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Abstract We look at group actions on graphs and other metric spaces, e. g., at group actions
on geodesic hyperbolic spaces. We classify the types of automorphisms on these spaces and
prove several results about the density of the hyperbolic limit set of the group in the whole
limit set of the group.
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1 Introduction

In many situations, groups acting on some topological space offer the alternative between
the existence of a free subgroup Z ∗ Z and the existence of a fixed point in the space under
the action of the group. For example, if the space is a connected locally finite graph, then
such results can be found in [10,14,22,28,29]. For the case of proper geodesic hyperbolic
spaces we refer to [1,4,8,9,29] for these results.

The investigation for locally finite graphs was started by Halin [10]. He distinguished
automorphisms into two type: Type I are those that fix some finite set of vertices and Type II
are all other automorphisms. He proved that the latter are the translations of the graph. The
proofs in [10] do not need the assumption of local finiteness and in further investigations
of group actions on graphs Jung [14] noticed that. However, just omitting it does not reflect
what is really happening there as we shall see in the following example.

Consider the complete graph on the vertex setZ. We look at two different automorphisms.
The first just maps each vertex i to i + 1. The second automorphism does the same except
for i = −1, 0: it fixes 0 and maps −1 to 1. In the sense of Halin’s types, the first is of
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246 M. Hamann

Type II, while the second is of Type I. But the automorphisms do not differ much. Indeed,
both automorphisms leave a bounded vertex set invariant, not just a finite one. With this
in mind, we are able to prove the following results, where X is any graph, G a group of
automorphisms of X , and X̂ the completion of X with all ends all of whose rays eventually
leave every bounded ball (see Theorem 3.1). (We refer to Sect. 2 for definitions.)

• Every automorphism of X is either elliptic, hyperbolic, or parabolic (Theorem 2.3);
• a group G of automorphisms fixes either a bounded subset of G or a unique limit point

of G in its boundary ∂X , or X has precisely two limit points of G, or G contains two
hyperbolic elements that freely generate a free subgroup (Theorem 2.8);

• the hyperbolic limit set of G is dense in the limit set of G (Theorem 2.7);
• the hyperbolic limit set of G is bilaterally dense in the limit set of G if and only if either

X has precisely two limit points of G or G contains two hyperbolic elements without a
common fixed point (Theorem 2.9);

• if the limit set of G is infinite, then it is a perfect set (Theorem 2.10).

Unfortunately, the results do not hold if we take all vertex ends: we shall discuss a graph
that violates the third and fourth result if ∂X are all vertex ends (see Example 2). Another
possibility (Theorem 3.3) is to take metric ends instead of vertex ends. We are able to prove
this almost simultaneously, as we are building up a general topological setting (contractive
G-completions), in which we prove our results. This topological setting will extend Woess’s
contractive G-compactifications [29] to spaces that need not be proper. And both mentioned
completions of infinite graphs will be examples of these contractive G-completions.

A further class ofmetric spaces that are contractiveG-completions are geodesic hyperbolic
spaces, see Sect. 4. So the above mentioned results also hold for them with X̂ being the
geodesic hyperbolic space with its hyperbolic boundary. We note that the first two facts are
already knownby the experts, i. e. the corresponding proofs for proper hyperbolic spaces in [4]
carry over to geodesic hyperbolic spaces that need not be proper. Note that all mentioned
results are known to be true for proper geodesic hyperbolic spaces, cp. [24,29].

We note that, for certain classes of groups, Karlsson and Noskov [16] considered group
actions on generalisations of contractiveG-compactifications.We also note that our notion of
contractive G-completions has similarities with convergence groups as defined by Gehring
and Martin [6] and that were also investigated by Tukia [26] but differ from them just as
Woess’s contractive G-compactifications do.

2 Contractive G-completions

Let X be a metric space, let X̂ ⊇ X be a regular Hausdorff space, and let G be a group of
automorphisms (i.e. self-isometries) on X . If X is proper and X̂ compact, Woess [29] called
X̂ a G-compactification if the following axioms (C1) and (C2) hold.

(C1) The identity X → X̂ is a homeomorphism and X is open and dense in X̂ .
(C2) Every element of G extends to a homeomorphism of X̂ .

Unfortunately, if we do not have the additional assumptions that X is proper and X̂
compact and also no further axioms, then we run into some problems as we shall illustrate
in the following.

One fact in the case of G-compactifications is that for any sequence (gi )i∈N in G and any
x ∈ X such that the set {xgi |i ∈ N} is unbounded it has an accumulation point in ∂X . This
is false in general as the following example shows.
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Group actions on metric spaces 247

Let G be a free group with free generating set S := {si |i ∈ N} and let X be the Cayley
graph of G with respect to S. So X is an ℵ0-regular tree. We consider the natural action of G
on X . Let X̂ be the completion of X with its ends. (We refer to Sect. 3 for the definition of
an end.) Let o be the vertex corresponding to 1G . Then the sequence (osii )i∈N is unbounded
but has no accumulation point in ∂X , since o separates any two of its vertices. We do not
want to forbid such situations but we have to deal with them. So we have to require that,
if this happens, we still have some structure in G and X̂ . In our example, we may take
the automorphism s1 which gives us all we need in these situations: a sequence (si1)i∈N of
automorphisms such that each of the two sequences (osi1)i∈N and (os−i

1 )i∈N converges. This
is why we introduce the following new axiom.

(C3) Let (gi )i∈N be a sequence in G and x ∈ X with d(x, xgi ) → ∞ for i → ∞. Then
either the set {xgi |i ∈ N} has an accumulation point in ∂X or 〈gi |i ∈ N〉 contains
an automorphism γ such that each of the two sequences (xγ i )i∈N and (xγ −i )i∈N
converges to some point in ∂X .

Note that (C3) immediately implies that, if {xgi |i ∈ N} converges for some x ∈ X and
some g ∈ G, then {xg−i |i ∈ N} has an accumulation point in ∂X .

If we want to show that the hyperbolic limit set of G is dense in the limit set of G, this
new axiom is still not enough:1 if we have a sequence (gi )i∈N such that for some x ∈ X the
sequence (xgi )i∈N converges, we would like the set {xg−1

i |i ∈ N} to have an accumulation
point—just as it is true in the case gi = gi for all i ∈ N and some g ∈ G as seen above.
Once more, this need not be true as we shall demonstrate on our earlier exampleX . Consider
the sequence (si1s

−1
i )i∈N in G. Then the vertex set {osi1s−1

i |i ∈ N} ⊆ V (X ) converges the
end containing the ray o, os1, os21 , . . ., the direction of s1. But the set {osi s−1

1 |i ∈ N} has
no accumulation point, since o separates any two of its vertices. Of course, we can use (C3)
to obtain some g ∈ 〈si1s−1

i |i ∈ N〉 such that (ogi )i∈N and (og−i )i∈N converges. But this is
not much help, if we want to find a hyperbolic limit point close to some previously chosen
limit point η, as both new limit points can lie abritrarily far away from η. So in our example,
(C3) might give us s21 s

−1
2 ∈ G, but neither of its directions is (close to) the direction of s1.

Therefore, we introduce the following axiom.

(C4) Let (gi )i∈N be a sequence in G and x ∈ X such that the set {xgi |i ∈ N} converges to
some boundary point η but the set {xg−1

i |i ∈ N} has no accumulation point in ∂X .
Then there is a sequence (h j ) j∈N in 〈gi |i ∈ N〉 such that each of the sets {xhij |i ∈ N}
and {xh−i

j |i ∈ N} converges to distinct boundary points η j , μ j ∈ ∂X , respectively. In
addition, the sequence (η j ) j∈N converges to η.

