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Abstract A theorem of Esnault, Srinivas and Viehweg asserts that if the Chow group of
0-cycles of a smooth complete complex variety decomposes, then the top-degree coherent
cohomology group decomposes similarly. In this note, we prove a similar statement for
Chow groups of arbitrary codimension, provided the variety satisfies the Lefschetz standard
conjecture.
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1 Introduction

Since Mumford’s famous 1969 paper [12], it is well-known that the Chow group of 0-cycles
AnX on a complex variety X influences the cohomology group Hn(X,Q):

Theorem (Mumford [12]) Let X be a smooth complete variety of dimension n defined over
C. Suppose that An XQ is supported on a divisor. Then Hn(X,Q) is supported on a divisor,
in particular Hn(X,OX ) = 0.

In the 1992 paper [5], Esnault, Srinivas and Viehweg study the multiplicative behaviour
of the Chow ring A∗X versus the multiplicative behaviour of various cohomology rings
associated to X . We now state the part of their result that is relevant to us. For a given
partition n = n1 + · · · + nr (with ni ∈ N>0), let us consider the following properties:
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(P1) There exists a Zariski open V ⊂ X , such that intersection product induces a surjec-
tion

An1VQ ⊗ An2VQ ⊗ · · · ⊗ Anr VQ → AnVQ ;
(P2) There exists a Zariski open V ⊂ X , such that cup product induces a surjection

Hn1(V,Q) ⊗ Hn2(V,Q) ⊗ · · · ⊗ Hnr (V,Q) → Hn(V,Q)/N 1

(here N∗ denotes the coniveau filtration);
(P3) Cup product induces a surjection

Hn1(X,OX ) ⊗ Hn2(X,OX ) ⊗ · · · ⊗ Hnr (X,OX ) → Hn(X,OX ).

In these terms, what Esnault, Srinivas and Viehweg prove is the following:

Theorem (Esnault et al. [5]) Let X be a smooth complete variety of dimension n over C.
Then (P1) implies (P3), and (P2) implies (P3).

The implication from (P1) to (P3) is a kind of multiplicative variant of Mumford’s the-
orem, and the proof in [5] is motivated by Bloch’s proof of Mumford’s theorem using a
“decomposition of the diagonal” argument ([3], [2], cf. also [4]). As noted in [5, remark 2],
the generalized Hodge conjecture would imply that (P2) and (P3) are equivalent.1

In this note, we show that the Esnault–Srinivas–Viehweg theorem can be extended from 0-
cycles to arbitrary Chow groups. This is possible provided the variety X satisfies the Lefschetz
standard conjecture B(X) (this is analogous to [10], where I extended Mumford’s theorem
from 0-cycles to arbitrary Chow groups, provided B(X) holds):

Theorem (=Theorem 1) Let X be a smooth projective variety of dimension n over C that
satisfies B(X). Suppose there exists a Zariski open V ⊂ X, and j = j1 + · · · + jr with
ji ∈ N>0 such that intersection product induces a surjection

A j1VQ ⊗ A j2VQ ⊗ · · · ⊗ A jr VQ → A j VQ.

Then cup product induces a surjection

H j1(X,OX ) ⊗ H j2(X,OX ) ⊗ · · · ⊗ H jr (X,OX ) → H j (X,OX ).

The proof of this theorem, which is very similar to the proof given by Esnault–Srinivas–
Viehweg in [5], is an exercise in using the meccano of correspondences and the Bloch–
Srinivas formalism.

It seems natural to wonder whether the converse to Theorem 1 might perhaps be true
(this would be a multiplicative variant of Bloch’s conjecture). In [11], I prove this converse
implication in some special cases for 0-cycles (i.e. j = n); the converse implication for
j �= n appears to be more difficult.

Convention In this note, the word variety will refer to a quasi-projective irreducible
algebraic variety over C, endowed with the Zariski topology. A subvariety is a (possibly
reducible) reduced subscheme which is equidimensional. The Chow group of j-dimensional
algebraic cycles on X withQ-coefficients modulo rational equivalence is denoted A j X ; for X
smooth of dimension n the notations A j X and An− j X will be used interchangeably. Caveat:

1 It is somewhat frustrating that it is not known unconditionally whether (P1) implies (P2), i.e. without
assuming the generalized Hodge conjecture. Apparently Esnault, Srinivas and Viehweg had claimed to prove
this in an earlier version of their paper, but the argument was found to be incomplete [5, remark 2].
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note that what we denote A j X is elsewhere often denoted CH j (X)Q. In an effort to lighten
notation, we will often write H j X or Hj X to indicate singular cohomology H j (X,Q) resp.
Borel–Moore homology Hj (X,Q).

