide on Xi , and it is zero if
they differ on X0. Observe that conf depends on the choice of the sequence Xi .

Then we define a distance d(α, β) between α and β by setting d(α, β) = 0 for α = β and
d(α, β) = 2− conf(α,β) otherwise. This is a well defined metric. In fact, it is an ultrametric (a
metric where the triangle inequality has the form d(α, γ ) ≤ max{d(α, β), d(β, γ )}).

All metrics of this kind define the same topology, the so-called permutation topology on
Sym(X), under which Sym(X) is a topological group, and it makes sense to speak of closed
subgroups.

A relation of arity n on X is a set of n-tuples of X . A finitary relational structure on X is
a pair (X, R), where R is a set of relations of finite arity on X . The automorphism group of
a relational structure (X, R) consists of those permutations α of X which satisfy: α(r) = r
for all r ∈ R. Graphs and digraphs are both examples of finitary relational structures.

It is well-known, and easy to prove, that A ≤ Sym(X) is closed if and only if A is the
automorphism group of a finitary relational structure R on X (see [5, Theorem 2.6], for
example). Hence, if in the proof of Theorem 2 we replace the word “edge” with the word
“relation”, G withR, V (G)with X , and Aut(G)with A, then we obtain an elementary proof
of the following theorem.

Theorem 5 Let X be a countable set and let A be a closed subgroup of Sym(X). Then A is
countable or has cardinality 2ℵ0 , with A countable if and only if A has a finite base.

This is how far we can go with elementary methods. A more general result of this kind is
the following theorem of Evans.

Theorem 6 (Evans [8, Theorem 1.1]) Let X be a countably infinite set and G, H closed
subgroups of Sym(X) with H ≤ G. Then, either |G : H | = 2ℵ0 or H contains the pointwise
stabilizer in G of some finite subset of X.

Theorem 5 is the special case of Theorem 6 for H = {id}. The proof of Theorem 6
is not elementary. It uses the fact that the coset space (G : H) inherits a metric from the
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metric d on Sym(X), then Evans proceeds to construct uncountably many convergent series
of automorphisms in the coset space if there is no finite subset of X whose point stabilizer is
contained in H . The construction involves binary trees, and closure is needed to assure that
the limits are not in H .

Evans’ paper ([8]) also contains a short variant of this proof due to Theo Grundhöfer,
which proves the slightly weaker assertion that H contains the pointwise stabilizer in G of
some finite subset of X if |G : H | ≤ ℵ0. It begins with the observation that d∗(α, β) =
d(α, β) + d(α−1, β−1) also is a metric on Sym(X), which is complete with respect to d∗.
Moreover, open balls in both the d- and the d∗-topology are the same and translation by
an element in Sym(X) is a homeomorphism of (Sym(X), d∗). If |G : H | ≤ ℵ0, then the
right cosets of H in G decompose into a countable number of closed subsets. Now one
observes that by Baire’s Theorem the assumption that a non-empty complete metric space
is the countable union of closed sets implies that one of these closed sets has non-empty
interior. Hence, some coset of H has non-empty interior, and thus H contains some open
ball in G around the identity. This, in turn, implies that H contains the pointwise stabilizer
in G of some finite subset of X .

5.1 Uncountable graphs

It would be tempting to extend Theorem 2 to graphs with higher cardinalities. As we already
mentioned this might be feasible by the results of Kueker [11] and Reyes [12].

The only result we know of in this direction is by Dixon et al. [7]. Not surprisingly, it
needs the Generalized Continuum Hypothesis (GCH).

Theorem 7 (Dixon et al. [7, Theorem 2]) Let X be an infinite set of cardinality n and G a
subgroup of Sym(X) with |Sym(X) : G| < 2n. Then, under the assumption of the GCH,
there is a subset Y of X such that |Y | < n and Sym(X)(Y ) ≤ G.

This theorem is a corollary to their main theorem, which pertains to countable graphs, and
does not need the Continuum Hypothesis.

Theorem 8 (Dixon et al. [7, Theorem 1]) Let X be a countably infinite set and G a subgroup
of Sym(X) with |Sym(X) : G| < 2ℵ0 . Then there is a finite subset F of X such that

Sym(X)(F) ≤ G ≤ Sym(X){F},

where Sym(X)(F) is the point-stabilizer of F and Sym(X){F} the set stabilizer.

The proof of Theorem 8 uses moieties, where a moiety is a subset Y of X such that
|Y | = |X \ Y | = |X |, and a theorem of Sierpiński which asserts that a countable set contains
an almost disjoint family of 2ℵ0 moieties, that is, the intersection of any two members of the
family is finite.

Although the proof of Theorem 8 extends to the setting of Theorem 7, it does not seem to
lend itself directly to a generalization of Theorem 2.

Acknowledgements We thank the referee for carefully reviewing the manuscript and for the remarks, which
helped to improve the readability of the paper.
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