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Abstract The split property expresses a strong form of independence of spacelike separated
regions in algebraic quantum field theory. In Minkowski spacetime, it can be proved under
hypotheses of nuclearity. An expository account is given of nuclearity and the split prop-
erty, and connections are drawn to the theory of quantum energy inequalities. In addition, a
recent proof of the split property for quantum field theory in curved spacetimes is outlined,
emphasising the essential ideas.
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1 Introduction

Special relativity entails that information and influences propagate at speeds no greater than
that of light, in order that causes precede effects according to all inertial clocks. Laborato-
ries in spacelike separated spacetime regions should therefore function independently. The
split property is an expression of this independence in the algebraic formulation of quan-
tum field theory [35] that is considerably deeper than the assumption of Einstein causality
(commutation of spacelike separated observables). One aim of this paper is to present a short
account of a recent extension of the split property to locally covariant quantum field theories
in curved spacetimes [27]. However, it is also intended to give an expository account of the
split property and its consequences, and also of the hypotheses of nuclearity under which the
split property was first proved in a general setting [10]. This serves both to make apparent
the significance of the split property, and also the physical circumstances in which it holds.
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Fig. 1 Three spacetime regions
in Minkowski space. Time runs
up the page, and rays travelling at
the speed of light have unit
gradient. Thus there is no
possibility of communication
between regions O2 and O3

O3O2 O1

Although much of the material in Sects. 2 and 3 reviews other works, the discussion of links
between nuclearity and quantum energy inequalities is based on results proved here for the
first time. The proof of our main results in curved spacetime (Sect. 4) is a streamlined and
extended version of arguments going back to Verch [53,54]. In fact, it provides a proof strat-
egy for a number of other results, including the Reeh–Schlieder property [48] and modular
nuclearity [41], and is therefore of independent interest.

2 The split property in Minkowski space

To begin, let us consider a configuration of three spacetime regions in Minkowski spacetime,
displayed in Fig. 1. Region O1 is contained within region O2, which is spacelike separated
from region O3. All three regions are supposed to be open and relatively compact. Spacelike
separation means that there are no causal curves with one endpoint in O2 and the other in
O3; in other words, there is no possibility of communication between them, if we assume the
basic precepts of special relativity, and it should be possible for experiments in O3 to take
place independently of those in region O2.

In a theory of local quantum physics [6,35], each of these regions Oi (and indeed, every
open relatively compact set) has a corresponding unital ∗-algebra R(Oi ) whose self-adjoint
elements correspond to observables that can, in principle, be measured by experiments con-
ducted within Oi . For our present discussion, the R(Oi ) will be von Neumann algebras,
concretely represented on a Hilbert spaceH , and sharing the Hilbert space identity operator
as their common unit. For the moment,H will not be assumed separable. As any experiment
conducted within O1 is a fortiori conducted within O2, we require R(O1) ⊂ R(O2). This
property is known as isotony.

How is the ‘experimental independence’ of regions O2 and O3 to be expressed mathe-
matically? This question is much more subtle and has many more potential answers than
one might first think (see [46,51,52]). A starting point is the requirement that measurements
can be made independently in O2 and O3. In elementary quantum mechanics one learns
that observables are independently measureable (commensurable) if and only if they com-
mute, so one should certainly require that the algebras for regions O2 and O3 commute
elementwise,

[R(O2),R(O3)] = 0, (1)

which is sometimes called Einstein causality1. However, experiments not only concern mea-
surements, but also involve a stage of preparation (corresponding to a choice of a state); what

1 Fermi fields, of course, anticommute at spacelike separation, and are excluded from the algebra of observ-
ables, though operators constructed from products of even numbers of Fermi fields qualify as observables.
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The split property for quantum 155

we need, then, is a way of describing the possibility for experimenters in spacelike separated
regions to make both preparations and measurements independently.

This is where the split property enters. It turns out to be important to ensure that the
regions in question do not touch at their boundaries, and therefore we switch attention to the
independence of regions O1, surrounded by a ‘collar region’ provided by O2, and O3. We
describe the inclusion R(O1) ⊂ R(O2) as split if there is a type I von Neumann factor N
such that

R(O1) ⊂ N ⊂ R(O2). (2)

Here, N is a factor if N ∩ N′ = C11, where the prime denotes the commutant, and the
designation as a ‘type I factor’ means that N is isomorphic as a von Neumann algebra to
the algebra B(K ) of bounded operators on a [not necessarily separable] Hilbert space K .
The split property requires that whenever O1 � O2, i.e., that the closure of O1 is compactly
contained in O2, then the inclusion R(O1) ⊂ R(O2) is split in this way. Returning to our
configuration in Fig. 1, the split property has the important consequence that R(O1) and
R(O3) are W ∗-statistically independent: for all normal states2 ϕ1 and ϕ3 on these algebras
there is a normal state ϕ on the von Neumann algebraR(O1) ∨R(O3) they generate so that

ϕ(AB) = ϕ1(A)ϕ3(B) A ∈ R(O1), B ∈ R(O3). (3)

This asserts that any pair of preparations made by the experimenters in regions O1 and O3

can be subsumed into a preparation of the system as a whole.
The proof of this statement is straightforward and illuminates some related issues. Because

N is a type I factor, there is a Hilbert space isomorphism U : H → K ⊗ K ′ such that
UNU−1 = B(K ) ⊗ 11K ′ (see, e.g., [2, III.1.5.3]). Owing to the inclusionR(O1) ⊂ N and
the fact that R(O3) ⊂ R(O1)

′, one finds

UR(O1)U
−1 ⊂ B(K ) ⊗ 11K ′ ,

UNU−1 = B(K ) ⊗ 11K ′ ,

UR(O3)U
−1 ⊂ 11K ⊗ B(K ′). (4)

We now have faithful normal representations πi of R(Oi ) with π1 acting on K and π3 on
K ′, so that

π1(A) ⊗ 11K ′ = U AU−1, 11K ⊗ π3(B) = UBU−1

for A ∈ R1(O), B ∈ R(O3). The unitary U clearly implements a spatial isomorphism of
R(O1) ∨R(O3) with the spatial tensor product π1(R(O1)) ⊗̄ π3(R(O3)) and, in particular,
the map AB 
→ A ⊗ B extends to an isomorphism of von Neumann algebras

R(O1) ∨ R(O3) ∼= R(O1) ⊗̄ R(O3). (5)

(In the converse direction, we note that if an isomorphism of this form exists and is spatial,
then the inclusion R(O1) ⊂ R(O3)

′ is split: simply define N using the second line of (4).)
Returning to the question of W ∗-statistical independence and representing the normal

states ϕi by density matrices ρi so that ϕi (X) = Tr ρi X , (X ∈ R(Oi )), we obtain density
matrices ρ̃1 on B(K ) and ρ̃3 on B(K ′) by the partial traces

Tr ρ̃1K = Tr ρ1U
−1(K ⊗ 11K ′)U, Tr ρ̃3K

′ = Tr ρ3U
−1(11K ⊗ K ′)U (6)

2 A normal state on a von Neumann algebra can be defined abstractly in terms of its continuity properties;
however, when the von Neumann algebra acts on a Hilbert space, the normal states are precisely those that
can be represented by density matrix states on the Hilbert space [5, Thm 2.4.21].
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156 C. J. Fewster

for K ∈ B(K ), K ′ ∈ B(K ′). Then the desired product state is ϕ(C) = Tr ρC with density
matrix

ρ = U−1 (ρ̃1 ⊗ ρ̃3)U. (7)

For, taking A ∈ R(O1) and B ∈ R(O3), and writing U AU−1 = Ã ⊗ 11K ′ , UBU−1 =
11K ⊗ B̃,

