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Abstract This article deals with a theory-based investigation of the diagnostic
problem-solving process in professional contexts. To begin with, a theory of the
diagnostic problem-solving process was developed drawing on findings from different
professional contexts. The theory distinguishes between four sub-processes of the
diagnostic problem-solving process and includes several hypotheses. According to
the theory, the quality of the sub-processes Brepresenting information^ and Btesting
hypotheses^ causally influences the diagnostic problem-solving success. Additionally,
the theory suggests that the influence of Btesting hypotheses^ on the problem-solving
success is higher than the influence of Brepresenting information^. Moreover, the
theory assumes that the influence of the quality of Brepresenting information^ on the
success is mediated by the quality of Btesting hypotheses^. These hypotheses were
examined in the context of car mechatronics using diagnostic problems of the car
sector, a computer-based assessment and a sample of car mechatronic apprentices
(N = 339). To operationalize the sub-processes’ quality, observable critical behavior
was theoretically identified and extracted from computer-generated log-files. The
empirical results were largely in line with the hypotheses and indicated a (very) first
corroboration of the theory in the context of car mechatronics. The theory could be
helpful to investigate and teach diagnostic problem solving in different professional
contexts. Further studies, however, should scrutinize whether the theory applies to other
studies and professional contexts.
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Introduction

This article deals with a theory-based investigation of the diagnostic problem-solving
process in professional contexts. In the first part of the article, a theory of the diagnostic
problem-solving process is developed drawing on findings from different professional
contexts. In the second part, this theory is empirically investigated in the context of car
mechatronics. The emphasis is on a theory that relates the mental problem-solving
process to observable problem-solving behavior and the observable diagnostic
problem-solving success and provides hypotheses that can be examined empirically.
Following Barrows and Feltovich (1987), the article concentrates on the overall process
and does not strive to enhance our knowledge of specific aspects of the diagnostic
problem-solving process.

Diagnostic problems refer to situations in which the cause(s) of an undesired state
has/have to be detected. Diagnostic problems are relevant in diverse professional
contexts: Teachers have to diagnose causes of learning difficulties, physicians must
identify reasons for diseases, technicians and engineers have to detect causes of
malfunctioning machines and so forth. Taking car mechatronics as an example, a
diagnostic problem could reflect a situation in which the cause of a car’s lighting
system defect must be detected. This definition of a diagnostic problem is in line
with Schaafstal et al. (2000, p. 75) but differs from other studies (e.g., Kassirer
et al. 2010, p. 6) since it does not cover treatment options (e.g., repair). Diagnostic
problems have the critical attributes of a problem (Jonassen 2000, p. 65): there is
an unknown (e.g., cause of a lighting system defect) and it is worth finding this
unknown (e.g., to satisfy a customer).1

The diagnostic problem-solving process is defined as the mental (latent, non-
observable) activities that reveal the cause(s) of the undesired state and underlie the
solution of a diagnostic problem (e.g., Durning et al. 2013, p. 444). Understanding this
process means knowing critical differences between good and poor problem solvers
and enhances our knowledge of how to foster diagnostic problem solving (Barrows and
Feltovich 1987; p. 86). A theory of the diagnostic problem-solving process is useful for
both assessment and didactical purposes.

There are a plethora of studies on the diagnostic problem-solving process in different
professional contexts (technical context: e.g., Rasmussen 1993; Rouse 1983; Hoc and
Amalberti 1995; medical context: e.g., Elstein et al. 1990; Norman 2005; Croskerry
2009; scientific context: Klahr and Dunbar 2000). These studies provide many valuable
insights and process models. As Kassirer et al. (2010, p. 4) pointed out, studies
covering the overall process are still reliant on normative principles which cannot be
investigated empirically, due to a lack of information. Moreover, studies like the one of
Coderre et al. (2003) that relate the diagnostic problem-solving process to the problem-
solving success are rare.

In order to investigate theories on the diagnostic problem-solving process, process
data is needed. The collection of such data (typically resulting from think-aloud

1 According to this definition, each situation that is related to finding an unknown represents a
problem, even if the unknown is found by applying a routine. The decisive point is that the situation
does not reveal whether the routine will be successful; rather, the appropriateness of the routine must
be tested.
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protocols) is very often time-consuming and costly, which favors studies with small
samples and low statistical power (Krems 1994, p. 60). In this context, log-files from
computer-based assessment might be helpful. Log-files can be automatically
generated during a computer-based assessment and contain behavioral actions
of an individual (e.g., mouse clicks). Such behavioral process data can easily be
gathered with large samples.

In the following sections, the theory of the diagnostic problem-solving process in
professional contexts is presented. Following that, the theory is investigated using log-
file data from a computer-based assessment for car mechatronics,2 authentic diagnostic
problems of the car sector and a sample of 339 apprentices. In light of the huge amount
of research on diagnostic problem solving, the theory cannot cover all findings and
demands further theoretical elaboration as well as empirical investigation. Nevertheless,
I assume that the present study can contribute to research on the diagnostic problem-
solving process in professional contexts by generating a theory that connects the
diagnostic problem-solving process to observable behavior as well as the problem-
solving success and that can be examined empirically.

Diagnostic Problem-Solving Process in Professional Contexts

The diagnostic problem-solving process has been investigated in medical and
technical professional contexts. Many studies in the medical context do not use
the term Bdiagnostic problem solving^ but Bclinical reasoning^ (e.g., Kassirer et al.
2010; Barrows and Feltovich 1987). In the technical context, the term
Btroubleshooting^ is very common (e.g., Schaafstal et al. 2000, p. 75). Frequently, both
terms are referred to as covering diagnostic problem solving and treatment
options. The emphasis, however, is often on diagnostic problem solving (Jonassen
and Hung 2006, p. 79).

Schaafstal et al. (2000, p. 79) insinuated that the diagnostic problem-solving process
consists of four sub-processes: formulate problem description, generate causes, test and
evaluate. While the first sub-process refers, among other things, to understanding the
problem and its symptoms, the second sub-process aims at generating hypotheses on
the cause(s) of the defect. These diagnostic hypotheses are tested within the next sub-
process. Finally, the entire process and its results have to be evaluated, leading to a
statement on the cause(s) of the undesired state. Comparing different conceptions of the
diagnostic problem-solving process, Jonassen and Hung (2006) concluded that the
process starts with building a mental representation of the problem. This mental
representation contains information on the problem (e.g., the undesired state) and
relevant systems. Additionally, it often includes information coming from external
information sources (e.g., circuit diagrams or health records). Drawing on the mental
representation, the problem’s cause(s) is/are examined: diagnostic hypotheses are