For basics concerning algebraic cycles and their functorial behaviour, the curious reader
is invited to consult [6]. For the formalism of correspondences, cf. [14,15].

2 Preliminary

Let X be a smooth projective variety of dimension n, and h ∈ H2(X,Q) the class of an
ample line bundle. The hard Lefschetz theorem asserts that the map

Ln−i : Hi (X,Q) → H2n−i (X,Q)

obtained by cupping with hn−i is an isomorphism, for any i < n. One of the standard
conjectures asserts that the inverse isomorphism is algebraic.

Definition 1 (Lefschetz standard conjecture) Given a variety X , we say that B(X) holds if
for all ample h, and all i < n the isomorphism

(Ln−i )−1 : H2n−i (X,Q)
∼=→ Hi (X,Q)

is induced by a correspondence.

Remark 1 It is known that B(X) holds for the following varieties: curves, surfaces, abelian
varieties [8,9], threefolds not of general type [16], varieties motivated by a surface in the
sense of Arapura [1] (this includes the Hilbert schemes of 0-dimensional subschemes of
surfaces [1, Corollary 7.5]), n-dimensional varieties X which have Ai (X) supported on a
subvariety of dimension i + 2 for all i ≤ n−3

2 [17, Theorem 7.1], n-dimensional varieties X

which have Hi (X) = N� i
2 �Hi (X) for all i > n [18, Theorem 4.2], products and hyperplane

sections of any of these [8,9].

It is known that B(X) implies that the Künneth components

π j ∈ H2n− j (X) ⊗ H j (X) ⊂ H2n(X × X)

of the diagonal � ⊂ X × X are algebraic [8,9]. Moreover, these Künneth components satisfy
the following property:

Lemma 1 Let X be a smooth projective variety satisfying B(X), and let h ∈ H2(X) be the
class of an ample line bundle. For any j ≤ n, there exists a cycle Pj ∈ A j (X × X) such that

π j = (τ × id)∗(τ × id)∗(Pj ) ∈ H2n(X × X),

where τ : Y j → X denotes the inclusion of a dimension j complete intersection of class
[Y j ] = hn− j .

Proof As mentioned above, B(X) ensures that π j is algebraic [8,9]. Consider now the
isomorphism

Ln− j × id : H j X ⊗ H j X
∼=−→ H2n− j X ⊗ H j X

(here we tacitly identify both sides with their images in H∗(X × X)).
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Since we have B(X), there exists a correspondence, say Q ∈ A j (X × X), such that

(Ln− j × id)(Q × id)∗ = id : H2n− j X ⊗ H j X → H2n− j X ⊗ H j X.

Since π j is algebraic,

Pj := (Q × id)∗(π j ) ∈ A j (X × X)

is still algebraic, and has the requested property. 
�
Remark 2 Lemma 1 implies in particular that for a variety satisfying B(X), the Künneth
component π j is represented by an algebraic cycle contained in Y j × X , for a dimension j
complete intersection Y j . This was also proven in [7] (and independently in [10, proof of
Theorem 3.1], as I wasn’t aware of the Kahn–Murre–Pedrini reference at the time).

3 Main

We now prove the main theorem of this note:

Theorem 1 Let X be a smooth projective variety of dimension n over C that satisfies B(X).
Suppose there exists a Zariski open V ⊂ X, and j = j1 + · · · + jr with ji ∈ N>0 such that
intersection product induces a surjection

A j1V ⊗ A j2V ⊗ · · · ⊗ A jr V → A j V.

Then cup product induces a surjection

H j1(X,OX ) ⊗ H j2(X,OX ) ⊗ · · · ⊗ H jr (X,OX ) → H j (X,OX ).

Proof Since B(X) holds, it follows from Lemma 1 that the Künneth component π j can be
written

π j = (τ × id)∗(τ × id)∗(Pj ) ∈ H2n(X × X)

for some Pj ∈ A j (X × X), where τ : Y j → X is the inclusion of a dimension j complete
intersection.

Applying the Bloch–Srinivas argument, in the form of Proposition 1 below, to the cycle
Pj ∈ A j (X × X), we find a decomposition

Pj = C1 · . . . · Cr + �1 + �2 ∈ A j (X × X),

where �1, �2 are supported on D×X , resp. on X×D, for some divisor D ⊂ X . This induces
a decomposition of the Künneth component

π j = (τ × id)∗(τ × id)∗(C1 · . . . · Cr ) + (τ × id)∗(τ × id)∗(�1 + �2)

= (τ × id)∗(τ × id)∗(C1 · . . . · Cr ) + �′
1 + �′

2 ∈ H2n(X × X),

where �′
2 is still supported on X × D, and �′

1 is supported on Z × X , for some Z ⊂ X of
dimension j − 1 (indeed, the general complete intersection Y j will be in general position
with respect to D; we then define Z to be D ∩ Y j ).