Tr ρAB = TrU−1 (ρ̃1 ⊗ ρ̃3)U AB = Tr (ρ̃1 ⊗ ρ̃3) Ã ⊗ B̃ =
(
Tr ρ̃1 Ã

) (
Tr ρ̃3 B̃

)

= (Tr ρ1A) (Tr ρ3B) . (8)

The idea that suitable inclusions of local algebras should split is due to Borchers, but the
first proof of the split property (already described as “an old conjecture of Borchers”) was
given in 1974 by Buchholz, in the particular case of the massive free scalar field [9]. There
matters rested for some time—an extension to the observable algebras for the Dirac and
Maxwell fields, as well as the massless scalar, was given five years later in [37], and a related
result for the field algebras of the massive free fermion fields was given by Summers [50] in
1982.3 There were then two breakthroughs. First, the theory of split inclusions were studied
in a deep paper of Doplicher and Longo [22], showing that the split property has numerous
important consequences, some of which will be discussed below; second, the development
of nuclearity criteria [16] permitted the proof of the split property for general models with
sufficiently good nuclearity properties [10]. This was a significant step, because nuclearity is
closely related to questions of thermodynamic stability [12,13,16] and so it became apparent
that – in keeping with Borchers’ conjecture—the split property should indeed be a feature of
suitably well-behaved quantum field theory models.

The nuclearity criterion used in [10] is defined as follows. First, let us recall that a linear
map between Banach spaces � : X → Y is said to be nuclear if there is a countable decom-
position�(·) = ∑

k �k(·)ψk whereψk ∈ Y and �k ∈ X ∗, such that the sum
∑

k ‖ψk‖ ‖�k‖ is
convergent. Under these circumstances, the nuclearity index ‖�‖1 is defined as the infimum
of the value of this sum over all possible decompositions.

Now let O be a nonempty open and bounded region of Minkowski spacetime, with asso-
ciated von Neumann algebra R(O). Denote the vacuum state vector by � ∈ H and the
Hamiltonian, generating time translations, by H , so that U (τ ) = ei Hτ satisfies

U (τ )R(O)U (τ )−1 = R(Oτ ), (9)

where Oτ is the translation of O under (t, x) 
→ (t + τ, x). The nuclearity criterion of [10]
is that for every O and β > 0, each map �O,β : R(O) → H given by

�O,β(A) = e−βH A� (10)

is nuclear and has nuclearity index obeying

‖�O,β‖1 ≤ e(β0/β)n (11)

as β → 0+, where the constants n > 0 and β0 > 0 may depend on O (but not β). The
physical understanding of these criteria is that ‖�O,β‖1 plays the role of a local partition
function and probes the state space available on given distance and energy scales; see Sect. 3

3 Einstein causality must be modified for field algebras of fermionic systems. If O2 and O3 are spacelike
separated, the corresponding field algebrasF(Oi ) obey a graded commutation relation in place of (1); however,
by introducing a suitable unitary twist map Z onH , and defining the twisted algebraFt (O3) = ZF(O3)Z

−1,
Einstein causality can be reformulated as [F(O2),F

t (O3)] = 0. Then the relevant form of the split property
is that the inclusion F(O1) ⊂ Ft (O3)

′ splits.
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The split property for quantum 157

for other aspects of the interpretation. Note that there is a variety of nuclearity conditions
(see [14] for discussion) some of which should be used with care [30]. Given this definition,
one has:

Theorem 2.1 ([10]) Suppose that the net of von Neumann algebras O 
→ R(O) obeys
isotony, that the Hamiltonian is nonnegative, with zero eigenspace spanned by �, and that
the above nuclearity criterion holds. Then for any open bounded regions with O1 � O2, the
inclusion R(O1) ⊂ R(O2) is split.

Let us now turn to the theory of standard split inclusions [22]. Consider von Neumann
algebras R1 and R2 acting on a Hilbert space H . A triple (R1,R2,�), where � ∈ H ,
is said to be a standard split inclusion ifR1 ⊂ R2 is split, and � is cyclic and separating for
each of R1, R2 and R2 ∧ R′

1 (and hence for their commutants). In the case where � is the
vacuum vector of a quantum field theory, the latter assumptions are met as a consequence
of the Reeh–Schlieder theorem [47]. A number of remarkable results are proved in [22]. For
instance (setting aside a trivial caseR2 = C11) one finds that both the von Neumann algebras
and the Hilbert space are substantially constrained: the Ri are properly infinite and have
separable preduals, while the Hilbert space H must be separable.

There is also a canonical choice of type I factor: becauseR1 ⊂ R2 is split, there is (cf. (5))
a von Neumann algebra isomorphism

φ : R1 ∨ R′
2 → R1 ⊗̄ R2

AB ′ 
→ A ⊗ B ′. (12)

As � is cyclic and separating for R1 ∨ R′
2 and � ⊗ � is cyclic and separating for

R1 ⊗̄R2 acting onH ⊗H , there is, by Tomita–Takesaki theory, a natural choice of unitary
U : H → H ⊗ H implementing φ, U AB ′U−1 = A ⊗ B ′ for all A ∈ R1, B ′ ∈ R′

2. Thus
we have

UR1U
−1 = R1 ⊗ 11H ,

UR′
2U

−1 = 11 ⊗ R′
2,

UR2U
−1 = B(H ) ⊗ R2, (13)

and N = U−1(B(H ) ⊗ 11H )U is the canonical choice of an intermediate type I factor.
An important physical application arises as follows. Suppose that there is a unitary group

representation G � g 
→ V (g) onH , acting so that V (g)Ri V (g)−1 = Ri for each i = 1, 2,
g ∈ G. Then, defining W (g) = U−1(V (g) ⊗ 11)U , we have a new unitary representation of
G acting on elements R1 ∨ R′

2 by

W (g)AB ′W (g)−1 = U−1(V (g) ⊗ 11)(A ⊗ B ′)(V (g)−1 ⊗ 11)U = V (g)AV (g)−1B ′ (14)

for A ∈ R1, B ′ ∈ R2. Moreover, W (g) ∈ U−1(B(H ) ⊗ 11)U ⊂ R2. In the context of a
quantum field theory obeying the split property, this corresponds immediately to the situation
in which G is a group of global gauge transformations, implemented by V (g). Given any
nested pair O1 � O2 one may then obtain a localised representation W (g) ∈ R(O2) which
agrees with V (g) on R(O1) but acts trivially on R(O2)

′. This again emphasises the way
in which the split property permits the physics of the inner region to be isolated from that
of the causal complement of the outer region. The generators of W (g) can be interpreted
as suitable smearings of a conserved local current associated to the global symmetry, thus
providing an abstract version of Noether’s theorem (note that there is no assumption that the
theory derives from a Lagrangian) [21].
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158 C. J. Fewster

There is an interesting result in the converse direction. Suppose R1 ⊂ R2, and that the
flip automorphism σ : A ⊗ B 
→ B ⊗ A of R1 ⊗ R1 is inner with respect to R2 ⊗ R2– i.e.,
σ agrees on R1 ⊗ R1 with AdU for some unitary U ∈ R2 ⊗ R2. Then one has

U (11 ⊗ AB ′)U−1 = U (11 ⊗ A)U−1U (11 ⊗ B ′)U−1 = A ⊗ B ′ (15)

for A ∈ R1, B ′ ∈ R′
2, where we use the fact that AdU implements the flip on R1 ⊗

R1 and (as U ∈ R2 ⊗ R2) acts trivially on 11 ⊗ B ′ ∈ R′
2 ⊗ R′

2. This establishes a von
Neumann algebra isomorphism R1 ∨ R′

2 → R1 ⊗̄ R′
2 extending AB ′ 
→ A ⊗ B ′. If,

in addition, there is a cyclic and separating vector for R′
1 ∧ R2, then one can establish a

spatial isomorphism between R1 ∨ R′
2 and π1(R1) ⊗̄ π2(R2), where the πi are faithful

normal representations of the Ri with cyclic and separating vectors. It follows that the
inclusion R1 ⊂ R2 is split (moreover, under these circumstances, if the inclusion is split,
then the flip is inner with respect to R2 ⊗ R2) [20,22]. Clearly, the essential point here is
that σ(1 ⊗ A) = A ⊗ 1, and the argument works for more general automorphisms than just
the flip.