2 The professional field of car mechatronics covers, among other things, troubleshooting, repair and mainte-
nance of cars (Baethge and Arends 2009, p. 33–47). In Germany, car mechatronic apprentices usually attend a
3.5 years training programme including a school-based and workplace-based training (Bdual apprenticeship
system^). The training of car mechatronic technicians differs significantly from one country to the next
(Baethge and Arends 2009, p. 34).
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formulated and tested. Finally, the problem’s solution is generated and evaluated.
Barrows and Feltovich (1987) elaborated a synthesis of research on the clinical
reasoning process. They identified the following sub-processes of clinical reasoning
as being especially important: gathering information on the patient’s problem, gener-
ating diagnostic hypotheses, examining these hypotheses and evaluating corresponding
results. The examination of hypotheses sometimes include laboratory tests that cannot
be applied in situ. Here, there is a difference to the technical context, where tests can
usually be conducted at once and often are not as costly as in the medical context. In
their book on clinical reasoning, Kassirer et al. (2010) stressed the role of gathering
information on the problem (e.g., gender, age, appearance of the patient), hypotheses
generation and testing. There are, however, several studies casting doubt on the key role
of formulating hypotheses in diagnostic problem solving (e.g., Donner-Banzhoff et al.
2016). This criticism will be addressed in the final discussion.

Based on the studies cited, and inspired by others (medical context: Elstein et al.
1990; Durning et al. 2013; Patel et al. 1996; scientific context: Klahr and Dunbar
2000), a theory on the diagnostic problem-solving process in professional contexts was
developed. In the next sections this theory will be presented. The theory differentiates
between four sub-processes: representing information, as well as generating, testing and
evaluating diagnostic hypotheses. Moreover, it assumes certain relations between the
sub-processes as well as between these sub-processes and observable problem-solving
behavior. The theory is a synthesis and further development of existing literature.

Representing Information

The aim of the sub-process Brepresenting information^ is to mentally represent the
information required to solve the diagnostic problem. Here, there are three different
types of information: The first type corresponds to information about the diagnostic
problem: the undesired state (e.g., symptoms), the goal state (e.g., knowing the cause of
the defect) and context information (e.g., brand of a car). The second type of informa-
tion is related to testing diagnostic hypotheses, that is, test procedures and techniques,
information necessary to conduct a test and so forth. In the technical context, testing
hypotheses often have finding out the location of system components (e.g., a fuse) as a
prerequisite. The third information type refers to evaluating diagnostic hypotheses: For
example, testing the hypothesis of a broken fuse demands reference values; otherwise,
whether the fuse is broken cannot be evaluated.

Representing information is conceptualized as a mental sub-process that often relies
on diagnostic knowledge and information resulting from external data. Diagnostic
knowledge represents problem-solving experience and can be retrieved from memory.
BExternal information^ comes from interactions with the problem environment. To
represent Bexternal^ information, car mechatronic technicians typically read problem
descriptions, explore cars and their technical particularities and so forth. While retriev-
ing knowledge is a mental (non-overt) activity, interactions with the environment
become manifest in observable information behavior. Information behavior is both a
consequence and prerequisite of the sub-process Brepresenting information^.

The research of Groves et al. (2003, p. 308) and Donner-Banzhoff et al. (2016) from
the medical field provides evidence that Binformation representation^ can be considered
an independent sub-process and is critical to the problem-solving success (see also
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Coderre et al. 2003; Johnson et al. 1995 and Nendaz et al. 2005). Johnson et al. (1995)
summarized findings from the technical domain concluding that Binformation
representation^ influences the following problem-solving sub-processes. According
to Elstein et al. (1990, p. 11), there is no correlation between thoroughness of
information collection and the quality of information interpretation. This suggests
that the diagnostic problem-solving success does not result from collecting a lot of
information; rather, it results from gathering critical information, that is, informa-
tion making sense from a substantive point of view and in terms of the present
problem (see also Joseph and Patel 1990).

According to research on expertise (e.g., Boshuizen and Schmidt 2008, p. 115;
Feltovich et al. 2006, p. 47), if a well-known diagnostic problem is worked on, case-
specific knowledge is retrieved providing information on the diagnostic problem at
hand. In this case, observable information behavior is replaced by retrieving knowl-
edge. For this reason, experienced problem-solvers often need to collect relatively little
critical information to solve a well-known problem (Groves et al. 2003, p. 308; Schmidt
et al. 1990, p. 618).

Generating Diagnostic Hypotheses

The sub-process Bgenerating diagnostic hypotheses^ aims at formulating diagnostic
hypotheses. Diagnostic hypotheses are defined as mental representations comprising
potential causes(s) of an undesired state (e.g., a lighting system defect might be caused
by a broken fuse) or, in other words: A diagnostic hypothesis contains a potential but
untested problem solution. Diagnostic hypotheses are formulated drawing on informa-
tion about the diagnostic problem. Thus, the quality of the Bgenerating hypotheses^
depends on the quality of Brepresenting information^.

In real-life problem-solving, diagnostic hypotheses are seldom explicated.
Consequently, generating hypotheses is usually not associated with observable
problem-solving behavior and interactions with the environment. In many professional
contexts, it is a purely mental process, so that the relevance of this sub-process cannot
be examined straightforwardly. Some studies meet this challenge by confronting their
testees with artificial rather than authentic diagnostic problems, Bforcing^ them to
explicate their diagnostic hypotheses (e.g., Krems and Bachmaier 1991; Mehle
1982). For example, given specific symptoms of a problem (i.e., some details
of a diagnostic problem), testees are asked to explicate as many diagnostic
hypotheses as possible.

It has been widely accepted that the generation of hypotheses is crucial to solving
diagnostic problems (e.g., Elstein et al. 1990, p. 9; Morris and Rouse 1985, p. 508),
even though this very plausible assumption has been tested rarely. Morris and Rouse
(1985) reported findings showing that good problem-solvers formulate more hypoth-
eses than poor ones do. Mehle (1982) found that, when administering diagnostic
problems from the car sector, experts and novices generate a comparable number of
hypotheses (see also Elstein et al. 1990, p. 9). In contrast, Krems and Bachmaier (1991)
and Patel et al. (1996, p. 133) determined that experts formulate fewer hypotheses than
novices do. The evidence appears to be inconsistent. Although there might be several
reasons for that, the following seem to be of particular importance: When the role of
Bhypothesis generation^ is investigated using somewhat artificial diagnostic problems,
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the case/content specificity of diagnostic problem-solving is ignored (Schwartz and
Elstein 2008, p. 225) and generating hypotheses is not systematically related to the
problem-solving success. As Krems and Prechtl (1991) pointed out, it is not the number
of hypotheses, but their quality, that makes the problem-solving success.