We call X̂ aG-completion if the axioms (C1)–(C4) hold. A completion X̂ of X is projective
if for all sequences (xi )i∈N, (yi )i∈N in X such that (xi )i∈N converges to η ∈ ∂X and such that
d(xi , yi ) ≤ M for some M < ∞ also the sequence (yi )i∈N converges to η. A G-completion
X̂ of X is contractive if it is projective and if for all sequences (gi )i∈N in G with

xgn → η ∈ ∂X and xg−1
n → μ ∈ ∂X

for some x ∈ X the sequence (ygn)n∈N converges uniformly toη outside every neighbourhood
of μ in X̂ , that is, that for any open neighbourhoods U of η and V of μ, there is an n0 ∈ N

such that ygn ∈ U for all y ∈ X̂�V and all n ≥ n0.

1 Readers not familiar with the definitions of (hyperbolic) limit points and directions of group elements may
skip the following motivation till the next axiom (C4) without losing much; they might return here later, after
they read the necessary definitions just before Lemma 2.6.
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Lemma 2.1 Let X̂ be a projective G-completion. No bounded sequence in X converges to
any η ∈ ∂X.

Proof Let us suppose that we find an η ∈ ∂X and a bounded sequence (xi )i∈N that converges
to η. Then any constant sequence (x)i∈N in X converges to η due to projectivity. But this
contradicts the fact that X̂ is Hausdorff. �

In a slight abuse of notation, we write for U, V ⊆ X̂ :

d(U, V ) := inf{d(u, v)|u ∈ U ∩ X, v ∈ V ∩ X}
Lemma 2.2 Let X̂ be a projective G-completion and let η and μ be distinct elements of ∂X.
For every open neighbourhood U of η with μ /∈ U, there exists an open neighbourhood V
of μ with d(U, V ) > 0 and U ∩ V = ∅.

Furthermore, for any x ∈ X�U we may choose V so that x /∈ V .

Proof As X̂ is regular, we find an open neighbourhood V ′ ⊆ X�(U ∪{x}) of μ and an open
neighbourhoodU ′ ofU ∪{x} that are disjoint. Projectivity gives us that any sequence within
a fixed distance M > 0 to U ∩ X converges to a boundary point in U and hence not to μ.
So V = V ′

�BM (U ) is open, still has μ as an accumulation point, and satisfies the other
assertions. �

We call an automorphism g ∈ G on X

• Elliptic If it fixes a bounded non-empty subset of X ;
• Hyperbolic If it is not elliptic and if it fixes precisely two boundary points η,μ ∈ ∂X ;
• Parabolic If it is not elliptic and if it fixes precisely one boundary point η ∈ ∂X .

Theorem 2.3 Let X̂ be a contractive G-completion of a metric space X. Then each g ∈ G
is either elliptic, hyperbolic, or parabolic.

Furthermore, if g is hyperbolic and fixes the two boundary points η and μ, then xgn → η

and xg−n → μ for all x ∈ X or vice versa, and if g is parabolic, then for every x ∈ X the
set {xgn |n ∈ Z} has precisely one accumulation point, the boundary point fixed by g.
Remark 2.4 Note that in general for a parabolic element g the analogous convergence prop-
erty as for hyperbolic elements need not be true, that is, at the end of Sect. 3 we shall give
an example of a contractive G-completion X that has a boundary point η such that xgn �→ η

for all x ∈ X . Due to projectivity, this implies ygn �→ η for every y ∈ X .

Proof of Theorem 2.3. Let g ∈ G and x ∈ X . Let us assume that g is not elliptic. Then the
set {d(xgn, xgm)|m, n ∈ Z} is unbounded and hence, the same is true for {d(x, xgn)|n ∈ N}.
So we conclude by (C3) that A := {xgn |n ∈ N} has an accumulation point η ∈ ∂X and
B := {xg−n |n ∈ N} has an accumulation point μ ∈ ∂X .

Let (gni )i∈N be a subsequence of (gi )i∈N such that xgni → η for i → ∞. Since the
elements of G are homeomorphisms on X̂ , we know by projectivity of X̂ that

ηg = (lim xgni )g = lim(xg)gni = η.

So we have ηg = η and, analogously, we also have μg = μ.
Let ∂A, ∂B be the sets of accumulation points of A, B in ∂X , respectively. Then the sets

∂A and ∂B are non-empty closed subsets of ∂X . First, we show

|∂A| = 1 = |∂B|. (1)
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Let us suppose that there is a second accumulation point η′ of A. We have η′g = η′, too.
The sequence (xg−ni )i∈N is unbounded because of d(x, xgn) = d(xg−n, x). If (xg−ni )i∈N
has no accumulation point in ∂X , then there is a z ∈ Z such that (xgkz)k∈N and (xg−kz)k∈N
converge in X̂ by (C3). But then we have |∂A| = 1 = |∂B|, as X̂ is projective and as
{d(xgz, xgz+i )|0 ≤ i ≤ z} is bounded. So (xg−ni )i∈N converges to μ, a contradiction.
Hence, (xg−ni )i∈N has an accumulation point in ∂X , sayμ. Let us take an infinite subsequence
of (ni )i∈N such that (xg−ni )i∈N converges for this subsequence to μ. We may assume that
(ni )i∈N itself is this subsequence. If η �= μ, let U and V be open neighbourhoods of η and
μ, respectively, with x /∈ U ∪V andU ∩V = ∅. Let Z be an open neighbourhood of η′ with
η /∈ Z . Set W := U�Z . Due to contractivity, there exists m ∈ N with (X�V )gnm ⊆ W and
we conclude xg�nm ∈ W for all � ∈ N inductively. Due to projectivity, every accumulation
point of A lies in W as {d(xgnm , xgi+nm )|0 ≤ i ≤ nm} is bounded. This contradicts the
choice of W . If η = μ, let U = V be an open neighbourhood of η with η′ /∈ U and let
(yi )i∈N be a sequence in X�U that converges to η′. As X̂ is contractive, there is an m ∈ N

with yi gnm ∈ U for all i ∈ N. But then we have η′ = η′gnm ∈ U , a contradiction. This shows
that η is the unique element of ∂A. Analogously, we obtain that μ is the unique element
of ∂B, which shows (1).

Next, we show

if νg = ν for some ν ∈ ∂X, then ei ther ν = η or ν = μ. (2)

Let us suppose that there is ν ∈ ∂X�{η,μ} with νg = ν. As X̂ is regular, we may take open
neighbourhoods U and V of η and μ, respectively, with U ∩ V = ∅ such that ν /∈ U ∪ V .
Let (xi )i∈N be a sequence in X converging to ν. As ν /∈ U ∪ V , only finitely many xi lie in
U ∪ V . In particular, we may have chosen (xi )i∈N in X�(U ∪ V ). By contractivity, we find
an n ∈ N with xi gn ∈ U for all i ∈ N. Hence, we have ν = νgn ∈ U , a contradiction that
shows (2).

Thus, there are at most two boundary points, η and μ, of X fixed by g and g is either
parabolic or hyperbolic. If g is parabolic, then we just showed that the set {xgn |n ∈ Z} has
precisely one accumulation point, as we showed earlier |∂A| = 1, and the same is true for
{ygn |n ∈ Z} for any y ∈ X by projectivity.

So let us assume that η and μ are distinct, that is, that g is hyperbolic. We have to show
the convergence property of hyperbolic automorphisms. Let us first show that xgn and xg−n

for n ∈ N converge to η and μ, respectively. Therefore, we show that we can find a sequence
(ni )i∈N such that xgni converges to η and xg−ni converges to μ. Let us take an arbitrary
sequence (ni )i∈N such that xgni converges to η. Let us suppose that μ is no accumulation
point of xg−ni . As d(x, xg−ni ) is unbounded, we know by (C3) that there is an n ∈ N such
that (xgnk)k∈N and (xg−nk)k∈N converge. So their limit points must be η andμ, respectively.
By projectivity, this holds also for g instead of gn . Now, let y ∈ X . As X̂ is projective
and d(x, y) = d(xgn, ygn) for all n ∈ N, also the sequence (ygi )i∈N converges to η and
the sequence (yg−i )i∈N converges to μ. This shows the additional statement on hyperbolic
automorphisms. �
Remark 2.5 Note that we have not used axiom (C4) in the proof of Theorem 2.3.