D’Antoni and Longo used this idea in an ingenious proof of the split property for the
free scalar field. Let O 
→ R(O) be the net of von Neumann algebras of the free massive
scalar field on Minkowski space in the vacuum representation. Then O 
→ R(O) ⊗̄ R(O)

is the theory of two independent massive scalar fields, and has an internal SO(2) sym-
metry group that rotates the doublet of fields, with a rotation through π/2 precisely
inducing 11 ⊗ A 
→ A ⊗ 11. The gauge symmetry is associated with a Noether cur-
rent, and it is then shown that suitable local smearings of these currents in a region O2

generate a local implementation of the gauge symmetry on a smaller region O1 � O2

and acting trivially on R(O2)
′. The vacuum provides the cyclic and separating vec-

tor to permit the deduction that R(O1) ⊂ R(O2) is split. A similar idea has been
employed recently [42] to make a more explicit local implementation of the generators
of gauge symmetries – actually, a family of possible implementations are constructed,
with the ‘canonical’ implementation described above included as a special case. With
appropriate modifications, local implementations of geometric symmetries can also be con-
structed [11,17].

One of the most striking results to emerge from the body of work on the split prop-
erty concerns the type of the local von Neumann algebras [10]. In 1985, Fredenhagen
showed that, under the hypothesis of a scaling limit, local algebras are of type III1
(for brevity, we assume here for that the local algebras are factors). Combining this
with the split property and the Reeh–Schlieder theorem, and the assumption that any
R(O) may be generated as R(O) = ∨

k R(Ok) for some increasing chain of nested
sets Ok � Ok+1, one then has R(O) = ∨

k Nk for a sequence of nested type I fac-
tors. As the Hilbert space is separable, this leads to the conclusion that each R(O) is
a hyperfinite type III1 factor, thus fixing it uniquely up to isomorphism [36]. This is
a remarkable achievement, demonstrating that the distinction between different quantum
field theories lies in the relationships between local algebras, rather than the content of
those algebras per se. The timing of the results is also remarkable, with progress on
the QFT side at exactly the moment that the structural results on von Neumann algebras
appeared.

Finally, let us note that the split property plays a key role in the construction of certain
integrable quantumfieldmodels—see [40] for a review, and that the interpretative framework
of models described by funnels of type I factors has been investigated in [15].
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The split property for quantum 159

3 Nuclearity and quantum energy inequalities

The nuclearity criterion, while being physically well-motivated, is rather technical. In this
section we explain more about its physical status and draw some links to the theory of
quantum energy inequalities. For the purposes of illustration, we consider a class of theories,
consisting of countably many independent free scalar fields with masses mr (r ∈ N) in 4
spacetime dimensions—this may also be related to a particular generalised free field [22].
For simplicity, we assume that mr form a nondecreasing sequence and that there is a mass
gap, i.e., m1 > 0.

The models are constructed as follows. Each individual field has a Hilbert spaceFr which
is a copy of the symmetric Fock space over H = L2(R3, d3k/(2π)3), with vacuum vector
�r . The annihilation and creation operators obey

[ar (u),ar (v)] = 0, [ar (u),a∗
r (v)] = 〈u | v〉11Fr , (u, v ∈ H ) (16)

and ar (u)�r = 0 for all u ∈ H . The smeared quantum field is

r ( f ) := ar (Kr f̄ ) + ar (Kr f )
∗, (17)

where Kr : C∞
0 (R4) → H is defined by (Kr f )(k) = (2ωr )

−1/2 f̂ (ωr (k), k), with the
Fourier transform f̂ (k) = ∫

d4x eik·x f (x) and ωr (k) = (‖k‖2 + m2
r )

1/2. Here k is a
4-vector, and the · denotes the Lorentz contraction in the + − −− signature. For real-valued
f , the operators r ( f ) are essentially self-adjoint on a domain of finite particle vectors
and we use r ( f ) also to denote the closure. The local von Neumann algebras Rr (O) are
then generated by the Weyl operators exp(ir ( f )) as f runs over real-valued elements of
C∞
0 (O). The combined theory lives on the incomplete tensor product F = ⊗rFr relative

to � = ⊗r�r and the overall local algebras R(O) are formed by taking the weak closure in
F of the algebraic tensor product �rRr (O).

For these models, we may give necessary and sufficient criteria for nuclearity.

Proposition 3.1 Consider the theory of countably many scalar fields with mass gap.

(a) A necessary condition for the theory to obey the nuclearity criterion is that

F(β) :=
∑
r

e−4βmr

m2
r

(18)

should be finite for all β > 0, with log F(β) growing at most polynomially in β−1 as
β → 0+.

(b) A sufficient condition for the theory to obey the nuclearity criterion is that

G(β) :=
∑
r

e−βmr /4 (19)

should be finite for all β > 0 and grows only polynomially in β−1 as β → 0+.

Outline of the proof To begin, let us develop a lower bound on the nuclearity index follow-
ing [14, §2]. Suppose �O,β is nuclear with a decomposition of the form

∑
k �k(·)ψk , and

note that the operator norm obeys ‖�O,β‖ ≤ 1 by (10). Suppose further that one can find a
sequence Ar ∈ R(O) so that the �O,β(Ar ) are orthogonal inF , assuming without loss that
‖Ar‖ ≤ 1. Then
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160 C. J. Fewster

∑
r

‖�O,β(Ar )‖4 =
∑
r

∣∣∣∣∣
∑
k

�k(Ar )〈�O,β(Ar ) | ψk〉
∣∣∣∣∣
2

=
∥∥∥∥∥
∑
k

Bkψk

∥∥∥∥∥
2

≤
(∑

k

‖�k‖ ‖ψk‖
)2

(20)

using orthogonality and noting that Bk :=∑
r �k(Ar )‖�O,β(Ar )‖−1|�O,β(Ar )〉〈�O,β(Ar ) |

has norm ‖Bk‖ ≤ ‖�k‖, given our assumptions on the norms of Ar and �O,β . Considering
all possible decompositions, this shows that

∑
r

‖�O,β(Ar )‖4 ≤ ‖�O,β‖21. (21)

Fixing O , Buchholz and Porrmann [14] construct a sequence Ar inR(O), built fromWeyl
operators, so that the �O,β(Ar ) are orthogonal in F and ‖�O,β(Ar )‖4 ≥ Ce−4βmr /m2

r for
sufficiently large r . This establishes part (a).