Now we consider the action of π j on H j (X,OX ). Since H j (X,OX ) = Gr0
F H

j (X,C)

(where F is the Hodge filtration), π j acts as the identity on H j (X,OX ). On the other hand,
it is clear that

(�′
1)∗H j (X,OX ) = 0
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(by Lemma 3, the action of �′
1 factors over Gr0

F H
j (Z ,C), which is 0 for dimension reasons),

and also that

(�′
2)∗H j (X,OX ) = 0

(by Lemma 3, the action of �2 factors over Gr−1
F H j−2(˜D,C) = 0, where ˜D is a resolution

of singularities of D). To finish the argument, it only remains to analyze the action
(

(τ × id)∗(τ × id)∗(C1 · . . . · Cr )
)

∗ : H j (X,OX ) → H j (X,OX ).

Using Lemmas 2 and 3, we find an inclusion
(

(τ × id)∗(τ × id)∗(C1 · . . . · Cr )
)

∗H
j (X,OX ) ⊂ (

C1 · . . . · Cr
)

∗Grn− j
F H2n− j (X,C).

Using Lemma 4, we find that
(

C1 · . . . · Cr
)

∗Grn− j
F H2n− j (X,C)⊂ Im

(

H j1(X,OX )⊗ · · · ⊗H jr (X,OX )→H j (X,OX )
)

,

and so we are done. 
�
Proposition 1 (Bloch–Srinivas style) Let X be a smooth projective variety of dimension n.
Suppose there exists a Zariski open V ⊂ X, and j = j1 + · · · + jr with ji ∈ N>0 such that
intersection product induces a surjection

A j1V ⊗ A j2V ⊗ · · · ⊗ A jr V → A j V.

Then for any a ∈ A j (X × X), there exists a decomposition

a = C1 · . . . · Cr + �1 + �2 ∈ A j (X × X),

where Ci ∈ A ji (X × X), and �1, �2 are supported on D × X (resp. on X × D), for some
divisor D ⊂ X.

Proof To be sure, this is a variant of the argument of [4], exploiting the fact that C is a
universal domain. Let D1 ⊂ X denote the complement of V . Taking the smallest possible
field of definition, we can suppose everything (X , V and the cycle a) is defined over a field
k ⊂ C which is finitely generated over its prime subfield. Then the inclusion k(X) ⊂ C

(which comes from C being a universal domain) induces an injection

A j (Xk(X)) → A j (XC)

[3, Appendix to Lecture 1]. On the other hand,

A j (Xk(X)) = lim−→ A j (X ×U ),

where the limit is taken over opens U ⊂ X [3, Appendix to Lecture 1].
Given the cycle a ∈ A j (X × X), consider the restriction

arestr ∈ A j (Xk(X)).

The assumption implies there exist cycles ci ∈ A ji (XC) such that

arestr = c1 · . . . · cr + a0 ∈ A j (XC),

where a0 is supported on D1. Now, we extend k so that the cycles ci are also defined over k
(and k is still finitely generated over its prime subfield, so that k(X) ⊂ C). Then using the
injection A j (Xk(X)) → A j (XC) cited above, we obtain the decomposition

arestr = c1 · . . . · cr + a0 ∈ A j (Xk(X)).
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Let Ci ∈ A ji (X × X) be any cycle restricting to ci , and let �1 be any cycle restricting to a0.
Then using the limit property cited above, we find that the difference

a − C1 · . . . · Cr − �1 ∈ A j (X × X)

restricts to 0 in A j (X ×U ), for some openU ⊂ X . This means there exists a divisor D2 ⊂ X
and a cycle �2 supported on D2 such that

a = C1 · . . . · Cr + �1 + �2 ∈ A j (X × X).

Taking D a divisor containing both D1 and D2, this proves the proposition. 
�
Lemma 2 Let f : Y → X be a proper morphism of smooth projective varieties, where
dim X = n and dim Y = m. Let C ∈ A j (X × X). Then

(

( f × id)∗C
)

∗ = C∗ f∗ : HiY → Hi+2( j−m)X.