For a hyperbolic element g, let the boundary point to which the sequence (xgn)n∈N for
x ∈ X converges be the direction of g. Note that this definition does not depend on the
point x by projectivity. By g+ we denote the direction of g and by g− the direction of g−1.
For parabolic elements, we denote by g+ and g− the unique fixed boundary point. For a
contractive G-completion X̂ of X , let the limit set L(G) of G be the set of accumulation
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250 M. Hamann

points in ∂X of xG for any x ∈ X and let the hyperbolic limit set H(G) of G be the set of
directions of hyperbolic elements. Again, these sets do not depend on the choice of x due to
projectivity.

Notice that due toTheorem2.3, the automorphism γ mentioned in (C3) is either hyperbolic
or parabolic and in (C4) we find infinitely many hyperbolic automorphisms whose directions
converge to η.

Lemma 2.6 Let X̂ be a contractive G-completion of a metric space X, let U and V be
non-empty open subsets of X̂ with d(U, V ) > 0, U ∩V = ∅, and U ∪V �= X̂ , and let g ∈ G.
If (X̂�V )g ⊆ U, then g is hyperbolic with g+ ∈ U and g− ∈ V .

Proof First, we notice that X̂�U ⊆ Vg and hence (X̂�U )g−1 ⊆ V . AsU and V are disjoint,
we obtain inductively that (X̂�V )gn ⊆ U and (X̂�U )g−n ⊆ V for all n ≥ 1. Since X is
dense in X̂ and U ∩ V �= X̂ , we find an x ∈ X�(U ∪ V ). Let us show that the orbit of x
under g is not bounded. Indeed, as xg−1 ∈ V and xg ∈ U , we have d(x, xg2) ≥ d(U, V )

and thus

d(x, xgn) ≥ (n − 1)

2
d(U, V )

holds and shows that g is not elliptic. Hence, g is either parabolic or hyperbolic according to
Theorem 2.3. Due to (C3), the set {xgn |n ∈ N} has an accumulation point, which lies in U ,
and {xg−n |n ∈ N} has an accumulation point, which lies in V . According to Theorem 2.3,
the automorphism g cannot be parabolic, so it must be hyperbolic and we have g+ ∈ U and
g− ∈ V . �
Theorem 2.7 Let X̂ be a contractive G-completion of a metric space X.

(i) If L(G) has at least two elements, then H(G) is dense in L(G).
(ii) The set L(G) has either none, one, two, or infinitely many elements.
(iii) The set H(G) has either none, two, or infinitely many elements.

Proof To prove (i), let η,μ ∈ L(G) be distinct and let x ∈ X . Then there are sequences
(gi )i∈N and (hi )i∈N in G with xgi → η and xhi → μ. We show that in any neighbourhood
of η we find a direction of a hyperbolic element.

Wemay assume that (xg−1
i )i∈N has atmost one accumulation point: if it hasmore than one,

then we take a subsequence of (gi )i∈N such that (xg−1
i )i∈N converges in X̂ . If (xg−1

i )i∈N has
no accumulation point, then we find with condition (C4) a sequence ( f j ) j∈N of hyperbolic
automorphisms such that f +

j → η for j → ∞. Thus, we may assume that (xg−1
i )i∈N

converges to ν ∈ ∂X .
We distinguish several cases. First, let us assume that ν �= η. Due to Lemma 2.2, we find

open neighbourhoods U, V of η, ν, respectively, with U ∩ V = ∅, with d(U, V ) > 0, and
with x /∈ V . As X̂ is contractive, there is an n ∈ N with (X̂�V )gi ⊆ U for all i ≥ n.
According to Lemma 2.6, for all i ≥ n, the automorphism gi is hyperbolic with g

+
i ∈ U and

g−
i ∈ V . So we have found directions of hyperbolic automorphism arbitrarily close to η.
In the situation that (xh−1

i )i∈N does not have μ as an accumulation point, an analogous
proof as above gives us a direction of a hyperbolic automorphism f ∈ 〈hi |i ∈ N〉 in every
neighbourhood of μ. If either f + = η or f − = η, then η itself is a direction of a hyperbolic
element. Hence, we may assume that f + �= η and we may also assume that f + �= ν by
taking f −1 instead of f . Applying contractivity, we obtain that f +gn ∈ U for all n ≥ n0 for
some n0 ∈ N. As f +gn is the direction of the hyperbolic automorphism gn f g−1

n , we obtain
the direction of a hyperbolic automorphism in U , too.
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Let us now assume that (xg−1
i )i∈N converges to η and that (xh−1

i )i∈N converges to μ.
As η �= μ, there are again open neighbourhoods U and V of η and μ, respectively, with
x /∈ U ∪ V , with d(U, V ) > 0, and with U ∩ V = ∅ due to Lemma 2.2. By contractivity,
we find an n ∈ N such that

(X̂�U )gi ⊆ U and (X̂�V )hi ⊆ V

for all i ≥ n. For f := hngn this implies

(X̂�V ) f ⊆ Vgn ⊆ U.

By Lemma 2.6, the automorphism f is hyperbolic with f + ∈ U and f − ∈ V . As we may
haven chosenU so thatU lies in some previously chosen open neighbourhood of η, we have
shown (i).

For the proof of (ii) and (iii), let us assume that L(G) contains at least three elements.
As H(G) is dense in L(G) according to (i) and as X̂ is Hausdorff, there are two hyperbolic
automorphisms g and h that do not fix the same two boundary points of X . Let η ∈ ∂X with
ηg = η and ηh �= η. Then due to contractivity, the sequence (ηhn)n∈N converges to h+ but
does not contain h+. Hence, the set {ηhn |n ∈ N} is infinite. On the other hand, the boundary
point ηhn is fixed by h−nghn which is, as it is conjugated to a hyperbolic automorphism,
also hyperbolic. Hence H(G) and L(G) are infinite. Since every hyperbolic automorphism
fixes two boundary points, we also have |H(G)| �= 1. �

A group G acts discontinuously on a metric space X , if there is a non-empty open subset
O ⊆ X with Og ∩ O = ∅ for all non-trivial elements g of G.

Theorem 2.8 Let X̂ be a contractive G-completion of a metric space X. Then one of the
following cases holds:

(i) G fixes a bounded subset of X;
(ii) G fixes a unique element of L(G);
(iii) L(G) consists of precisely two elements;
(iv) G contains two hyperbolic elements that have no common fixed point and that freely

generate a free subgroup of G that contains aside from the identity only hyperbolic
elements and that acts discontinuously on X.

Proof First, let us assume that G does not contain any hyperbolic automorphism. Then
Theorem 2.7(i) implies that |L(G)| ≤ 1. If |L(G)| = 1, then the unique element of L(G)

has to be fixed by G which shows that (ii) is true in this situation. Thus, we may assume that
L(G) is empty. By (C3), the set xG must be bounded for any x ∈ X . So (i) holds.

Let us now assume thatG contains a hyperbolic automorphism. Thenwe have |L(G)| ≥ 2.
If |L(G)| = 2, then (ii) holds. Sowemayassume that |L(G)| �= 2.Thus,wehave |H(G)| > 2,
sinceH(G) is dense inL(G) due to Theorem 2.7(i). So G contains more than one hyperbolic
element. We shall show that either (ii) or (iv) holds.