On the other hand, we note that in the full theory the nuclear maps�O,β are simply tensor
products of the maps for each mr , and that the nuclearity index of the combined theory is
therefore bounded above by the product of the nuclearity indices of the individual theory. An
involved computation (see [16, §5] for the original version in a slightly different formulation
of nuclearity, or [1, §17.3] in the present version) furnishes an upper bound

∥∥�O,β

∥∥
1 ≤ exp

{
c
R3

β3

∑
r

∣∣∣ log(1 − e−βmr /2)

∣∣∣
}

(22)

if O is a diamond whose base is a ball of radius R > m−1
1 , and where c > 0 is a numerical

constant independent of r, β,mr . Using the fact that supx>0 xe
x/2| log(1− e−x )| < ∞, this

bound can be estimated above to give

‖�O,β‖1 ≤ exp

{
C

R3

m1β4

∑
r

e−βmr /4

}
(23)

and part (b) is thereby proved. ��
In particular, one sees that the mass spectrum

mr = (2d0)
−1 log(r + 1) (24)

for fixed d0 > 0 is inconsistent with nuclearity, because F(β) is infinite for β < 1
2d0, while

a mass spectrum mr = rm1 is easily seen to satisfy the sufficient condition for nuclearity.
More insight is obtained by defining the counting function

N (u) =
∑
r

ϑ(u − mr ) (25)

of fields with mass below u, for we have

G(β) =
∫ ∞

0
e−βu/4dN (u) = β

4

∫ ∞

0
e−βu/4N (u) du. (26)

Thus by a direct computation, polynomial boundedness of N (u) as u → ∞ is sufficient
for nuclearity. Note that the example given by (24) corresponds to an exponentially growing
counting function. On the other hand, if nuclearity holds then we have

∑
r e

−βmr /2/m2
r ≤
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The split property for quantum 161

e(β0/β)n as β → 0+ (we have absorbed some constants into β0, but the value of n is as in the
nuclearity criterion (11)). Thus

∑
r

e−βmr =
∑
r

m2
r e

−βmr /2 e
−βmr /2

m2
r

≤ A

β2 e
(β0/β)n (27)

as β → 0+ for some A > 0 and therefore

N (v) ≤
∑
r

eβ(v−mr ) ≤ A

β2 e
(β0/β)n+βv (28)

for any v, β > 0. We are free to optimise the right-hand side by choice of β.4 An exact
minimisation of the right-hand side over β is awkward, but we may certainly substitute
β = β

n/(n+1)
0 (n/v)1/(n+1) [which minimises the exponential factor] yielding

N (v) ≤ Bv2/(n+1)eCvn/(n+1)
(29)

for positive constants B and C . Therefore, nuclearity implies a sub-exponential growth in N ,
and is implied by polynomial growth.

It is important to understand that the criteria just given are correlated with physical
properties. For example, Buchholz and Junglas [12] showed that convergence of the sum∑

n e
−βmn/2 is sufficient for the thermal equilibrium state ωβ at inverse temperature β to

be locally normal5 to the vacuum state; on the other hand, if ωβ is locally normal, then∑
n e

−2βmn converges. Therefore, local normality for all β > 0 is equivalent to finiteness
of F(β), which indicates a link between nuclearity criteria and the good thermodynamic
behaviour. This suggestion was made precise in the general context, also by Buchholz and
Junglas [13].

Theories inwhich F(β)diverges for sufficiently smallβ have interestingbehaviour relative
to the split property. For example, the mass spectrum (24) produces a theory in which one
has split inclusions of R(O1) ⊂ R(O2) only when O2 is sufficiently larger than O1: the so-
called distal split property. To be precise, consider the case where Oi (i = 1, 2) are Cauchy
developments of concentric open balls with radii ri lying in a common spacelike hyperplane.
Then one defines a splitting distance d(r1) to be the infimum of r > 0 for which (2) holds
with r2 = r + r1. In the model (24) it can be shown [18, Thm 4.3] that the splitting distance
obeys d0 ≤ d(r) ≤ 2d0 for all r > 0. Thus the inverse splitting distance is d(r)−1 of the
same order as the maximum temperature for which locally normal equilibrium states exist.

A second (and more quantitative) illustration of the significance of nuclearity criteria is
provided by quantum energy inequalities (QEIs). In classical field theory, the models typi-
cally studied have everywhere nonnegative energy densities according to inertial observers.
By contrast, no quantum field theory obeying the standard assumptions can admit an energy
density with nonnegative expectation values in all physical states (and vanishing in the vac-
uum state) [23]. However, as first suggested by Ford [33], the extent to which energy densities
can remain negative turns out to be constrained by bounds—the quantum energy inequalities
– in a number of models (see [25,26] for reviews). For instance, the (Wick ordered) energy
density ρm for a single free scalar field of mass m obeys a lower bound

∫
〈� | ρm(t, x)�〉|g(t)|2 dt ≥ −C

∫ ∞

m
ud |ĝ(u)|2 du (30)

4 This is a well-known technique in the theory of Tauberian estimates of sums and integrals, see e.g., [44].
5 That is, its restriction to any local von Neumann algebra (in the vacuum representation) of a relatively
compact region is normal.
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for all normalised Hadamard vector states �, where g ∈ C∞
0 (R) and the constant C depends

on the spacetime dimension d , but not onm, g or� [24,28].6 The convergence of the integral
follows because ĝ(u) decays faster than any inverse power. Therefore, the combined energy
density ρ of the theory with countably many fields obeys

∫
〈� | ρ(t, x)�〉|g(t)|2 dt ≥ −C

∫ ∞

0
ud N (u)|ĝ(u)|2 du, (31)

where N is defined in (25) and � is any state in the space S of finite linear combinations of
tensor product states

⊗
j ψ j in which all but finitely many of the ψ j are in the vacuum state

(for massm j ) and so that theψ j are all Hadamard. Thus a theory in which N has polynomial
growth (hence obeying nuclearity) produces a well-behaved QEI, with a finite lower bound
for any g ∈ C∞

0 (R). On the other hand, if N grows exponentially (so the theory fails to
obey nuclearity) then the bound is divergent for every nontrivial g ∈ C∞

0 (R).7 Moreover,
specialising to d = 4, the following result is proved in the Appendix.

Theorem 3.2 Let m0 ≥ 0 be fixed. Suppose that f ∈ C∞
0 (R) is nonnegative, even, and has a

Fourier transform (which is necessarily real and even) that is also nonnegative and bounded
from below on [m0,∞)

f̂ (u) ≥ ϕ(|u|), (32)

where ϕ : [m0,∞) → R
+ is monotone decreasing. Then the Klein–Gordon field of mass

m > m0 admits a Hadamard state, given by a normalised Fock-space vector �m, such that
∫

〈�m | ρm(t, 0)�m〉 f (t) dt ≤ −�m4ϕ(2
√
2m)2, (33)

with a constant � > 0 that depends neither on m nor ϕ.

Returning to our model of countably many fields, we deduce that

inf
�∈S‖�‖=1

∫
〈� | ρ(t, 0)�〉 f (t) dt ≤ −�

∑
r

m4
rϕ(2

√
2mr )

2, (34)

assuming for simplicity thatm1 > m0. Noting that the rescaled function fλ(t) = λ−1 f (t/λ)

obeys (32) with ϕ(|u|) replaced by ϕ(λ|u|) and m0 by m0/λ, the existence of a QEI for this
model then implies the convergence of

∑
r m

4
rϕ(2

√
2λmr )

2 for all λ > 0.
This observation produces a link betweenQEIs, thermal stability and nuclearity. To do this,

we first construct some test functions obeying the hypotheses of Theorem 3.2. Observe that
if χ ∈ C∞

0 (R) is even and nonnegative, then the convolution η = χ � χ is even, nonnegative
and has nonnegative Fourier transform. Choose β0 > 0 and define

f (t) = β0η(t)

π(t2 + β2
0 )

, (35)

assuming without loss that
∫

f (t) dt = 1. Then, for any u > 0,

f̂ (u) =
∫ ∞

−∞
du′

2π
η̂(u′)e−β0|u−u′| ≥ e−β0u

∫ 0

−∞
du′

2π
η̂(u′)eβ0u′

(36)

so–as f̂ is even–we conclude that f̂ (u) ≥ κe−β0|u| for some positive constant κ .