Proof This is purely formal, and surely well-known. Let p1, p2 : X × X → X denote
projection on the first (resp. second) factor. Let q1, q2 denote projections from Y × X to Y
(resp. to X ). For a ∈ HiY , we have

(

( f × id)∗C
)

∗(a) = (q2)∗
(

(q1)
∗(a) · ( f × id)∗(C)

)

= (p2)∗
(

( f × id)∗((q1)
∗(a) · ( f × id)∗(C))

)

= (p2)∗
(

( f × id)∗(q1)
∗(a) · C)

= (p2)∗
(

(p1)
∗ f∗(a) · C) =: C∗ f∗(a) ∈ Hi+2( j−m)X.

Lemma 3 Let f : Y → X be as in Lemma 2. Let D ∈ A j (Y × X). Then
(

( f × id)∗D
)

∗ = D∗ f ∗ : Hi X → Hi+2( j−m)X.

Proof Just as Lemma 2, this is surely well-known. Keeping the notation of Lemma 2, for
b ∈ Hi X we have

(

( f × id)∗D
)

∗(b) = (p2)∗
(

(p1)
∗(b) · ( f × id)∗(D)

)

= (p2)∗
(

( f × id)∗
(

( f × id)∗(p1)
∗(b) · D))

= (p2)∗( f × id)∗
(

(q1)
∗ f ∗(b) · D)

= (q2)∗
(

(q1)
∗ f ∗(b) · D) =: D∗ f ∗(b) ∈ Hi+2( j−m)X.


�
Lemma 4 (Esnault–Srinivas–Viehweg [5]) Let X be a smooth projective variety of dimen-
sion n. Let Ci ∈ A ji (X × X), i = 1, . . . , r , with j = j1 + · · · + jr . Then

(C1 · . . . · Cr )∗Grn− j
F H2n− j (X,C)⊂ Im

(

H j1(X,OX )⊗· · ·⊗H jr (X,OX )→H j (X,OX )
)

.

Proof This is shamelessly plagiarized from [5], who prove the j = n case. Let C ∈ A j (X ×
X) be any correspondence. The crucial observation is that the action

C∗ : Grn− j
F H2n− j (X,C) → Gr0

F H
j (X,C)
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only depends on the image of C under the composite map

ι : A j (X × X) → H2 j (X × X,C) → H j X ⊗ H j X → Gr jF H
j X ⊗ Gr0

F H
j X

(Here the second map is given by the Künneth decomposition, and the last map is induced
by projection on the appropriate summands of the Hodge decomposition). Indeed, suppose
C ∈ A j (X × X) is such that ι(C) = 0, i.e. the Künneth part of type H j X ⊗ H j X of C is
contained in

⊕

i< j

GriF H
j X ⊗ Gr j−i

F H j X ⊂ Gr jF (H j X ⊗ H j X).

Then, for a ∈ Grn− j
F H2n− j (X,C) we find that

(p1)
∗(a) · C ∈

⊕

i< j

Grn− j+i
F H2n X ⊗ Gr j−i

F H j X = 0,

and hence

C∗(a) = 0 ∈ H j (X,C).

Next, we apply this observation to

C = C1 · . . . · Cr ∈ A j (X × X),

with Ci ∈ A ji X . The Hodge decomposition then gives that

ι(C) = ι(C1) · . . . · ι(Cr ) ∈ Im
(

Gr j1F H j1 X ⊗ · · · ⊗ Gr jrF H jr X
)

⊗ Im
(

Gr0
F H

j1 X ⊗ · · · ⊗ Gr0
F H

jr X
) ⊂ Gr jF H

j X ⊗ Gr0
F H

j X.

This proves the Lemma: suppose

ι(C) =
∑

k

Ck
le f t ⊗ Ck

right ∈ Gr jF H
j X ⊗ Gr0

F H
j X.

Then reasoning as above, we find that

(ι(C))∗(a) =
∑

k

(p2)∗
((

a ∪ Ck
le f t

)

⊗ Ck
right

)

=
∑

k

αkC
k
right ∈ Gr0

F H
j X,

where the αk are complex numbers (this is because H2n X is one-dimensional and generated
by the class of a point). 
�
Remark 3 It is mainly the contrapositive of Theorem 1 that is useful (this is another remark
made in [5] for their theorem). Indeed, suppose X and j = j1 + · · · + jr are such that

H j1(X,OX ) ⊗ H j2(X,OX ) ⊗ · · · ⊗ H jr (X,OX ) → H j (X,OX )

is not surjective (for example, because

r
∏

i=1

dim H ji (X,OX ) < dim H j (X,OX ) ).

Then by Theorem 1, likewise

A j1 X ⊗ · · · ⊗ A jr X → A j X

fails to be surjective (and the same holds for any open V ⊂ X ).
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