Testing Diagnostic Hypotheses

BTesting diagnostic hypotheses^ is about gathering evidence to judge whether a
diagnostic hypothesis is appropriate. It encompasses three main steps: (1) deducing
observable events from a diagnostic hypothesis given the hypothesis is true, (2)
planning how to test the occurrence of these events and (3) testing the events’
occurrence and the mental representation of the test result. For example, testing the
hypothesis of a broken fuse implies (1) deducing relevant events (e.g., an infinite
resistance of the fuse), (2) planning how to test the resistance of the fuse (e.g., using a
multimeter) and (3) measuring the resistance. BHypothesis testing^ is based on infor-
mation coming from the problem environment and diagnostic knowledge, and requires
application of this information to produce hypothesis-relevant evidence/information.
For the latter reason, and in contrast to the present study, Bhypothesis testing^ is usually
subsumed under the term Bdata collection^, not differentiating between Binformation
representation^ and Bhypothesis testing^ in the medical field (e.g., Nendaz et al. 2005,
p. 415; Schwartz and Elstein 2008, p. 224). The quality of Btesting hypotheses^
depends on the quality of Brepresenting information^ and Bgenerating hypotheses^.

The sub-process Btesting hypotheses^ is associated with observable test behavior.
Whereas deduction and planning activities are usually not observable, the collection of
evidence demands interactions with the environment. There might be cases in which
diagnostic hypotheses can be tested without actively collecting external data; however,
such cases should be (very) rare. The test behavior indicates the quality of the sub-
process and influences the problem-solving process.

BTesting hypotheses^ is considered an important sub-process of diagnostic problem-
solving, although there is little empirical evidence supporting this assumption (e.g.,
Kassirer et al. 2010, p. 15). The study of Elstein et al. (1990, p. 11) showed that good
diagnostic problem solvers have clearer concepts (i.e., knowledge) of how to test
diagnostic hypotheses than poor ones do. Morris and Rouse (1985, p. 504) gave some
empirical evidence proving the relevance of hypothesis tests to solving diagnostic
problems. This is very plausible: When pure guessing is not acceptable, as in most
professional contexts, the solution of a diagnostic problem should be grounded on
evidence coming from hypothesis tests.

Evaluating Diagnostic Hypotheses

BEvaluating diagnostic hypotheses^ aims to evaluate the evidence coming from
hypothesis tests and decide whether a hypothesis is acceptable. The crucial point
here is to interpret evidence in light of a diagnostic hypothesis and to conclude
whether the evidence corroborates or refutes the hypothesis. When evaluating a
diagnostic hypothesis, it might be necessary to consider several pieces of evidence and
alternative hypotheses. BEvaluating hypotheses^ is influenced by the foregoing
sub-processes.
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The evaluation sub-process is mental but leads to an observable problem solution. A
diagnostic problem is solved when the correct cause (e.g., broken fuse) of an undesired
state (e.g., lighting system defect) is given and proved by evidence (e.g., test result).
The problem’s solution (i.e., the problem-solving success) is the consequence of
evaluating hypotheses.

It turned out that successful diagnostic problem-solvers were superior in interpreting
evidence (Johnson et al. 1995, p. 10). This corresponds to Morris and Rouse (1985, p.
504), who additionally highlighted the fact that incorrect hypotheses are more quickly
eliminated by successful than unsuccessful problem solvers. According to these find-
ings, the quality of Bhypothesis evaluation^ varies among individuals and should affect
the problem-solving success. Klahr and Dunbar (2000, 77ff.) showed that individuals
can have serious problems with correctly interpreting data and give two reasons for
that: confirmation bias, and a lack of alternative hypotheses. Another reason might be
that individuals do not understand test results/evidence. For example, they cannot
interpret the measurement value BOL^, since they do not know that BOL^ symbolizes
an infinite resistance and/or they cannot apply this evidence to judge the appropriate-
ness of a hypothesis. Table 1 gives an overview of the sub-processes.

Obviously, the accurate order of the problem-solving sub-processes can strongly
differ between individuals and diagnostic problems: There might be situations in which
Bgenerating hypotheses^ is followed by Brepresenting information^, Bevaluating
hypotheses^ is followed by generating another hypothesis and so on. Against this
background, the theory does not claim to reflect the Breal^ chronological sequence of
the mental activities conducted during problem solving. The decisive point here is to
have a theory that organizes mental problem-solving activities into sub-processes, gives
the causal relationship between these sub-processes and causally explains the problem-
solving success. Of course, causal relationship implies temporal precedence but, for
instance, considering the influence of Brepresenting information^ on Btesting
hypotheses^, it is beside the point whether the test information is represented before
the hypothesis is formulated or afterwards.

Table 1 Overview and key aspects of the diagnostic problem-solving sub-processes

Mental sub-process Aim Associated manifest behavior

(1) Representing information To mentally represent information
relevant to the diagnostic problem

Retrieving and using external
information material

(2) Generating diagnostic
hypotheses

To generate diagnostic hypotheses
providing potential but untested
problem solutions

Usually nonea

(3) Testing diagnostic
hypotheses

To collect and mentally represent
evidence required to judge whether
a diagnostic hypothesis is appropriate

Conducting tests (e.g., resistance
measurement or laboratory tests)
to obtain relevant evidence

(4) Evaluating diagnostic
hypotheses

Evaluating the evidence coming from
tests to decide whether a hypothesis
is acceptable

Giving the cause(s) of the diagnostic
problem (i.e., the problem’s
solution)

a Please note that the focus here is on individual problem solving. When a team works on diagnostic problems,
it might frequently be the case that diagnostic hypotheses are explicated (i.e., become manifest)
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Operationalization of the Quality of BRepresenting Information^
and BTesting Diagnostic Hypotheses^

It is assumed that the four sub-processes or, more specifically, their quality, causally
influence the observable problem-solving success. In order to empirically investigate
this influence, the quality of the non-observable sub-processes has to be operational-
ized. In this study, the focus is on the quality of Brepresenting information^ and Btesting
diagnostic hypotheses^.

Indicators of the sub-Processes’ Quality: Critical Information Behavior
and Critical Test Behavior

The quality of Brepresenting information^ can be operationalized using critical infor-
mation behavior. With regard to Brepresenting information^, a high quality is associated
with mentally representing a lot of critical information. Critical information refers to
information that is relevant to solve the diagnostic problem. For example, it is necessary
to know the undesired state of the problem (e.g., the car defect) to solve a diagnostic
problem. To represent such critical information, critical information behavior is re-
quired. For example, in order to learn the undesired state of a problem, the problem
description must be selected. This critical information behavior is triggered by the sub-
process Brepresenting information^ to make available and to mentally represent critical
information. Generally speaking, critical information behavior is both a causal result
and a prerequisite of the quality of the sub-process. In this vein, critical information
behavior can be interpreted as a quality indicator of Brepresenting information^: If
problem solvers exhibit critical information behavior, a higher quality of Brepresenting
information^ is assumed than if they do not show such behavior.