6 Much more general results are obtained in [24]. The Fourier transform is defined here by ĝ(u) =∫
dt e−iut g(t).

7 If the transform ĝ decays exponentially then g extends to an analytic function in a neighbourhood of the
real axis; as g is compactly supported, it would then follow that g ≡ 0.
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Theorem 3.3 Let f ∈ C∞
0 (R) be a fixed test function obeying the hypotheses of Theorem 3.2

with ϕ(u) = κe−β0u (for some κ, β0 > 0) and define fλ(t) = λ−1 f (t/λ). Consider the
vacuum representation of the theory of countably many independent scalar fields with a
mass gap and suppose it satisfies a QEI bound

inf
�∈S‖�‖=1

∫
〈� | ρ(t, x)�〉 fλ(t) dt ≥ −Q(λ) > −∞ (37)

for all λ > 0. Then the thermal equilibrium states of the theory are locally normal at all
temperatures. Furthermore, if Q obeys a polynomial scaling bound Q(λ) ≤ Cλ−n for some
C, n > 0 then the theory fulfils the nuclearity criterion and hence has the split property.

Proof The existence of a QEI for this model implies the convergence of
∑

r m
4
r e

−4
√
2βmr ,

and hence
∑

r e
−4

√
2βmr , for all β > 0; moreover, the scaling bound on Q(λ) as λ → 0+

immediately implies an inverse polynomial scaling bound on the function G(β) as β → 0+.
Thus, the nuclearity criterion holds and the split property follows by Theorem 2.1. ��

We remark that this result uses only rather minimal information on the mass spectrum
derived from the existence ofQEIs for test functions decayingmore slowly than exponentially.
Onemay also construct compactly supported test functionswithmore finely controlled decay:
moderately explicit examples of smooth, even, everywhere positive functions of compact
support f with transforms obeying

f̂ (u) = κe−γ |u|α + O

(
e−γ |u|α

|u|1−α

)
, (38)

on u �= 0, where κ, γ > 0 and 0 < α < 1 are given in [29, §II]; an older but less explicit
construction of such functions appears in [38]. For the theory to obey a finite QEI for all such
test functions, it is necessary that

∑
r m

4
r e

−(βmr )
α

< ∞ for all β > 0 and 0 < α < 1.
Connections between QEIs and thermal stability have been studied before. Indeed, argu-

ments based on the second law of thermodynamics underlay Ford’s original intuition that
QFT might obey QEI-type bounds [33]. In an abstract setting [31], it was shown that the
existence of QEIs entailed the existence of passive states, thereby proving that the second
law of thermodynamics holds. The fact that QEIs with polynomial scaling implies nuclearity
was stated without proof in [25]. By way of a converse, we give the following:

Theorem 3.4 If the theory of countably many scalar fields with mass gap satisfies the
nuclearity criterion (11) one has a QEI bound of the form (31) for all g ∈ C∞

0 (R) such
that ĝ(u) = O(e−γ |u|α ) for any α > n/(n + 1) and γ > 0 (or with α = n/(n + 1) and
sufficiently large γ ).

Proof We have already shown that N (v) ≤ Bv2/(n+1)eCvn/(n+1)
for positive constants B and

C . Substituting into (31), the QEI bound is finite for all g ∈ C∞
0 (R) meeting the hypotheses.

��
Note that the conditions on ĝ become more stringent as n increases (as one would expect),

but nonetheless, the result is nonempty for any n > 0. As the upper bound (29) on N (u)

arising from nuclearity is rather weak, it seems reasonable to conjecture that nuclearity for
such models implies the existence of a QEI for a wide class of test functions, with scaling
behaviour not much worse than polynomial.
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Do all theories obeying nuclearity satisfy QEIs (or, even more, QEIs with good scaling
behaviour)? One problem with this is that there are arguments suggesting that QEIs do
not hold for general interacting theories in the form we have stated [45]. Allowing for a
lower bound that depends on the overall energy scale of the state (but less strongly than any
possible upper bound) one can establish results analogous to QEIs for ‘classically positive’
observables in a model independent setting [4]. One drawback to those results, however, is
that it has not yet been possible to show that the energy density is classically positive in
general theories.

Summarising this section: we have explained how nuclearity criteria are related both to
good thermodynamic behaviour and also to the QEIs. The connection with QEIs is cur-
rently restricted to models consisting of countably many independent free fields; however
the circumstantial evidence for a more general result seems strong.

4 The split property in curved spacetime

The previous sections have described the split property, and the related nuclearity criterion, in
flat spacetime. Here, we turn to the question of what can be said in curved spacetimes. While
the split property can be stated in much the same way in curved spacetimes as in flat, the
same is not true of nuclearity because general curved spacetimes do not admit time-translation
symmetries and therefore possess no Hamiltonian.

In the first instance, then, we restrict to ultrastatic spacetimes. Let (�, h) be a complete
Riemannian metric space, assumed connected. Then the manifold R × � equipped with
Lorentz-signature metric

g = dt ⊗ dt − pr∗� h (39)

and time-orientation chosen so that t increases to the future, is by definition an ultrastatic
spacetime.Moreover, the spacetime is globally hyperbolic [39, Prop. 5.2]: it admits no closed
timelike curves, and every set of the form J+(p)∩ J−(q) is compact, where J+/−(p) is the
set of points that can be reached by future/past-directed smooth causal curves starting from
p.

Let us assume that a net of local von Neumann algebras, acting on a Hilbert space H ,
has been associated to this spacetime, and that the geometrical time-translation symmetry
(t, σ ) 
→ (t + τ, σ ) is implemented by a unitary groupU (τ ) = ei Hτ , where the generator H
is a positive unbounded operator with a one-dimensional kernel spanned by a vector�. In this
setting, one can formulate nuclearity criteria just as in Minkowski space, and derive the split
property as a consequence by [1, Prop. 17.1.4] (which is an abstract version of [10]). This
strategy was adopted by Verch [54] in the case of the free Klein–Gordon field on ultrastatic
spacetimes, and somewhat later by D’Antoni and Hollands for Dirac fields [19].

As already mentioned, one cannot pursue this strategy in general spacetimes. Instead one
proceeds indirectly by deforming spacetimes in which the split property is known to hold
into others, in such a way that the split property is preserved. This approach was used by
Verch in [54] for the specific case of the Klein–Gordon field, but has even older antecedents
in other contexts [34].

We will present a modern, general and streamlined version of this argument, based on
[27], to which the reader is referred for the full details. The general framework used is that
of locally covariant quantum field theory [8] (see [32] for a recent expository review). The
geometric aspects are as follows. Fixing a spacetime dimension d ≥ 2,we define a category of
spacetimes Loc, whose objects are globally hyperbolic spacetimes of dimension d , equipped
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S1 T1

T2S2

Fig. 2 Regular Cauchy pairs with (S1, T1) ≺M (S2, T2)

with orientation and time-orientation and typically denoted M, N etc. The morphisms in this
category are smooth isometric embeddings, preserving orientation and time-orientation and
having causally convex images—that is, every causal curve joining points in the image lies
entirely within it. If the image of ψ : M → N contains a Cauchy surface of N , ψ is called
a Cauchy morphism.

We also introduce the following terminology:

Definition 4.1 A regular Cauchy pair (S, T ) in M ∈ Loc is an ordered pair of nonempty,
open, relatively compact subsets of a common smooth spacelike Cauchy surface in which T
has nonempty complement, and so that S ⊂ T . There is a preorder on regular Cauchy pairs
in M defined so that (S1, T1) ≺M (S2, T2) if and only if S2 ⊂ DM(S1) and T1 ⊂ DM(T2).

Here, DM(S) is the Cauchy development of S in M—all points p in M such that every inex-
tendible piecewise-smooth causal curve through p intersects S. The preordering is illustrated
in Fig. 2.