Let us first consider the case that every two hyperbolic automorphisms have a common
fixed point. Then we shall show the existence of a boundary point in L(G) that is fixed
by all elements of G. Suppose that no such fixed point exists. Let g ∈ G be hyperbolic.
As G contains more than one hyperbolic element that have in total more than two distinct
directions, we know that {g+, g−} is not G-invariant. For every h ∈ G, the automorphism
h−1gh is hyperbolic. As every two hyperbolic automorphisms have a common fixed point,
either g+h = (h−1gh)+ or g−h = (h−1gh)− lies in {g+, g−}, in particular, we have
{g+, g−}h ∩ {g+, g−} �= ∅.
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252 M. Hamann

Let us suppose that there are h1, h2 ∈ G with

{g+, g−}h1 ∩ {g+, g−} = {g+} and {g+, g−}h2 ∩ {g+, g−} = {g−}.
As gi := h−1

i ghi for i = 1, 2 are hyperbolic, they have a common fixed point η. But this
fixed point is neither g+ nor g− by the choices of h1 and h2. Let U and V be disjoint open
neighbourhoods of g+ and g−, respectively, such that none of them contains η. As X̂ is
contractive, there is an n ∈ N such that (X̂�V )gn ⊆ U and (X̂�U )g−n ⊆ V . Again, the
automorphisms f1 := g−ng1gn and f2 := gng2g−n are both hyperbolic and we have

{ f +
1 , f −

1 } = {ηgn, g+gn} ⊆ U and { f +
2 , f −

2 } = {ηg−n, g−g−n} ⊆ V

which implies that f1 and f2 have no common fixed point even though they are hyperbolic.
This contradiction shows that there is a μ ∈ ∂X that lies in {g+, g−} f for all f ∈ G. Let ν
be the other element of {g+, g−}.

Since G fixes no element of L(G), there is an f ∈ G with μ f �= μ. Then we have
ν f = μ and ν f 2 = μ f �= μ. As μ ∈ {μ, ν} f 2, we conclude that μ f 2 = μ. Since f is
a homeomorphism on X̂ and ν f = μ f 2, we have μ f = ν. Because of |L(G)| �= 2, there
is a hyperbolic automorphism f ′ in G with precisely one fixed point in {g+, g−}, as any
two hyperbolic automorphisms have a common fixed point. If this fixed point is ν, then we
conclude μ f ′ = μ as μ ∈ {μ, ν} f ′. By the choice of f ′, this is not possible. So f ′ fixes
μ. Hence, the automorphism f ′ f maps μ to ν and ν to ν f ′ f �= ν f = μ. So μ does not
lie in {g+, g−} f ′ f . This contradiction shows that some element of L(G) is fixed by G in
the situation that every two hyperbolic automorphisms have a common fixed point. Since
|H(G)| ≥ 2, this fixed boundary point must be unique.

Let us consider the remaining case, that is, that there are two hyperbolic elements g and h
in G without common fixed point. We shall show that there is some k ≥ 1 such that gk and
hk satisfy the condition (iv). Let U1, V1, U2, and V2 be open neighbourhoods in X̂ of g−,
g+, h−, and h+, respectively, that have pairwise positive distance from each other, such that
their closures are disjoint and such that

U1 ∩U2 ∩ V1 ∩ V2 �= X̂ .

We can find these neighbourhoods similarly as in the proof of Lemma 2.2. Let O be a non-
empty open subset of X that is disjoint from all four just defined subsets of X̂ . As X̂ is
contractive, there is an n0 ≥ 1 with

(X̂�U1)g
n ⊆ V1 and (X̂�V1)g

−n ⊆ U1

as well as

(X̂�U2)h
n ⊆ V2 and (X̂�V2)h

−n ⊆ U2

for all n ≥ n0. Set f1 := gn0 and f2 := hn0 . We shall show that f1 and f2 freely generate
F := 〈 f1, f2〉 and that this group acts discontinuously on X . But as this proof is basically
the well-known ping-pong argument, we omit it here and refer to the corresponding proof
by Woess [29, Proposition 1] for G-compactifications of proper metric spaces. �

The hyperbolic limit set is bilaterally dense in L(G) if H(G) is not empty and if for any
two disjoint non-empty open sets A, B ⊆ L(G) there is a hyperbolic element g ∈ G with
g+ ∈ A and g− ∈ B. Our next theorem says that H(G) is bilaterally dense in L(G) if and
only if either (iii) or (iv) of Theorem 2.8 hold.
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Theorem 2.9 Let X̂ be a contractive G-completion of a metric space X. The following
statements are equivalent.

(i) The hyperbolic limit set of G is bilaterally dense in L(G).
(ii) Either |L(G)| = 2 or G contains two hyperbolic elements that have no common fixed

point.

Proof Let us assume that (i) holds and that |L(G)| �= 2. As H(G) �= ∅ by the definition of
bilateral denseness, we know that L(G) and H(G) are infinite according to Theorem 2.7(ii)
and (iii). As X̂ is Hausdorff, we may take four pairwise disjoint open subsets V1, . . . , V4
of ∂X and conclude that there are two hyperbolic elements g, h inG with g+ ∈ V1, g− ∈ V2,
h+ ∈ V3, and h− ∈ V4. Obviously, these two hyperbolic automorphisms have no common
fixed point.

To show the converse, let us assume that (ii) holds. For every open neighbourhood Y
in L(G) of any element η ∈ L(G), there is a neighbourhood Y ′ in X̂ with Y ′ ∩ L(G) ⊆ Y
as X̂ is regular. Thus, we may take disjoint non-empty open subsets A and B of X̂ with
A′ := A ∩ L(G) �= ∅ and B ′ := B ∩ L(G) �= ∅ and just have to show that there is a
hyperbolic element f in G with f + ∈ A′ and f − ∈ B ′.

If |L(G)| = 2, then each of the two sets A′ and B ′ consists of precisely one point and
according to Theorem 2.7(i) there is a hyperbolic element f inG with f + ∈ A′. This implies
f − ∈ B ′. Hence, we may assume that G contains two hyperbolic elements without common
fixed point.

Let η ∈ A′ andμ ∈ B ′, letU be an open neighbourhood of η withU ⊆ A, and let V be an
open neighbourhood of μ with V ⊆ B such that d(U, V ) > 0,U ∩ V = ∅, andU ∪ V �= X̂ .
For the existence of U and V , we refer again to the proof of Lemma 2.2. Let us show:

there are hyperbolic elements g, h ∈ G wi th g+, g− ∈ U and h+, h− ∈ V . (3)

As H(G) is dense in L(G), we find a hyperbolic automorphism a in G with a+ ∈ U . Since
there are two hyperbolic elements in G without common fixed point, we find a hyperbolic
automorphism b that fixes neither a+ nor a−. Applying contractivity to open neighbourhoods
U ′ and V ′ of a+ and a−, respectively, with U ′ ⊆ U we obtain an n ∈ N with b+an ∈ U
and b−an ∈ U . Let g = a−nban . Then g is hyperbolic as it is conjugated to a hyperbolic
automorphism and for every x ∈ X̂�U we have

xgm = xa−nbman → b+an = g+ for m → ∞
and

xg−m = xa−nb−man → b−an = g− for m → ∞.

Thus, g+ and g− lie inU . Analogously,wefind a hyperbolic element h ofG with h+, h− ∈ V ,
which shows (3).

By contractivity, there is some m ∈ N with xgm ∈ U and xg−m ∈ U for all x ∈ X̂�U as
well as xhm ∈ V and xh−m ∈ V for all x ∈ X̂�V . Let f = hmgm . Then we conclude

x f = xhmgm ∈ Vgm ⊆ U

for all x ∈ X̂�V and

x f −1 = xg−mh−m ∈ Uh−m ⊆ V

for all x ∈ X̂�U . As d(U, V ) > 0, U ∩ V = ∅, and U ∪ V �= X̂ , Lemma 2.6 implies that
f is hyperbolic with f + ∈ U and f − ∈ V as desired. �
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Theorem 2.10 Let X̂ be a contractive G-completion of a metric space X and such thatL(G)

is infinite. Then L(G) is a perfect set.
Furthermore, the following statements are equivalent.