The quality of Btesting diagnostic hypotheses^ can be operationalized using critical
test behavior. In terms of Btesting hypotheses^, a high quality is associated with mental
activities initiating critical tests. Critical tests refer to collecting evidence that is needed
to investigate a diagnostic hypothesis. Critical tests require critical test behavior (e.g.,
measuring a fuse’s resistance). Critical test behavior demonstrates reasonable mental
activities (i.e., deduction, planning and application of tests) and provides relevant
evidence. Accordingly, critical test behavior can be considered a quality indicator of
Btesting hypotheses^.

Identification of Critical Information Behavior and Critical Test Behavior

Critical information behavior and critical test behavior (in short: critical behavior) can
be theoretically identified based on critical diagnostic hypotheses. Critical diagnostic
hypotheses are defined as assumptions that relate to a specific diagnostic problem,
provide potential causes of the undesired state of the problem and make sense from a
substantive point of view. For instance, it makes sense to suppose that a broken fuse is
the reason for a lighting system defect and, consequently, this assumption is considered
a critical diagnostic hypothesis. In contrast, it is unreasonable to assume that the defect
is caused by an empty fuel tank. Diagnostic problems usually allow for several critical
diagnostic hypotheses: A lighting system defect might be caused by a broken fuse,
lamp and so forth.
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Based on the critical diagnostic hypotheses, the critical behavior can be identified
applying domain-specific expertise. For example, in order to examine a critical diag-
nostic hypothesis (e.g., the fuse causes the lighting system’s defect) critical information
and critical tests are needed. Critical information comes from specific critical informa-
tion behavior (e.g., selecting the fuse card to check the fuse’s location), critical tests are
associated with specific critical test behavior (e.g., measuring the fuse’s resistance). In
the following empirical study, the theoretically identified critical behavior is used to
determine individuals’ quality of Brepresenting information^ and Btesting diagnostic
hypotheses^ (see the section on measures and scoring).

Aim and Hypotheses of the Empirical Study

The aim of the empirical study is to investigate the theory of the diagnostic problem-
solving process. Fig. 1 summarizes the theory graphically.

The theory includes the theoretical hypothesis that the quality of the sub-processes
Brepresenting information^ and Btesting diagnostic hypotheses^ have –mediated by the
other sub-processes – a causal influence on the problem-solving success. As mentioned
before, the quality of these latent sub-processes are operationalized using critical
behavior. From this and the theoretical hypothesis results the following empirical
hypothesis: The critical information behavior and the critical test behavior have an
effect on the diagnostic problem-solving success (RH1).

The theory advises that, in comparison to Brepresenting information^, Btesting
hypotheses^ draws upon more critical mental activities and, therefore, should have a
higher influence on the problem-solving success. Against this background, it is as-
sumed that the effect of the critical test behavior on the success is stronger than the
effect of the critical information behavior (RH2).

Experience (i.e., problem-related knowledge) can be retrieved from memory and can
lead to a high quality of Brepresenting information^, although no observable critical
information behavior is exhibited. This suggests that the effect of the critical
information behavior on the problem-solving success is moderated by problem-
related experience (RH3).

Representing

information

Generating 

diagnostic hypotheses

Testing

diagnostic hypotheses

Evaluating

diagnostic hypotheses

Problem-solving behavior

Critical information 

behavior*

Critical test 

behavior*

Problem-solving
success

Retrieving critical

diagnostic knowledge

Diagnostic problem-solving process

manifest, observable

mental, latent

* Critical behavior is identified by applying domain-specific expertise to a specific diagnostic problem and based on critical diagnostic hypotheses.

Fig. 1 Theory of the diagnostic problem-solving process in professional contexts
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The quality of Brepresenting information^ affects the quality of Btesting hypotheses^
which, in turn, influences the problem-solving success. Consequently, the influence of
the critical information behavior on the diagnostic problem-solving success should be
mediated by the critical test behavior (RH4).

The theory has domain-general and domain-specific aspects. Drawing on findings
from different professional contexts, it assumes that the distinction of four sub-pro-
cesses, their causal relationship and empirical consequences apply to different profes-
sional contexts. The critical behavior, however, can only be identified by applying
domain-specific expertise to a specific diagnostic problem. Thus, the theory can be
investigated only in specific professional contexts. In this study, the empirical hypoth-
eses were investigated in the context of car mechatronics.

With regard to RH1 and RH4, contradictory empirical results have logical implica-
tions for the theory. For example, if no effect of the critical test behavior on the critical
information behavior was found, the results would seriously question the hypothesis
that the quality of Brepresenting hypotheses^ causally influences the quality of Btesting
hypotheses^. Contradictory results might suggest that the theory, or at least parts of it,
do not apply to the context of car mechatronics. They might also cast doubt on the
operationalization of the sub-processes’ quality. This would be a matter of further
examination. Importantly, if the empirical results are in line with RH1 and RH4, there
is no logical ground to conclude that the theory is confirmed or even verified. From a
logical viewpoint, it is impossible to verify empirical hypotheses and related theories;
however, it is possible to investigate whether empirical data falsify the empirical
hypotheses and the related theories (Popper 2005). If the investigation fails to falsify
the hypotheses, the theory is corroborated but not confirmed or even verified. As the
theory presented here applies to different professional contexts, it has to be investigated
in different professional contexts. The following study focuses on a specific profes-
sional context (car mechatronics) and resembles a (very) first empirical investigation of
the theory.

Please note that RH2 and RH3 are not logically derivable from, but in line with, the
theory. Regarding these empirical hypotheses, the empirical results do not have logical
implications for the theory but they provide evidence to evaluate its empirical plausibility.

Material and Methods

The Computer-Simulation-Based Assessment

The diagnostic problem-solving behavior (i.e., the critical information behavior and
critical test behavior) and success were assessed in the context of car mechatronics
using a computer simulation. The computer simulation uses authentic graphic material
(pictures, screenshots, etc.) and represents the following parts of the work environment
of car mechatronics: (1) a selection of car systems, (2) a toolbox and (3) a computer-
based expert system (Fig. 2).

(1) The simulation covers four systems of a VWGolf, which were identified to be of
high practical relevance by experienced car mechatronic technicians, teachers/trainers
of car mechatronic apprentices and relevant scientists (Baethge and Arends 2009, p.
16). Here, the system Belectronic engine management^ is relevant. In this system, 17
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components (plugs of actuators and sensors, the battery, etc.) are available. (2) The
toolbox contains icons representing different work equipment (e.g., problem descrip-
tion, multimeter, fuse box, computer-based expert system). (3) Computer-based expert
systems are an integral part of the car mechatronic technicians’ work environment. The
simulation covers relevant segments of the ESI[tronic] from Bosch, which is an
internationally widespread system and applicable to a broad selection of car brands.
It offers a great variety of relevant information.