Regular Cauchy pairs have important stability properties [27, Lem. 2.4]: if ψ : M → N
is Cauchy, then (S, T ) is a regular Cauchy pair in M if and only if (ψ(S), ψ(T )) is a regular
Cauchy pair in N and ψ(T ) ⊂ ψ(M). Furthermore, in all ‘sufficiently nearby’ Cauchy
surfaces to one containing (S, T ), there are regular Cauchy pairs preceding and preceded by
(S, T ) in the preorder. (See [27, Lem. 2.6] for the precise details andmore general statements.)

Locally covariant QFT provides an axiomatic framework for quantum field theory on
curved spacetimes and has led to a number of interesting developments, as described in [32].
The first assumption is:

Functoriality A theory is a covariant functor A : Loc → C∗-Alg from Loc to the category
C∗-Alg of unital C∗-algebras and injective unit-preserving ∗-homomorphisms.
Thus, to each spacetime M there is an object A (M) of C∗-Alg and to every morphism
between spacetimes ψ : M → N there is a C∗-Alg-morphism A (ψ) : A (M) → A (N)

such that A (idM) = idA (M) and A (φ ◦ ψ) = A (φ) ◦ A (ψ). Given this, we may define a
kinematic net in each M ∈ Loc indexed by nonempty open causally convex subsets,

O 
→ A kin(M; O) := A (ιO )(A (M|O)). (40)

Here M|O is the region O , equipped with the causal structures inherited from M, and
regarded as a spacetime (i.e., an object of Loc) in its own right, and ιO is the inclusion map,
which becomes a morphism ιO : M|O → M (see Fig. 3). The kinematic net is automatically
isotonous, owing to the functorial nature of A : if O1 ⊂ O2 then ιO1 factors through ιO2 and
hence A kin(M; O1) ⊂ A kin(M; O2). The other assumptions we make can now be stated.
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Fig. 3 Illustration of the objects
involved in defining the
kinematic net

Einstein causality If Oi ⊂ M are spacelike separated then

[A kin(M; O1),A
kin(M; O2)] = 0. (41)

Timeslice A maps Cauchy morphisms to C∗-Alg-isomorphisms.

The split property The algebras produced by A are abstract C∗-algebras. However, any
state ω onA (M) induces a corresponding GNS representation (H , π,�) such that ω(A) =
〈� | π(A)�〉 for all A ∈ A (M). Passing to the representation and taking weak closures, we
obtain a net of von Neumann algebras O 
→ π(A kin(M; O))′′ associated to A , M and ω.
This is the setting in which the split property may be defined.

Definition 4.2 Let A : Loc → C∗-Alg be a locally covariant QFT and M ∈ Loc. A state ω

onA (M) has the split property for a regular Cauchy pair (S, T ) if, in its GNS representation
(H , π,�), there is a type-I factor N such that

RS ⊂ N ⊂ RT , (42)

where RU = π(A kin(M; DM(U )))′′ for U = S, T .

Apart from the use of regions based on regular Cauchy pairs, this is essentially the same
formulation as used in Minkowski space. The present approach allows us to establish a key
inheritance property [27, Remark 3.2]. Suppose that ω is split for (S, T ). Then if (S̃, T̃ ) is
some other Cauchy pair in M with (S, T ) ≺M (S̃, T̃ ), we have S̃ ⊂ DM(S), T ⊂ DM(T̃ ),
so also

DM(S̃) ⊂ DM(S), DM(T̃ ) ⊂ DM(T ). (43)

Hence by isotony, R S̃ ⊂ RS ⊂ N ⊂ RT ⊂ RT̃ , so ω is split for (S̃, T̃ ). Moreover, the split
property is also stable under Cauchy morphisms:

Lemma 4.3 Suppose ψ : M → N is a Cauchy morphism and let ωM , ωN be a states on
A (M),A (N). ThenωN is split for (ψ(S), ψ(T )) if and only ifA (ψ)∗ωN is split for (S, T ).
Consequently, asA (ψ) is an isomorphism,ωM is split for (S, T ) if and only if (A (ψ)−1)∗ωM
is split for (ψ(S), ψ(T )).

Proof ωN andA (ψ)∗ωN have unitarily equivalent GNS representations and the split inclu-
sion is preserved because the type-I property and factor properties are stable. ��

The main result is:

Theorem 4.4 (Rigidity of the split property [27, Thm 3.4]) Suppose that A is a locally
covariant QFT, M, N ∈ Loc have oriented-diffeomorphic Cauchy surfaces, and ωN is a
state on A (N) that is split for all regular Cauchy pairs in N .

Given any regular Cauchy pair (SM , TM) in M, there is a chain of Cauchy morphisms
between M and N inducing an isomorphism ν : A (M) → A (N) such that ν∗ωN has the
split property for (SM , TM).
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Fig. 4 The chain of Cauchy morphisms in the proof of Theorem 4.4

Outline of Proof First, because M and N have Cauchy surfaces related by an orientation-
preserving diffeomorphism, we may assume without loss that both spacetimes have common
underlying manifold R × �, with the tangent vector to the first factor being future-directed
timelike, and so that �M = {τM} × � for some τM ∈ R. The next step is to construct a
globally hyperbolic metric onR×� that interpolates between that of M, with which it agrees
on (−∞, τ1)×� and that of N , with which it agrees on (τ2,∞)×�, where τM < τ1 < τ2.
This also has to be arranged so that for some τ∗ ∈ (τ1, τ2) and τN > τ2 there are regular
Cauchy pairs (S∗, T∗) and (SN , TN ) lying in�∗ = {τ∗}×� and�N = {τN }×� respectively,
so that

(SN , TN ) ≺I (S∗, T∗) ≺I (SM , TM), (44)

where I is the spacetime defined by the interpolatingmetric. Defining P = M|(−∞,τ1)×� and
F = N|(τ2,∞)×� , it is clear that the obvious inclusions induce a chain of Cauchy mophisms
as illustrated in Fig. 4.

The inheritance and timeslice properties now allows us to pass the split property along
the chain, as follows: ωN is split for (SN , TN ), so therefore

• by timeslice ωF = A (δ)∗ωN is split for (SN , TN ) (regarded as a regular Cauchy pair in
F)

• by timeslice ωI = (A (γ )−1)∗ωF is split for (SN , TN ) in I
• by inheritance, ωI is split for (S∗, T∗) and hence (SM , TM) in I
• by timeslice ωP = A (β)∗ωI is split for (SM , TM) in P
• by timeslice ωM = (A (α)−1)∗ωP is split for (SM , TM) in M,

and the theorem is proved with ν = A (δ)A (γ )−1A (β)A (α)−1. ��
Now consider an arbitrary globally hyperbolic spacetime M ∈ Loc. Choose any smooth

spacelike Cauchy surface� of M with an induced orientation o (so that t∧o is positively ori-
ented for any future-pointed timelike one-form t), and endow� with a complete Riemannian
metric h [43]. Then one obtains an ultrastatic spacetime N with metric (39) that is also an
object of Loc and clearly has smooth spacelike Cauchy surfaces oriented-diffeomorphic to
those of M. Together with Theorem 4.4 this shows that the problem of establishing a split
property in M [in the sense that, for any regular Cauchy pair, there exists a state for which
the inclusion is split] can be reduced to the ultrastatic case, for which nuclearity criteria can
be employed (and have been proved in certain models [19,54]).