(i) The set {(g+, g−)|g ∈ G, g is hyperbolic} is dense in L(G) × L(G).
(ii) The hyperbolic limit set of G is bilaterally dense in L(G).
(iii) There are two hyperbolic elements in G that have no common fixed point.

Proof To show that L(G) is perfect, we have to show that L(G) contains no isolated point.
Let us suppose that η ∈ L(G) is isolated. As H(G) is dense in L(G) according to Theo-
rem 2.7(i), we find a hyperbolic element g ∈ G with g+ = η. Let μ ∈ L(G) with μg �= μ.
This limit point exists as L(G) is infinite. Since g is hyperbolic and X̂ is contractive, the
sequence (μgi )i∈N converges to g+ but none of its elements is g+. Hence, g+ cannot be
isolated in L(G).

For the additional statement, we note that (ii) is oviously a direct consequence of (i). The
fact that L(G) is perfect implies the inverse direction and the equivalence of (ii) and (iii)
follows from Theorem 2.9(ii) as |L(G)| �= 2. �

3 Graphs with their ends

ContractiveG-completions are natural generalizations of the contractiveG-compactifications
defined by Woess [29]. Besides proper geodesic hyperbolic spaces,2 examples for those
contractive G-compactifications are locally finite connected graphs X with vertex ends as
boundary (see [29]) that are the equivalence classes of rays (i.e. one-way infinite paths) where
two rays are equivalent if andonly if they lie eventually in the samecomponent of X�S for any
finite vertex set S. A base for the topology on a graph with its vertex ends is given by sets that
are open in the distance metric of the graph and by vertex sets C that have a finite neighbour-
hood (vertices in V (G)�C that are adjacent to some vertex of C) and such that some ray lies
inC . In this latter situation, the setC is a neighbourhood of all vertex ends that have a ray inC .

For our theorems, we dropped the hypothesis on X being a proper metric space, that is,
we do not require the graphs to have finite degrees. Thus, the canonical guess would be to
ask if arbitrary connected graphs X with their vertex ends are examples of G-completions.
Unfortunately, this is not the case: the first obstacle is that such a space is not projective and
the second is that the uniform convergence property of the contractivity does not hold for the
space. We give an example for these two obstacles.

Example 1 Let X be a graph such that every vertex is a cut vertex and lies in λ blocks each
of which is a copy of the complete graph on κ vertices, where κ and λ are infinite cardinals.
These graphs have a large symmetry group: its automorphisms do not only act transitively
on the graph. Indeed, the graphs are distance-transitive graphs,3 cp. [13,21].

Considering the completion X̂ of X with its vertex ends, any two rays in distinct blocks have
bounded distance to each other but they lie in distinct vertex ends. Thus, X̂ is not projective.

To see that also the second part of the definition of contractivity—the uniform convergence
property—does not hold, let Y be a block in X and C be a component of X − y for a vertex
y ∈ Y with C ∩ Y = ∅. Let (yi )i∈N be a sequence in Y such that its elements are pairwise

2 We will look at geodesic hyperbolic spaces in Sect. 4.
3 A graph is called distance-transitive if, for each k ∈ N, its automorphisms act transitively on those pairs of
vertices that have distance k to each other.
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distinct and also all distinct from y and such that Y�{yi |i ∈ N} is infinite. Let (Ci )i∈N be a
sequence of components of X�{yi } with Ci ∩Y = ∅. Then there is an automorphism g of X
with Ci g = Ci+1 that fixes C pointwise. Thus, we have xgi → η for i → ∞ and for every
x ∈ C1, where η is the end that contains all rays in Y , and also xg−i → η for i → ∞. There
is a neighbourhoodU of η that intersects withC trivially. Hence, xgn has to converge to η for
every x ∈ C if the uniform convergence property holds, but g fixes C pointwise, so we have
xgn = x . This shows that also uniform convergence fails for X and it finishes Example 1.

Let usmodifyExample 1 a bit so thatweobtain a graphwhich also shows thatTheorems2.7
and 2.9 do not hold for graphs with all their vertex ends as completion.

Example 2 Let X be the graph from Example 1. For every x ∈ V (X), let Yx be a complete
graph on ℵ0 vertices, and let yx ∈ V (Yx ). Let Z be obtained from the disjoint union of X and
all Yx by identifying each x with yx . Unfortunately, the limit set L(G) with G := Aut(Z)

depends on the choice of the vertex used for its definition: taking a vertex from X leads
to a limit set consisting of all vertex ends that belong to X and taking any other vertex
implies that L(G) is the set of all vertex ends of Z . Since for contractive G-completions, the
independence of L(G) from the chosen vertex x was implied by projectivity, which is not
given in our situation, it would be natural to define L(G) to be the union of all accumulations
points of zG for all z ∈ V (Z).

To show that the concludions of Theorems 2.7 and 2.9 do not hold for X , it obviously
suffices to show it for the conclusion of Theorem 2.7. But this is easy to see: every hyperbolic
limit point can be separated by x ∈ V (X) from the end in Yx , so H(G) cannot be dense in
L(G).

But nevertheless, Theorems 2.3 and 2.8 are true for connected graphs with their vertex
ends as boundary considering finite vertex sets instead of bounded ones for the definition
of elliptic elements, see Halin [10] and Jung [14]. Although the vertex ends fail to make X̂
a G-completion in general, there is on one side a natural subclass of the ends and on the
other side another notion of ends, the metric ends as defined by Krön [17] (see also Krön and
Möller [19,20]), which our situation fits to.

We call a ray a local ray if there is a vertex set of finite diameter that contains infinitely
many vertices of the ray. As we have seen in Example 1, existence of two distinct ends each
of which contains a local ray is an obstruction for any completion of a graph to be projective
and any end that contains a local ray might be an obstacle for the uniform convergence
property in the definition of contractivity. This motivates us to consider only those ends for
the contractive G-completion that do not contain any local ray. And indeed, we obtain the
following result:

Theorem 3.1 Let X be a connected graph and X̂ the completion of X with all those vertex
ends of X that do not contain any local ray. Then X̂ is a contractive Aut(X)-completion and
the theorems of Sect. 2 hold for X̂ .

The proof of Theorem 3.1 is similar to the one of Theorem 3.3 but uses finite vertex sets
instead of vertex sets of finite diameter for the definition of the ends. Notice that Sprüssel [25,
Theorem2.2] showed that graphs with their ends form a normal topological space. We omit
the proof of Theorem 3.1 and prove the results for connected graphs with their metric ends
instead.

A ray in a graph X is a metric ray if it eventually lies outside every ball of finite diameter.
So a ray is a metric ray if and only if it is not a local ray. Two metric rays are equivalent if
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they eventually lie in the same component of X�S for any vertex set S of finite diameter.
This is an equivalence relation and its equivalence classes are the metric ends of X . A metric
double ray is a double ray (i.e. a two-way infinite path) such that no ball of finite diameter
contains infinitely many of its vertices. So any subray of a metric double ray is a metric ray.
Let us define a base for the topology on a graph with its metric ends: it consists of all those
sets that are open in the distance metric of the graph and of all those sets C of vertices that
have a neighbourhood of finite diameter and such that some metric ray lies in C—in this
situation the set C is a neighbourhood of all metric ends that have a metric ray which lies
in C . For more details on metric ends, we refer to [17,19,20].

To prove that a connected graph X with its metric ends is an Aut(X)-completion, we need
a result due to Krön and Möller [19], which is (for a connected graph) a stronger version of
Lemma 2.6.