The computer simulation provides numerous authentic diagnostic problem-solving
steps: In the system Belectronic engine management^ alone, there are more than a
thousand possibilities to measure voltage, resistance and signals. A guiding principle of
the simulation’s development was to allow interactions that largely correspond with the
professional reality of car mechatronics. The computer-simulation-based assessment
proved to produce valid test score interpretations, that is, measures indicating authentic
diagnostic problem-solving skills (Gschwendtner et al. 2009).

Measures and Scoring

In the assessment, two diagnostic problems were administered, both referring to the
fuel temperature sensor. P1 and P2 were similar in terms of their symptoms, but
differed in terms of the symptoms’ causes and their difficulty. In previous studies, P1
was solved by 85% (Gschwendtner et al. 2009, p. 573) and P2 by 25% (Abele et al.
2014, p. 174) of the testees. To detect the problems’ causes, electrotechnical measure-
ments had to be conducted. The problems allowed for using the computer-based expert
system to retrieve location diagrams, circuit diagrams and test instructions as well as to

Fig. 2 Screenshots of the computer simulation in German (top left: start page giving an overview of the car
systems; top right: the upper part shows the icons of the toolbox, below the motor compartment referring to the
system Belectronic engine management^ is shown; bottom left: measurement of a signal using the oscillo-
scope, cockpit and adapter; bottom right: circuit diagram retrieved from the computer-based expert system)
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read out the error-storage. Test instructions contained information on electrotechnical
measurements useful to solving the diagnostic problem.

The problem-solving success was determined by analyzing handwritten documen-
tations. A problem was considered solved if the correct cause had been given, docu-
mented and proved by appropriate measurements. The scoring was conducted by two
independent raters applying a coding manual to the documentations and produced
dichotomous data (correct solution: 1, incorrect solution: 0; no partial credits). In very
rare cases of diverging scores, content-oriented discussions produced a consensual
scoring. Additionally, the interrater reliability Cohen’s Kappa was calculated for a
selection of the sample (N = 67): κ = .95 (P1) and .97 (P2).

To determine the critical behavior, the problems were analyzed and the critical
diagnostic hypotheses were identified (see first line of Table 2). Since both problems
referred to the fuel temperature sensor and comparable symptoms, the diagnostic
hypotheses were identical. The critical information behavior and critical test behavior
were derived from the critical hypotheses. While some information behavior is related
to each critical hypothesis (e.g., PD), each test behavior is linked to a specific
hypothesis: T1 stands for the critical test behavior relevant to test C1, T2 for the
behavior relevant to test C2 and so forth. The critical behavior was dichotomously
scored (behavior not shown: 0; behavior shown: 1; no partial credits) and extracted
from computer-generated log-files (Fig. 3).

Please note that C2 represents the diagnostic hypothesis that contains the correct
cause of P1; C3 contains the correct cause of P2. To solve the problem, the correct
cause of the problem must be given and proved by relevant evidence. That is, the
appropriateness of a diagnostic hypothesis had to be interpreted in the light of evidence.
As mentioned before, the interpretation of evidence could be (very) challenging.
Consequently, collecting relevant evidence (i.e., conducting relevant tests; e.g., T2)
does not logically imply solving the diagnostic problem (e.g., P1).

For exploratory purposes, the overall number of behavioral actions and the follow-
ing time measures were included, too: the time spent on a diagnostic problem (time on
problem) and the time used for critical behavior (time on critical behavior). To
determine the time on critical behavior, the theoretical assumptions of Table 2 were
applied. That is, the time period for P1 was calculated adding the portions of time spent
to conduct T2, I2, I3, ES and LD. PD was not considered, since there was almost no
between-individual variation (Table 3). While the time spent on a problem is presum-
ably rather a rough indicator of the process quality (Greiff et al. 2016), the time on
critical behavior should be much more relevant, because it directly relates to critical
behavior and the process theory.

Sample and Design

In order to test the research hypotheses, 339 car mechatronic apprentices nearing the
end of the third year of training were sampled. Overall, three German federal states
(Baden-Württemberg, Bavaria, Hesse) and 25 classes of vocational schools were
included. The apprentices were 17 to 41 years old (M = 20.8) and, as could be expected
in this profession, almost all of them were male (97%).

The problems were administered in a computer lab and within a large project. The
relevant problems here refer to a testing time of 45 min (P1: 20 min and P2: 25 min). To
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control for position, that is exhaustion effects, a Latin square design was used (Frey
et al. 2009, p. 45). Since both problems are similar, this design allowed analysis of the
moderator effect of experience (RH3): For each problem, there is one group with no
experience and one group with experience in diagnosing the fuel temperature sensor.

The standardized instruction for the assessment took 30 min. Initially, the
instructor demonstrated the handling of the simulation by means of a video
projector. Afterwards, the apprentices individually worked on standardized tasks
concerning the handling of the simulation. In very rare cases, apprentices could
not complete a task. Then, the instructor gave explanations in front of the class
using the video projector. Finally, the apprentices were acquainted with how to
prepare the handwritten documentation.

Statistical Analyses

Prior to the test of the research hypotheses, descriptive statistics and correlations of the
process data with the problem-solving success were calculated using SPSS 23. For two
dichotomous measures, the phi correlation coefficient was used; for a dichotomous and
continuous measure, the point biserial correlation was calculated.

The hypotheses were tested using Mplus 7 and probit regression models. Such
models can handle binary mediator and outcome variables. The mediator and
outcome variables were statistically modeled as normal distributed latent response
variables underlying the observed responses (Muthén 2011, pp. 19). In the case of
binary predictors, identical to linear regression, observed responses (0, 1) were
considered. The estimation of the parameters drew on the weighted least square
estimator (WLSMV). Due to the sampling of school classes, that is, the depen-
dence of observations, the Mplus option BTYPE = COMPLEX^ was applied to get
correct standard errors.

T2

Fig. 3 Example of a log-file. T2: test referring to the critical diagnostic hypotheses C2
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To investigate the influence of the critical behavior on the problem-solving success
(RH1), regression analyses for each problem were carried out and the following effects
were examined: non-standardized regression coefficients (b), their standard errors (SE
b) and statistical significance (p), the standardized coefficients (β) and the variance of
the success explained by the critical behavior (R2).