Theorem 4.4 can be extended in various ways. For example, one may construct states
that are split for finitely many regular Cauchy pairs lying in a common Cauchy surface.
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Again, suppose that the theory has a state space S obeying the timeslice property; that
is, an assignment to each M ∈ Loc of a subset S (M) of states on A (M) subject to the
contravariance requirement

A (ψ)∗S (N) ⊂ S (N) (45)

for each morphism ψ : M → N , with equality if ψ is Cauchy, and also the requirement
that each S (M) be closed under convex combinations and operations induced by A (M).
Suppose further thatS (N) contains a stateωN that is split for all regular Cauchy pairs. Then
the state ωM constructed by the theorem belongs toS (M) because ν is formed from Cauchy
morphisms. Furthermore, ifS obeys a condition of local quasiequivalence, one may deduce
in addition that every state in S (M) is split for all regular Cauchy pairs in M and also for
any pair of regions Oi ∈ O(M) such that

O1 ⊂ DM(S) DM(T ) ⊂ O2 (46)

for a regular Cauchy pair (S, T ). Details appear in [27].

(Partial) Reeh–Schlieder property It should be clear that the proof of Theorem 4.4 depends
on only a few ideas: the formulation in terms of regular Cauchy pairs, and the inheritance
and timeslice properties. Similar arguments apply to other properties of quantum field theory
(a key theme of [32] is the utility of this and related rigidity arguments). In particular, one
obtains a streamlined version of Sanders’ results on Reeh–Schlieder properties [48].

Definition 4.5 Let A : Loc → C∗-Alg be a locally covariant QFT and M ∈ Loc. A state ω

on A (M) has the Reeh–Schlieder property for a regular Cauchy pair (S, T ) if, in the GNS
representation (H , π,�), � is cyclic for RS and separating for RT .

That is, vectors of the form A� (A ∈ RS) are dense inH , and no B ∈ RT can annihilate
�. Note that the state is not assumed to be cyclic for all local algebras, so one might refer to
this as a partial Reeh–Schlieder property, by comparison with the original Minkowski-space
result [47]. Our definition obeys an inheritance rule like that of the split property, but with a
reversed ordering: if ω is Reeh–Schlieder for (S, T ) in M, then it is also Reeh–Schlieder for
every (S̃, T̃ ) with

(S̃, T̃ ) ≺M (S, T ) (47)

simply because the separating property is inherited by subalgebras and cyclicity by algebras
containing the given one. One can also prove that our definition is stable with respect to the
timeslice condition, and this easily establishes:

Theorem 4.6 (Rigidity of Reeh–Schlieder [27, Thm 3.11], cf. [48]) Suppose that A is a
locally covariant QFT, M, N ∈ Loc have oriented-diffeomorphic Cauchy surfaces, and ωN
is a state on A (N) that is Reeh–Schlieder for all regular Cauchy pairs.

Given any regular Cauchy pair (SM , TM) in M, there is a chain of Cauchy morphisms
between M and N inducing an isomorphism ν : A (M) → A (N) such that ν∗ωN has the
Reeh–Schlieder property for (SM , TM).

Proof Invert the argument for the split property, replacing ≺ by �. ��
As with the split property, the above Reeh–Schlieder property in general spacetimes can

now be traced to the ultrastatic case. Here, one can give a tube condition (satisfied in gen-
eral Wightman theories in Minkowski space [3] and in particular linear models in curved
spacetimes [49]) that implies that ground states obey the full Reeh–Schlieder property. Thus
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the (partial) Reeh–Schlieder property becomes a reasonable expectation in general locally
covariant theories. Our result admits various extensions, of which the most important is that
the proofs of the split and Reeh–Schlieder results may be combined to yield states that are
both Reeh–Schlieder and split for (finitely many) regular Cauchy pairs in a common Cauchy
surface. Consequently, given any regular Cauchy pair (S, T ) onemay find a stateωwith GNS
vector � so that (RS,RT ,�) is a standard split inclusion, leading to applications analogous
to those described in Sect. 2. Finally, let us mention that a slightly different definition of the
split property has been studied in [7] and used to discuss the tensorial structure of locally
covariant theories.

Distal split Suppose we have a locally covariant theory A with state space S . In
d-dimensional Minkowski spacetime M, we define the splitting distance of S ⊂ R

d−1

by
d(S) = inf{ρ > 0 : (S, B(S, ρ)) is split for some state in S (M)}, (48)

where B(S, ρ) is the open Euclidean ball of radius ρ about S. If d(S) is finite but nonzero
we say that the distal split property holds. It is of interest to understand what happens
to such models in the locally covariant setting, assuming that the state space obeys local
quasiequivalence. Suppressing some ε’s (see [27, §3.4] for the precise statements and proof)
one has the following. If f ∈ Diff(Rd−1) with uniformly bounded derivatives, and r >

d( f (S)), then
d(S) ≤ inf{ρ > 0 : B( f (S), r) ⊂ f (B(S, ρ))} (49)

and hence
d(S) ≤ κd( f (S)), (50)

where κ is the supremum of the norm of the derivative ‖D( f −1)‖ over B( f (S), r) \ f (S).
As a first example, taking f (x) = x/λ implies that d(λS) ≤ λd(S) and hence the

existence of a uniform splitting distance (d(S) = d0 ≥ 0 for all S) actually implies the split
property (d0 = 0). Of course, what this means is that models such as that of [18, Thm 4.3]
given in (24) cannot be compatible with all the hypotheses required – one might well suspect
that local quasiequivalence and/or the timeslice property become problematic.

For a second example, let S be an open ball and design f ∈ Diff(Rd−1)with the properties
that f (S) = S and B(S, d(S)) ⊂ f (B(S, 1

2d(S))), and so that f acts trivially outside a
compact set. Then (again suppressing ε’s) one obtains

d(S) ≤ 1

2
d(S), (51)

and hence the only possible splitting distances are 0 or ∞. This proves a stronger result that
the distal split property implies the split property (at least for sets diffeomorphic to balls),
given our other hypotheses.

The proof of (49) takes its inspiration from cosmological inflation (see Fig. 5). Let S1
be an open bounded subset in a constant time hypersurface and let T1 = B(S1, r) where
r > d(S1), so that some state is split for (S2, T2). Then we may infer that the state is split for
suitable regular Cauchy pairs lying in a constant time hypersurface to the past. In the left-hand
half of Fig. 5 we illustrate the situation in Minkowski space: S2 is has a smaller diameter
than S1 while T2 has a larger diameter than T1, so this argument (not very helpfully) gives an
upper bound on d(S2) that is larger than d(S1). In the right-half of the figure, however, we
imagine that the metric undergoes a period of inflation between the regions around the two
hypersurfaces and outside the Minkowski D(S1)). If we arrange matters so that T2 fits within
a ball of radius κr diam(S2)/ diam(S1) for κ < 1 then we obtain a tighter bound on d(S2)
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Fig. 5 Illustration of the ‘inflationary’ proof of the distal split bound

than r is on d(S1). The ε’s suppressed in our discussion relate to the spreading of lightcones
(at the Minkowski speed of light) which can be made arbitrarily small by considering nearby
hypersurfaces.

Actually, there is some physics to go alongside what would otherwise appear to be a
geometric trick. As described earlier, nonzero splitting distances are associated with the
existence of a critical temperature, above which the thermal equilibrium states are no longer
locally quasiequivalent to the vacuum. On the other hand, inflation cools temperature (to the
future); conversely, one could expect that some states of subcritical temperature near the later
hypersurface have supercritical temperatures at the earlier one. This leads to a contradiction
between the assumptions of the timeslice axiom and local quasiequivalence.