Theorem 3.2 [19, Theorem 2.12] Let X be a connected graph and g ∈ Aut(X). If there
is a non-empty vertex set S of finite diameter, a component C of X�S and an n ∈ N with
(S ∪ C)gn ⊆ C, then there is a metric double ray L and an m ∈ N such that gm acts as a
non-trivial translation on L. �
Theorem 3.3 Let X be a connected graph and X̂ be X with its metric ends. Then X̂ is a
contractive Aut(X)-completion of X and the theorems of Sect. 2 hold for X̂ .

Proof First, we mention that X̂ is Hausdorff and regular, cp. [17, Theorem 4] and that the
canonical extensions of automorphisms of X are homeomorphisms of X̂ , cp. [17, Theorem6].
Furthermore, X is open and dense in X̂ . Thus, it remains to prove (C3) and (C4) for G =
Aut(X) and then that the G-completion is contractive.

We note that the condition for X̂ being projective is—as a direct consequence of the
definition ofmetric ends—valid even thoughwe have not proved yet that X̂ is aG-completion.
But we may use the property during the remainder of the proof.

To prove (C3), let (g j ) j∈N be a sequence inG with d(x, xg j ) → ∞ for j → ∞. Let Bi be
the ball with centre x and radius i . Either there is for each i precisely one component of X�Bi
that contains all but finitelymany vertices of {xg j | j ∈ N} or there are two componentsC1,C2

of X�Bi and k, � ∈ N with Bi gk ⊆ C1 and Bi g� ⊆ C2 as well as with d(Bi gk, Bi ) ≥ 2 and
d(Bi g�, Bi ) ≥ 2. In the first case, those components Di that contain all but finitely many of
the vertices of {xg j | j ∈ N} define a unique metric end η as the radii of the balls Bi increase
strictly: take the unique element in

⋂
i∈N Di . As the sequence (xg j ) j∈N eventually lies in

each of these components, the sequence must have η as an accumulation point.
Thus, wemay assume that there are two distinct componentsC1,C2 of X�Bi and k, � ∈ N

with Bi gk ⊆ C1 and Bi g� ⊆ C2 and with d(Bi gk, Bi ) ≥ 2 and d(Bi g�, Bi ) ≥ 2. If either gk
or g� satisfies the assumptions of Theorem 3.2, then there is a vertex z on the metric double
ray L of the conclusion of Theorem 3.2 such that the set {zgnj |n ∈ Z}, for either j = k or
j = �, has the metric ends to which every subray of L converges as accumulation points.
By projectivity, we conclude that each of the two sets {xgnj |n ∈ N} and {xg−n

j |n ∈ N} has
an accumulation point in ∂X . So we assume that neither gk nor g� satisfies the assumptions
of Theorem 3.2. This implies that Bi g2k must lie in the same component of X�Bi gk in
which Bi lies. Analogously, Bi g2� lies together with Bi in a component of X�Bi g�. Let
us consider the automorphism g := g−1

k g�. Let y ∈ C1 with d(y, Bi ) < d(Bi , Bi gk). We
have yg−1

k ∈ C1g
−1
k ∩ C1 and the vertices yg−1

k and x must lie in the same component
of X�Bi gk . Hence, x and yg do not lie in the same component of X�Bi g� and the same
is true for x and xg. This implies for the component C of X�Bi gk that contains x , that we
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have (Bi gk ∪C)g ⊆ C . According to Theorem 3.2, there is a metric end that is a limit point
of {xg j | j ∈ N} and the same holds for {xg− j | j ∈ N}. This finishes the proof of (C3).

For the proof of (C4), let x ∈ X and let (gk)k∈N be a sequence in G with xgk → η for
k → ∞ for some η ∈ ∂X such that {xg−1

k |k ∈ N} has no accumulation point. So there is an
i0 such that for all i ≥ i0 and for the ball Bi of radius i and centre x all but finitely many of the
balls Bi gk lie in the same componentCi of X�Bi and all but finitely many of the balls Bi g

−1
k

lie outside Ci . If we find infinitely many gk that satisfy the assumptions of Theorem 3.2, then
the sets {xgnk |n ∈ N} and {xg−n

k |n ∈ N} have distinct limit points η1 and η2 in the set of
metric ends and we find a sequence in the limit points of the sets {xgnj |n ∈ N} that converges
to η since for all k with Bi gk ⊆ Ci one of the two limit points η1 and η2 lies in Ci , that
is, contains a metric ray inside Ci . If we do not find these infinitely many gk , then let k be
such that Bi gk lies in Ci and let � be such that Bi g

−1
� lies in a component of X�Bi distinct

from Ci and such that d(Bi , Bi gk) > 2 and d(Bi , Bi g
−1
� ) > 2. As in the proof of (C3),

the automorphism g�gk satisfies the assumptions of Theorem 3.2 and, as we can choose k
among infinitely many natural numbers, we obtain our sequence of limit points of the sets
{x(g�gk)n |n ∈ N} that converges to η similarly to the previous case. This shows (C4).

Let us now prove that X̂ is contractive. We have already seen that X̂ is projective. So let
(gi )i∈N be a sequence inG with xgi → η and xg−1

i → μ for i → ∞, some x ∈ X andmetric
ends η andμ. LetU be a neighbourhood of η and V be a neighbourhood ofμ.Wemay assume
that there are vertex sets SU and SV of finite diameter such thatU is a component of X�SU and
V is a component of X�SV . As xgn → η, there is by projectivity an n1 ∈ N such that SV gn
lies in the same component of X�SU as η and such that d(xgn, SU ) > d(x, SV )+diam(SV )

for all n ≥ n1. Then we have SV gn ⊆ U and in particular SV gn ∩ SU = ∅ for all n ≥ n1.
Similarly, we find n2 ∈ N such that SU g−1

n lies in the same component of X�SV as η and
such that d(xg−1

n , SV ) > d(x, SU ) + diam(SU ) for all n ≥ n2. Again, we have SU g−1
n ⊆ V

and SU g−1
n ∩ SV = ∅ for all n ≥ n2 and hence also SU ⊆ Vgn . Let n0 := max{n1, n2},

let n ≥ n0, and let y ∈ X̂�V . As SU ⊆ Vgn and SV separates y and SU g−1
n , the vertex

ygn must lie outside the component of X�(SV gn) that contains SU . Since it is cannot be
separated from η by SU , we have ygn ∈ U . This shows that (ygn)n∈N converges uniformly
to η outside every neighbourhood of all accumulation points of {xg−1

i |i ∈ N} in X̂ . �
In the case of locally finite graphs with their vertex ends as boundary, a parabolic auto-

morphism g has the additional property that the sequence (xgi )i∈N converges to the unique
fixed end for any vertex x . This is not true in the case of arbitrary graphs with their metric
ends as boundary: Krön and Möller [19, Example 3.16] constructed a graph with precisely
one metric end and an automorphism that fixes no bounded vertex set but leaves a double
ray invariant that is neither bounded nor a metric double ray. This implies that for any ver-
tex x on that double ray, its orbit is unbounded but there is a vertex set of finite diameter
that contains infinitely many of the vertices in its orbit. This shows that, for contractive
G-compactifications, an analogous convergence property as for hyperbolic automorphisms
does not hold in the case of parabolic automorphisms.

4 Hyperbolic spaces

In this section, we consider hyperbolic spaces that are not necessarily proper4 but geodesic,
that is for every two points x, y there is an isometric image of [0, d(x, y)] joining x and y. We

4 A metric space is proper if all closed balls of finite diameter are compact.

123



258 M. Hamann

shall show that the geodesic hyperbolic spaces with their hyperbolic boundary are contractive
G-completions and hence, that the theorems of Sect. 2 are true for them.To obtain an overview
which basic properties of geodesic hyperbolic spaces are known, we refer to [2,27] and for
an introduction to proper geodesic hyperbolic spaces, we refer to [1,4,5,8,9,15]. Since we
deal with spaces that are not necessarily proper, we will cite from the first list and mainly
from [2]. Let us briefly recall the main definitions for hyperbolic spaces.