Whether the influence of the critical test behavior is stronger than the influence of the
critical information behavior (RH2), was examined by comparing the R2 of the critical
information behavior to the R2 of the critical test behavior. In order to examine the
moderator effect of experience (RH3), two-group analyses were done where one group
represented test takers with no experience and the other group represented test takers
with experience. Speaking about Problem 1, the inexperienced group consisted of
apprentices starting with Problem 1, and the experienced group was made up of
apprentices starting with Problem 2 and working on problem 1 afterwards. So, when
working on Problem 1, the experienced group already had experience with diagnosing
the fuel temperature sensor. The moderator effect was evaluated using a two-step
procedure: In the first step, the model parameters of both groups were freely estimated;
in the second step, the effects (b) of the problem-solving behavior were equated across
the groups. Whether both models differed significantly was analyzed by comparing the

Table 3 Descriptive statistics and correlations of the critical behavior with the problem-solving success

Measure Scale M SD r (success) M SD r (success)

Problem 1 Problem 2

Critical information behavior PD 0/1 .99 .09 1.00 .02

ES 0/1 .94 .12* .96 .09

I1 0/1 .70 −.03 .72 −.09
I2 0/1 .42 .20*** .45 −.06
I3 0/1 .32 .15** .37 .00

LD 0/1 .34 .22*** .34 .18**

CD 0/1 .13 .01 .36 .43***

Critical test behavior T1 0/1 .49 .28*** .62 .13*

T2 0/1 .62 .70*** .51 .17**

T3 0/1 .03 .12* .15 .89***

T4 0/1 .03 .15** .12 .82***

T5 0/1 .02 .00 .11 .29***

Behavioral actions 103.4 70.9 −.11* 147.6 95.4 .11*

Time on problem 581.9 303.9 −.16** 775.2 403.1 .13*

Time on critical behavior 93.21 93.2 .24*** 79.97 80.7 .35***

M 0/1 .57 .16

P1: N = 336; P2: N = 339; PD: selecting the Problem Description; ES: reading out the Error Storage; I1-I3:
selecting Instruction 1–3; LD: selecting the Localization Diagram; CD: selecting the Circuit Diagram; T1-T5:
specific Tests

* p < .05. ** p < .01. *** p < .001
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Satorra-Bentler scaled chi-square values of the models (Mplus option BDIFFTEST^).
Significant differences between the models indicate the moderation effect of experience.

Whether the influence of the critical information behavior is mediated by the
critical test behavior (RH4), was investigated by means of mediation analyses. As
suggested by MacKinnon (2008, pp. 334-335), the bias-corrected bootstrap meth-
od (1000 samples) was employed to evaluate mediation (i.e., indirect) effects, and
the 95% confidence intervals were inspected. Mplus does not allow for
bootstrapping and controlling for dependent observations simultaneously. Thus,
the estimations were run twice; the results showed no mentionable differences.
The mediation models were regarded as having a good overall fit if they met the
following criteria: insignificant χ2 value, ratio of the χ2 value and degrees of
freedom ≤3, root mean square error of approximation (RMSEA) ≤ .08, weighted
root mean square residual (WRMR) ≤ 1 and comparative fit index (CFI) ≥ .95
(Moosbrugger and Schermelleh-Engel 2008, p. 319; for WRMR see Wang and
Wang 2012, p. 70). Results were considered significant if p was less than .05 in all
statistical analyses.

Results

Descriptive Statistics

As expected, both diagnostic problems proved to be different in difficulty:
Problem 1 was solved by 57% and P2 by 16% of the testees (bottom line of
Table 3). Considering Problem 1, Table 3 illustrates a great variation between
the actions taken during the test: Whereas practically every testee selected the
problem description (99%), very few of them conducted the tests BT3^, BT4^
and BT5^ (3%, 3% and 2%). There were four significant and low-to-moderate
correlations between the critical information behavior and the problem-solving
success. In terms of PD and ES, the low correlations were to be expected due
to little variation between the individuals. Most of the correlations of the
critical test behavior and the success were significant, too. T2 appeared to
have the highest correlation compared to the other coefficients. It should be
noted that PD, T3, T4 and T5 will be dropped in further analyses of P1
because some expected values of the 2 × 2 contingency table underlying the
correlations were below 5 (Field 2013, p. 735).

Analyzing P2, two significant correlations between the critical information
behavior and the success were found, and the correlation of CD was substan-
tial. The correlations of the critical test behavior and the problem-solving
success were also significant, and the magnitude of the coefficient BT3^ was
salient. Again, the inspection of the expected frequencies of the contingency
tables suggested excluding some behavior from further analyses: PD and ES.
Complementary to these descriptive statistics, the contingency tables of the
critical behavior and the problem-solving success are given in Appendix A,
Table 8.

Comparing the results of the other process data revealed expectable differences: The
difficult problem induced more behavioral actions and time on a problem than the
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easier one. The correlations between these measures and the success were low-to-
moderate, and the time on critical behavior turned out to be the best predictor of
success. It is also worth mentioning that the direction of the correlations related to time
on problem and behavioral actions changed depending on the problem, whereas the
direction of the relationship of time on critical behavior with success was stable.

Effects of the Critical Behavior (RH1)

I2 and I3 turned out to correlate perfectly meaning that when instruction 2 was selected,
instruction 3 was selected too. Due to this perfect correlation, the following analyses do
not include I3. Expectedly, sensitivity analyses showed that the results did not depend
on whether I2 or I3 was included.

Starting with Problem 1, Table 4 shows that the critical information behavior
had a considerable overall effect on the problem-solving success (bottom line of
model 1). Here, and in the following analyses, I1 were, surprisingly, revealed to
have a negative effect, which will be dealt with in the discussion. Regarding the
critical test behavior, the overall effect was higher than in model 1. The
integration of the test and information behavior in a common regression model
slightly increased the effect.

Turning to P2, the previous findings were largely confirmed (Table 5): The infor-
mation behavior and test behavior had remarkable effects on the success. In compar-
ison to P1, the effects were even higher. Due to the high prognostic value of T3, which
is also documented by the high correlation of T3 with the success (Φ = .89, Table 3), the
other test behavior was dropped in model 2 and 3. Here, and in contrast to the following
analyses, I2 turned out to have a negative effect, which proved to be irrelevant: If I2 had
been excluded, the R2 would have changed from .360 to .359.

Table 4 Effects of the critical information behavior and critical test behavior on success in solving Problem 1

Critical behavior Model 1: Information behavior Model 2: Test behavior Model 3: Problem-solving
behavior

b SE b β b SE b β b SE b β

ES 0.73* 0.32 .16 0.03 0.49 .01

I1 -0.81*** 0.20 −.34 −0.69** 0.29 −.21
I2 0.73*** 0.18 .33 0.43* 0.21 .14

LD 0.55* 0.17 .24 0.24 0.19 .08

CD -0.11 0.22 −.03 0.09 0.27 .02

T1 -0.03 0.18 −.01 −0.02 0.20 −.01
T2 2.17*** 0.19 .73 2.13*** 0.20 .69

Constant 0.43 0.28 1.16*** 0.18 0.97* 0.41

R2 .18 .52 .56

N = 336; ES: reading out the Error Storage; I1-I2: selecting Instruction 1–2; LD: selecting the Localization
Diagram; CD: selecting the Circuit Diagram; T1-T5: specific Tests

* p < .05. ** p < .01. *** p < .001
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Comparing the Effects of the Critical Behavior (RH2)

Considering Table 4 and Problem 1, the clear difference in R2 documented a (much)
higher effect of the test behavior on the success than of the information behavior on the
success. In model 3, the probability of solving P1 would increase from 16.6% to 87.7%
if only T2 changed from 0 to 1 (i.e., from not conducting to conducting T2). If the
scoring had been based on T2, 85.4% of the sample (287 testees) would have been
scored correctly.