5 Concluding remarks

It is hoped that this paper has explained the physical significance of the split and nuclearity
properties, and also explained—in the context of the split and Reeh–Schlieder properties—
a general proof strategy for establishing structural properties of locally covariant quantum
field theories. As a further example, we mention that Lechner and Sanders have recently
applied the machinery of regular Cauchy pairs in their proof of modular nuclearity [41].
We have sketched links with the theory of QEIs, which require further investigation. At
first sight, the split and nuclearity properties might not seem to have much in common with
each other, or with the QEIs. But in fact, all three can be viewed as expressions of the
uncertainty principle: this is most obvious in the case of the QEIs, which provide rigorous
time-energy inequalities, but it is also true of the split property (the need for a collar region to
guarantee independence indicating a loss of sharp localisation) and nuclearity (understood as
a constraint on the number of states per unit volume in phase space). They therefore occupy
a fascinating position at the nexus of relativity and quantum theory.
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Appendix: Proof of Theorem 3.2

Recall that m0 ≥ 0 has been fixed and that f ∈ C∞
0 (R) is nonnegative, even, with unit

integral, and has a Fourier transform that is real, even, nonnegative and bounded from below
by
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f̂ (u) ≥ ϕ(|u|) (52)

on [m0,∞), where ϕ : [m0,∞) → R
+ is monotone decreasing. Note that nonnegativity of

f and f̂ implies that f̂ (m0) ≤ f̂ (0) = 1 and hence ϕ(u) ≤ 1 for all u ≥ m0.
Consider a single Klein–Gordon field of mass m ≥ m0 on the symmetric Fock space F

over L2(R3, d3k/(2π)3), and define the usual annihilation operators a(k) by

(a(k)�)(n)(k1, . . . , kn) = √
n + 1�(n+1)(k, k1, . . . , kn), (53)

where for � ∈ F , �(n) denotes its n-particle component.8 Writing a†(k) for the adjoint of
a(k) as a quadratic form, the canonical commutation relations are

[a(k), a(k′)] = 0, [a(k), a†(k′)] = (2π)3δ(k − k′)11 , (54)

and the quantum field is given by

(x) =
∫

d3k

(2π)3
√
2ω

(
a(k)e−ika xa + a†(k)eika x

a
)

, (55)

in which ka = (ω, k) with ω = (‖k‖2 + m2)1/2.
The energy density (with respect to the standard time coordinate) is a sum ofWick squares

ρm(x) = 1

2

(
:(∇0(x))2: +

3∑
i=1

:(∇i(x))2: + m2:(x)2:
)

, (56)

so, again in a quadratic form sense,

ρm(x) =
∫

d3k
(2π)3

d3k′

(2π)3

1

4
√

ωω′
{
(ωω′ + k · k′ + m2)ei(k−k′)·xa†(k)a(k′)

−(ωω′ + k · k′ − m2)e−i(k+k′)·xa(k)a(k′)
}

+ H.C., (57)

where H.C. denotes the hermitian conjugate.
Next, choose any smooth, symmetric, nonnegative function B : R3 × R

3 → R, with
compact support obeying

supp B ⊂ {(u, u′) : ‖u‖, ‖u′‖ ∈ [ 12 , 1]; |θ(u, u′)| < π/3}, (58)

where θ(u, u′) is the angle between the vectors u, u′, and normalised so that
∫

d3u
(2π)3

d3u′

(2π)3
B(u, u′) = 1 . (59)

The function C : R3 × R
3 → R

C(u, u′) =
∫

d3u′′

(2π)3
B(u′′, u)B(u′′, u′) (60)

is then pointwise nonnegative with support obeying

suppC ⊂ {(u, u′) : ‖u‖, ‖u′‖ ∈ [ 12 , 1]}. (61)

We now define, for λ > 0, the vacuum-plus-two-particle superposition

�m,λ = Nm,λ

[
� + λ√

2

∫
d3k

(2π)3

d3k′

(2π)3
b(k, k′)a†(k)a†(k′)�

]
, (62)

8 The annihilation operators used in Sect. 3 are a(u) = ∫
d3k/(2π)3a(k)u(k).
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where � ∈ F is the Fock vacuum vector, Nm,τ,λ is a normalisation constant and

b(k, k′) = ϕ(2
√
2m)

m3 B(k/m, k′/m). (63)

That is, �
(0)
m,λ = Nm,λ, �

(2)
m,λ(k, k

′) = Nm,λλb(k, k′) and all other components of �m,λ

vanish. As b is compactly supported, each �m,λ is a Hadamard state. The normalisation
constant is

Nm,λ =
(
1 + λ2ϕ(2

√
2m)2TrC

)−1/2 ≥ (
1 + λ2TrC

)−1/2
, (64)

where we have used ϕ ≤ 1 and employed the short-hand notation

TrC =
∫

d3u
(2π)3

C(u, u). (65)

Using the general formulae 〈� | a(k)a(k′)�〉 = √
2�(2)(k, k′) and

〈� | a†(k)a(k′)�〉 = 2
∫

d3k′′

(2π)3
�(2)(k′′, k)�(2)(k′′, k′), (66)

for vacuum-plus-two-particle superpositions �, the expected normal ordered energy density
is

〈�m,λ | ρm(x)�m,λ〉

= |Nm,λ|2Re
∫

d3k
(2π)3

d3k′

(2π)3

1√
ωω′

(
λ2c(k, k′)(ωω′ + k · k′ + m2)ei(k−k′)·x

− λ√
2
b(k, k′)(ωω′ + k · k′ − m2)e−i(k+k′)·x

)
, (67)

where

c(k, k′) = ϕ(2
√
2m)2

m3 C(k/m, k′/m). (68)

As �m,λ is Hadamard, the expectation value is smooth in x and we can therefore average
against f (t), using the fact that f̂ is real, to find

∫
〈�m,λ | ρm(t, 0)�m,λ〉 f (t) dt = |Nm,λ|2

∫
d3k

(2π)3

d3k′

(2π)3

1√
ωω′

×
(
λ2c(k, k′)(ωω′ + k · k′ + m2) f̂ (ω′ − ω)

− λ√
2
b(k, k′)(ωω′ + k · k′ − m2) f̂ (ω + ω′)

)
. (69)

We now seek an upper bound on this last quantity. First note that, for (k, k′) ∈ supp c, we
have ω,ω′ ∈ [√5m/2,

√
2m] and

1√
ωω′

(
ωω′ + k · k′ + m2) ≤ 4m2

√
5m/2

= 8m√
5
, (70)

while if (k, k′) ∈ supp b we have

1√
ωω′

(
ωω′ + k · k′ − m2) ≥ 1

m
√
2

(
m2

4
+ k · k′

)
≥ 3m

8
√
2
. (71)
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Second, because f and f̂ are positive, f̂ (ω′ − ω) ≤ f̂ (0) = 1; furthermore, for (k, k′) ∈
supp b (and so, in particular, m0 <

√
5m0 ≤ ω + ω′ ≤ 2

√
2m0) we have

f̂ (ω + ω′) ≥ ϕ(ω + ω′) ≥ ϕ(2
√
2m). (72)

Accordingly, as λ and the functions b and c are positive, we obtain the bound

L.H.S. of (69) ≤ |Nm,λ|2
∫

d3k
(2π)3

d3k′

(2π)3

(
λ2c(k, k′) 8m√

5
− λb(k, k′)3m

16
ϕ(2

√
2m)

)
,

(73)

the right-hand side of which can be written as −|Nm,λ|2P(λ)m4ϕ(2
√
2m)2, where

P(λ) = 3

16
λ − λ2

8√
5

∫
d3u

(2π)3

d3u′

(2π)3
C(u, u′), (74)

as follows on inserting the definitions (63), (68) of b(k, k′) and c(k, k′) and using the nor-
malisation (59) of B. Now the quadratic P(λ) has a positive maximum at some λ0 > 0 (note
that P and λ0 are independent of m). Defining �m = �m,λ0 , we therefore obtain∫

〈�m | ρm(t, 0)�m〉 f (t) dt ≤ −�m4ϕ(2
√
2m)2, (75)

where

� = P(λ0)

1 + λ20TrC
(76)

depends only on the function B (and not on m or ϕ). This completes the proof of
Theorem 3.2.
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