Let X be a metric space. The Gromov-product (x, y)o of x, y ∈ X with respect to the
base-point o ∈ X is defined as follows:

(x, y)o := 1
2 (d(o, x) + d(o, y) − d(x, y)) .

For δ ≥ 0, the space X is δ-hyperbolic if for given base-point o ∈ X we have

(x, y)o ≥ min{(x, z)o, (y, z)o} − δ

for all x, y, z ∈ X . A space is hyperbolic if it is δ-hyperbolic for some δ ≥ 0.
It is easy to show that the definition of being hyperbolic does not depend on o, that is, if

the space is δ-hyperbolic with respect to o ∈ X , then for o′ ∈ X there exists δ′ ≥ 0 such that
X is δ′-hyperbolic with respect to o′.

To define the completion X̂ of a geodesic hyperbolic space X , we define a further metric
on X . For this, let ε > 0 with ε′ = exp(εδ) − 1 <

√
2 − 1. For x, y ∈ X , let

�ε(x, y) =
{
exp(−ε(x, y)o) if x �= y,

0 otherwise.

Then

dε(x, y) = inf

{
n−1∑

i=1

�ε(xi , xi+1)|xi ∈ X, x1 = x, xn = y

}

for all x, y ∈ X defines a metric on X with

(1 − 2ε′)�ε(x, y) ≤ dε(x, y) ≤ �ε(x, y) (4)

for all x, y ∈ X , see e.g. [2, Theorem 2.2.7]. Let X̂ be the completion of the metric space
(X, dε) and let ∂X = X̂�X be the hyperbolic boundary of X . A subset S of X separates
two sets U, V ⊆ X̂ geodesically if every geodesic between a point of U and a point of V
intersects non-trivially with S.

Let A and B be two subsets of a metric space Y . We say that A lies δ-close to B for some
δ ≥ 0 if d(a, B) ≤ δ for all a ∈ A. A triangle xyz in a geodesic metric space Y is a union of
three geodesics—called sides of the triangle,—one between every two of the vertices x , y,
and z of the triangle. A triangle is δ-thin if any of its sides lies δ-close to the union of its other
two sides. Due to [2, Proposition 2.1.3], every triangle in a geodesic δ-hyperbolic space is
4δ-thin.

A useful property of the Gromov-product in geodesic hyperbolic spaces is the following:

Lemma 4.1 Let X be a geodesic δ-hyperbolic space and let x, y, z ∈ X. Then we have for
all geodesics π between y and z:

d(x, π) − 8δ ≤ (y, z)x ≤ d(x, π).

For a proof of Lemma 4.1 we refer to any introductory text on hyperbolic spaces, e.g. [8].
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We call a map ϕ : Y → Z between metric spaces quasi-isometric if there are γ ≥ 1 and
c ≥ 0 such that

1

γ
dY (y, y′) − c ≤ dZ (ϕ(y), ϕ(y′)) ≤ γ dY (y, y′) + c

for all y, y′ ∈ Y . A quasi-geodesic is the image of a quasi-isometric map ϕ : [0, r ] → Z with
r ∈ R≥0 and an infinite quasi-geodesic is the image of a quasi-isometric map ϕ : R≥0 → Z .

Equipped with these definitions we are able to prove that the hyperbolic completions of
geodesic hyperbolic spaces are contractive G-completions. The following lemma is similar
to [4, Lemme 2.2].

Lemma 4.2 Let X be a geodesic δ-hyperbolic space and let g ∈ Aut(X) with d(x, xg2) ≥
d(x, xg) + 8δ + γ for some γ > 0 and x ∈ X. Then there are two distinct boundary points
η, μ of X with (xgn)n∈N → η and (xg−n)n∈N → μ.

Furthermore, the map Z → {xgz |z ∈ Z}, z �→ xgz is quasi-isometric.

Proof Let us first show that the inequalities

m γ − γ ≤ d(x, xgm) ≤ m d(x, xg) (5)

hold for all m ∈ N. The second inequality is obvious by triangle-inequality, so we just have
to prove the first one. Let m ∈ N. Using the quadruple conditions for hyperbolic spaces (cp.
Section 2.4.1 and Proposition 2.1.3 in [2]) for the points x , xg, xg2, and xgm , we obtain

d(x, xg2) + d(xg, xgm) ≤ max{d(x, xg) + d(xg2, xgm), d(x, xgm) + d(xg, xg2)} + 8δ.

Hence, we have

max{d(x, xgm−2), d(x, xgm)} ≥ d(x, xg2) + d(x, xgm−1) − d(x, xg) − 8δ

≥ d(x, xgm−1) + γ. (6)

An easy induction using d(x, xg2) ≥ d(x, xg) + 8δ + γ and (6) shows

d(x, xgn+1) ≥ d(x, xgn) + γ

for all n ∈ N and hence, we have d(x, xgm) ≥ (m − 1)γ .
Due to (5), the map Z → X , z �→ xgz is quasi-isometric. So we conclude with Theorem

4.4.1 and Proposition 5.2.10 of [2] that {xgn |n ∈ N} and {xg−n |n ∈ N} converge to distinct
boundary points. �
Lemma 4.3 Let X be a geodesic δ-hyperbolic space and let x ∈ X. Let g, h ∈ Aut(X) such
that d(x, xg2) ≤ d(x, xg) + 8δ and d(x, xh2) ≤ d(x, xh) + 8δ and such that neither g
nor h satisfies the conclusions of Lemma 4.2. If there is a ball B with centre x and radius R
such that any geodesic between x and xgh intersects non-trivially with Bg and if we have
d(B ′, B ′g) > 8δ and d(B ′g, B ′gh) > 8δ for the ball B ′ with centre x and radius R + 16δ,
then

d(x, x(gh)2) > d(x, xgh) + 8δ.

Proof We consider the following points in X : x , xg, xh, xgh2, xg2h, and x(gh)2. If we can
show that xgh lies 16δ-close to any geodesic between x and x(gh)2, then this geodesic must
intersect non-trivially with B ′gh and we obtain

d(x, x(gh)2) ≥ 2d(x, xgh) − 2(R + 16δ) > d(x, xgh) + 8δ.
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Let us consider a geodesic between xg and xgh2. If it intersects non-trivially with B ′gh,
then we conclude

d(xg, xgh2) ≥ d(xg, xgh) + d(xgh, xgh2) − 2(R + 16δ) + 8δ > d(xg, xgh) + 8δ

and we apply Lemma 4.2 to obtain a contradiction to our assumptions. Hence, no such
geodesic intersects non-trivially with B ′gh. Similarly, if we consider any geodesic between
x and xg2, then we obtain that it does not intersect non-trivially with B ′g. So the same holds
for any geodesic between xh and xg2h with the ball B ′gh.

Since triangles are 4δ-thin, we obtain that [xh, xgh2] lies 16δ-close to
[xgh2, xg] ∪ [xg, x] ∪ [x, x(gh)2] ∪ [x(gh)2, xg2h] ∪ [xg2h, xh]

where the brackets denote any geodesic between the two points. As [xh, xgh2] intersects non-
trivially with Bgh by assumption, one of the other five geodesics intersects non-trivially with
B ′gh. We have already shown that this is neither [xgh2, xg] nor [xg2h, xh]. The geodesics
[xg, x] and [x(gh)2, xg2h] do not intersect non-trivially with Bgh, too, since Bg separates
x and xgh geodesically and since d(B ′g, B ′gh) > 8δ, and the same is true for Bg2h with
x(gh)2 and xgh. So [x, x(gh)2] intersects non-trivially with B ′gh and the assertion follows
as described above. �

Now we are able to deduce the following.