With regard to Table 5, the test behavior also appeared to have a higher effect than
the information behavior. Assuming that only CD and T3 changed from 0 to 1, the
probability of the problem-solving success would increase from 7.6% to 51.2% (model
1) and 2.1% to 92.4% (model 2). Drawing on T3, an automatic scoring of P2 would
have led to a correct scoring of 97% of the sample (329 testees).

Moderation Effect of Experience (RH3)

Table 6 gives the results of the two-group analysis for Problem 1 and the moderator
effect of experience. In case of ES, splitting the sample into two groups entailed
categories having too few observations, which imposed to exclude ES from the analysis.

Comparing the groups, the effects of LD differed substantially: In the inexperienced
group, the effect of LD was high and significant; in the experienced group, it was
insignificant. LD refers to selecting the location diagram to find out the location of the
fuel temperature sensor. Obviously, this piece of information is easy to memorize.
When the location of the sensor had already been figured out (while working on P2),
the testees tended to not conduct LD once again. In this vein, LD was selected by
56.4% of the inexperienced testees and only 13.2% of the experienced ones.

Table 5 Effects of the critical information behavior and critical test behavior on the success in solving
Problem 2

Critical behavior Model 1: Information behavior Model 2: Test behavior Model 3: Problem-solving
behavior

b SE b β b SE b β b SE b β

I1 −0.45* 0.18 −.16 −0.18 1.56 −.05
I2 -0.22*** 0.06 −.09 0.14 1.64 .04

LD 0.17 0.12 .06 0.37 0.33 .11

CD 1.46*** 0.04 .57 0.15 0.28 .05

T3 3.46*** 0.34 .78 3.37*** .35 .74

Constant 1.43*** 0.31 2.03** 0.19 2.17*** 0.35

R2 .36 .61 .63

N = 339; ES: reading out the Error Storage; I1-I2: selecting Instruction 1–2; LD: selecting the Localization
Diagram; CD: selecting the Circuit Diagram; T1-T5: specific Tests

* p < .05. ** p < .01. *** p < .001
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Equating the effects of both groups, and comparing the chi-square values of the
resulting model to the value of the two-group model with freely estimated parameters
of Table 6, significant model differences (Δχ2(4) = 13.42, p = .009) were found,
supporting the moderation effect of experience. The decline in R2 from .35 (model 1) to
.11 (model 2) is another piece of evidence for this effect.

Table 7 gives the results for P2. Please remember that CD refers to selecting the
circuit diagram required to test T3 and that experience could make a difference
here. The influence of CD, however, was quite stable across the groups. In this
line, the difference of the chi-square values of the freely estimated and the
Bequated^ two-group model was not significant (Δχ2 (4) = 2.18, p = .70). The
fact that the change in R2 (from .47 to .32) gave some evidence for the moderation
effect should, however, not be ignored.

Mediation Effect of the Critical Test Behavior (RH4)

To investigate the mediation effect of the test behavior, only the information
behavior that correlated with the problem-solving success was considered (Field
2013, p. 410). In Problem 1, this holds for ES, I2 and LD.3 The left part of Fig. 4
illustrates that T2 explained 82% of the variance of the success in solving P1. In
comparison to Table 4, this R2 is much higher. This is due to different statistical
approaches: Whereas T3 is a binary predictor in Table 4, here it is a mediator
variable (see the section on statistical analyses). The information behavior
appeared to have significant direct effects on T2 and, more importantly here,
considerable indirect effects.

The right part of Fig. 4 gives the mediator model for P2 and a very high R2 caused
by T3. CD turned out to have a significant and substantial indirect effect. It should be
stressed, however, that this mediator model might be biased because of cells

3 As mentioned before, I3 was not considered due to a perfect correlation with I2.

Table 6 Moderation effect of experience analyzing Problem 1

Critical information behavior Model 1: Inexperienced group Model 2: Experienced group

b SE b β b SE b β

I1 −0.61* 0.30 −.21 −.62* 0.30 −.28
I2 0.54* 0.24 .22 .80*** 0.22 .11

LD 1.32*** 0.24 .53 −0.27 0.46 −.08
CD -0.31 0.27 −.09 0.41 0.24 .12

Constant 0.41* 0.20 −0.41 0.23

R2 .35 .11

Model 1: N = 176; model 2: N = 157; I1-I2: selecting Instruction 1–2; LD: selecting the Localization Diagram;
CD: selecting the Circuit Diagram

* p < .05. *** p < .001
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comprising near-zero cases in the contingency table of T3 and PS2 (Byrne 2012, p.
131) due to an almost perfect correlation between these measures. In comparison to the
previous analyses, this issue resulted from a different statistical approach. Although this
very high correlation is in line with the theory on the diagnostic problem-solving
process, the findings of this mediator analysis should be interpreted cautiously.

Table 7 Moderation effect of experience problem analyzing Problem 2

Critical information behavior Model 1: Inexperienced group Model 2: Experienced group

b SE b β b SE b β

I1 −0.26 0.38 −.09 −.64 0.35 −.23
I2 -0.21 0.35 −.08 −.25 0.29 −.10
LD 0.52 0.45 .19 0.06 0.45 .02

CD 1.61*** 0.40 .57 1.42*** 0.34 .56

Constant 2.02*** 0.55 1.15** 0.35

R2 .47 .32

Model 1: N = 165; model 2: N = 174; I1-I2: selecting Instruction 1–2; LD: selecting the Localization Diagram;
CD: selecting the Circuit Diagram

* p < .05. ** p < .01. *** p < .001

ES

R2 = .18

Indirect effects

ES: b = 0.61**, 95% CI [0.09, 1.17], = .16
I2: b = 0.41**, 95% CI [0.15, 0.65], = .19
LD: b = 0.45**, 95% CI [0.19, 0.72], = .20

Fit statistics

χ2 (3, N = 336) = 5.37, p = .15, χ2/df = 1.79,
RMSEA = .05, CFI = 1.00, WRMR = 0.46