Proposition 4.4 Let X be a geodesic hyperbolic space and X̂ the completion of X with the
hyperbolic boundary. Then X̂ is a contractive Aut(X)-completion of X.

Proof Let X be δ-hyperbolic. By its definition, X̂ is a completion of X and from [2, Sec-
tion 2.2.3] we deduce that automorphisms of X extend to homeomorphisms of X̂ . As (X̂ , dε)

is a metric space, it is regular. Let (gi )i∈N be a sequence in Aut(X) such that d(x, xgi ) is
unbounded for some x ∈ X . We will show (C3). Let us consider closed balls Bi with centre
x and radius i . Either, for all i , all but finitely many xg j are not geodesically separated by Bi
or there are a ball Bi and k, � ∈ N such that Bi separates xgk and xg� geodesically and
d(Bi gk, Bi ) > 8δ and d(Bi g�, Bi ) > 8δ. In the first case, we obtain (xgk, xg�) → ∞ for
k, � → ∞ because of Lemma 4.1, so the sequence converges to some boundary point. In the
second case, either one of g−1

k and g� or due to Lemma 4.3 the automorphism g−1
k g� has the

desired limit points by Lemma 4.2. This shows (C3).
For the proof of (C4) let (gi )i∈N be a sequence in G such that for some x ∈ X and η ∈ ∂X

we have xgi → η for i → ∞ and such that {xg−1
i |i ∈ N} has no accumulation point in ∂X .

Notice that the convergence of the sequence (xgi )i∈N implies d(x, xgi ) → ∞ for i → ∞.
Analogously as in the proof of (C3), we find k, � ∈ N such that one of the automorphisms gk ,
g�, and gkg� satisfies the assumption of Lemma 4.2 and hence fulfills the conclusions of that
lemma. Furthermore, we find for each k, � ∈ N further integers k′, �′ ∈ N both larger than
k and � such that among gk′ , g�′ and gk′g�′ we find another automorphism that satisfies the
conclusions of Lemma 4.2. So we find an infinite sequence ( fi )i∈N of such automorphisms:
fi is either some gm or some gmgn and for i → ∞ also the indices m and n grow. Using
this sequence, we shall construct another sequence (hi )i∈N of automorphisms such that each
of the two sets {xhni |n ∈ N} and {xh−n

i |n ∈ N} has a limit point ηi and μi , respectively,
such that these two limit points are distinct and such that ηi → η for i → ∞. The first two
properties are also true for each fi and we will use that for the proof of the properties for the
hi .

Let us consider the open balls B1/n(η). For fn , there is a constant �n due to [2, Theo-

rem 1.3.2] such that any geodesic between x f −m
n and x f mn lies �n-close to {x f j

n || j | ≤ m}.
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As xgi → η for i → ∞, we find in such that the �n-ball B with centre xgin lies completely
in B1/n(η). Let hn = g−1

in
fngin . Since hn is conjugated to fn , the conclusions of Lemma 4.2

also hold for hn . Let us consider the two sets Q1 := {x f j
n | j ∈ N} and Q2 := {x f − j

n | j ∈ N}
and, for i = 1, 2, quasi-geodesics Ri that contain all elements of Qi and a geodesic between
any x f j

n and x f j+1
n . The ball B separates any q1 ∈ R1 from any q2 ∈ R2 geodesically by its

choice. Thus, one of the two quasi-geodesics, say Ri , has distance at least d(x, B)/2 to x .
As Ri is quasi-geodesic, it has a limit point ηn ∈ ∂X . Using 4δ-thin triangles z�(xgin )q� for
sequences (z�)�∈N in B1/n(η) and (q�)�∈N in Ri converging to η and ηn , respectively, we
obtain by Lemma 4.1

(z�, q�) ≥ d(x, π�) − 8δ = d(x, B)/2 − 12δ,

where π� is a geodesic between z� and q�. So due to (4), we know that the sequence (ηk)k∈N
converges to η. Notice that we might have to change some hi in the sequence (hi )i∈N to h−1

i
to obtain precisely the statement of (C4).

For the projectivity property, let (xi )i∈N be a sequence in X that converges to some η ∈ ∂X
and let (yi )i∈N be another sequence in X such that there is an M ≥ 0 with d(xi , yi ) ≤ M
for all i ∈ N. As (xi )i∈N converges to a boundary point, we have d(o, xi ) → ∞ and thus
also d(o, yi ) → ∞. This implies (xi , yi ) → ∞, so dε(xi , yi ) → 0. Hence, X̂ is a projective
G-completion.

To show contractivity, let (gi )i∈N be a sequence in Aut(X) such that for the base point
x ∈ X of the Gromov-product, the sequence (xgi )i∈N converges to η ∈ ∂X and (xg−1

i )i∈N
converges to μ ∈ ∂X . Let U and V be open neighbourhoods of η and μ, respectively. Then
there are θ > 0 and n0 ∈ N such that

{xgm |m ≥ n0} ∪ {η} ⊆ Bθ/3(xgn) and Bθ (xgn) ⊆ U

as well as

{xg−m |m ≥ n0} ∪ {μ} ⊆ Bθ/3(xg−n) and Bθ (xg−n) ⊆ V

for all n ≥ n0. Let y ∈ X�B2θ/3(xg−1
n0 ). Thenwe have dε(y, μ)≥ θ/3 and exp(−ε(xg−1

n , y))
≥ dε(xg−1

n , y) ≥ θ/3. We conclude

(xgn, ygn) = 1
2 (d(x, xgn) + d(x, ygn) − d(xgn, ygn))

= 1
2 (d(x, xgn) + d(x, ygn) − d(x, y))

= d(x, xgn) − (xg−1
n , y).

As d(x, xgn) → ∞ for n → ∞, we find n1 ∈ N such that we have

dε(xgn, ygn) ≤ �ε(xgn, ygn)

= exp(−εd(x, xgn) + ε(xg−1
n , y))

≤ exp(−εd(x, xgn) − log(θ/3))

< θ/3.

for all n ≥ n1. So ygn lies in Bθ/3(xgn) ⊆ U . Let ν ∈ ∂X�V . Then we can find a sequence
(yi )i∈N in X�B2θ/3(xg−n) that converges to ν. Since yi gn ∈ Bθ/3(xgn), we conclude that
νgn lies in Bθ (xgn). This shows contractivity and hence,we have shown that X̂ is a contractive
Aut(X)-completion. �

We directly obtain:
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Corollary 4.5 Let X be a geodesic hyperbolic space and X̂ the completion of X with its
hyperbolic boundary. Then the theorems of Sect. 2 hold for X̂ . �

5 Concluding remarks

Apart from the general investigation of groups acting on locally finite graphs or on proper
geodesic hyperbolic spaces, there are several more detailed investigations most of which take
either Theorem 2.8(ii) or Theorem 2.8(iv) as starting point and investigate these situations in
more detail: Möller [23] showed that locally finite graphs with infinitely many ends for which
a group of automorphisms acts transitively on the graph but fixes an end are quasi-isometric
to trees. The same result was obtained in [11] for arbitrary graphs with infinitely many ends.
Caprace et al. [3] showed an analogous result for locally finite hyperbolic graphs where the
fixed end is replaced by a fixed hyperbolic boundary point (the planar situation was settled
earlier in [7]).

In [18], Krön and Möller started with the situation of Theorem 2.8(iv) and showed that
if a group acts on a connected graph such that no vertex end is fixed by the group, then
the group has a free subgroup containing (except for the trivial element) only hyperbolic
automorphisms and the directions of these hyperbolic automorphisms are dense in the set of
all limit points of the group. In the same paper, they also mentioned that an analogous proof
holds for metric ends instead of vertex ends. The analogous statement also holds for proper
geodesic hyperbolic spaces, see [12].
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