PS1I2

LD

T2

b = 0.51**
= .22

b = 0.69*
= .17

b = 0.46**
= .21

b = 0.89***
= .90

Problem 1

R2 = .82

CD

Indirect effects

CD: b = 1.42***, 95% CI [1.09, 1.76], = .56
LD: b = 0.07, 95% CI [-0.27, 0.39], = .03

Fit statistics

χ2 (2, N = 339) = 2.23, p = .32, χ2/df = 1.12,
RMSEA = .03, CFI = 1.00, WRMR = 1.24

PS2

LD

T3

b = 1.56***
= .59

b = 0.91***
= .94

Problem 2

b = 0.07
= .03

R2 = .36 R2 = .89

Fig. 4 Mediator effects of the critical test behavior. ES: reading out the Error-Storage; I1-I2: selecting
Instruction 1–2; LD: selecting the Localization Diagram; CD: selecting the Circuit Diagram; T2-T3: specific
Tests; PS: Problem-solving Success; CI: Confidence Interval. * p < .05. ** p < .01. *** p < .001
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Discussion

Summary

The aim of the empirical study was to investigate the presented theory of the diagnostic
problem-solving process in professional contexts. The theory distinguishes between four
sub-processes of the diagnostic problem-solving process and includes several hypotheses.
In this study, four hypotheses were examined. According to the theory, the quality of the
sub-processes Brepresenting information^ and Btesting diagnostic hypotheses^ causally
influences the problem-solving success (RH1). Secondly, the theory suggests that the
influence of the quality of Btesting hypotheses^ on the problem-solving success is higher
than the influence of Brepresenting information^ (RH2). Thirdly, the theory advises that
the influence of the critical information behavior on the success depends on problem-
related experience (RH3). Fourthly, the theory assumes that the influence of the quality of
Brepresenting information^ on the problem-solving success is mediated by the quality of
Btesting hypotheses^ (RH4). While RH1 and RH4 logically follow from the theory, RH2
and RH3 are in line with, but not logically derivable from, the theory. The quality of the
sub-processes was operationalized by critical information behavior and critical test
behavior, respectively. This critical behavior follows from critical diagnostic hypotheses
and problem-specific as well as substantive considerations. Accordingly, the theory can
only be investigated in specific professional contexts. In this study, the theory was
examined in the context of car mechatronics with diagnostic problems of the car sector,
a computer-based assessment and a sample of car mechatronic apprentices. The critical
behavior was extracted from computer-generated log-files.

In accordance with the theory, critical information behavior and critical test behavior
substantially affected the problem-solving success (RH1). Some critical behavior, however,
could not be included in the statistical analyses due to (almost) perfect correlations (e.g., I2
and I3) or (very) little variance (e.g., PD). These findings did not refute the empirical
hypotheses and are irrelevant to the theory. Results indicated that the effects of some critical
behavior were strong, whereas other critical behavior had only weak or even no effect.

In line with RH2, results showed that the effect of the critical test behavior was
higher than the effect of the critical information behavior. Drawing on the theory, this
finding was explained by the fact that the quality of Btesting hypotheses^ draws upon
more critical mental activities than the quality of Brepresenting information^.

Unexpectedly, the influence of the critical behavior, related to the correct diagnostic
hypothesis, turned out to be stronger than the influence of behavior related to other critical
hypotheses: With respect to Problem 1, T2, I2, ES and LD had remarkable effects on the
success (Fig. 4). As Table 2 illustrates, this behavior is connected to the correct diagnostic
hypothesis of Problem 1. Notably, the test behavior related to the correct diagnostic
hypothesis of the problems (T2 and T3, Table 2) proved to have particular strong effects
on the success. In contrast to other findings (Klahr and Dunbar 2000, p. 77), this suggests
that many testees did not have difficulties with interpreting evidence coming from the tests.

The moderation effect of experience (RH3) was supported by the results on Problem
1; respective results on Problem 2 demand further discussion (see below). From a
theoretical viewpoint, experience (i.e., problem-related knowledge) can be retrieved
from memory and could lead to a high quality of Brepresenting information^, although
no observable critical information behavior is exhibited.
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With regard to RH4, findings documented that the effects of the critical information
behavior on the problem-solving success were mediated by the critical test behavior.
Lastly, the exploratory investigation of other process data showed that a time measure
created by means of the theory had more predictive power than the rather crude quality
indicators Btime on problem^ and Bnumber of behavioral actions^.

In terms of the moderation effect of experience (RH3) in Problem 2 (P2), the effects of
the critical information behavior did not prove to differ significantly depending on
experience. A remarkable effect difference was anticipated, especially with respect to
selecting the circuit diagram (CD). This unexpected finding might be explained by the
following reasons: Firstly, several pieces of information of the circuit diagram had to be
known to solve P2, increasing the probability of selecting the circuit diagram even if it had
been looked up before (while working on Problem 1). Secondly, relatively few testees had
selected the circuit diagramwhile working on Problem 1 (13%, Table 3)meaning that they
had not had the opportunity to memorize relevant information beforehand. Both reasons
indicate that many testees did not have relevant experience and could not retrieve relevant
knowledge. Thus, with Problem 2, the moderation effect of experience was probably not
found because many testees did not have relevant experience.

Surprisingly, in some regression models, a specific information behavior, I1, had a
negative effect on the problem-solving success, although no correlation was found
between I1 and the success. More detailed analyses showed that I1 and other predictors
were clearly associated, and entering I1 into the regression models increased the
amount of explained variance: I1 turned out to be a classical suppressor variable
(Paulhus et al. 2004, p. 306). So there were unsuccessful apprentices that had conduct-
ed I1 and other information behavior; controlling for these apprentices increased the
explained variance. In this light, the negative effect of I1 is irrelevant to the theory.

Against this background, it seems defensible to conclude that the empirical results
did not contradict the empirical hypotheses. It should be stressed, however, that the
results do not confirm or even verify the theory of the diagnostic problem-solving
process in professional contexts. They solely document that the empirical investigation
failed to disprove the theory in the context of car mechatronics and indicate a (very)
first empirical corroboration of the theory. Results on RH1 did not refute the theory but
suggest a specification: Based on these findings, it could be speculated that the critical
behavior, related to the correct diagnostic hypothesis, is especially suitable to
operationalize the quality of the sub-processes.

Implications and Limitations of the Study

The theory takes a domain-specific and domain-general perspective: On the one hand,
the quality of the sub-processes has to be operationalized by applying domain-specific
expertise to identify critical behavior. On the other hand, it is supposed that the
distinction of four sub-processes, their causal relationship and their influence on the
diagnostic problem-solving process generalize to different professional contexts.

It is very important to take into account that the theory has only been empirically
investigated so far in the context of car mechatronics, and with only two diagnostic
problems. Moreover, the requirements of diagnostic problems and professional con-
texts could be (very) different. For example, whereas diagnostic problems of the
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technical context usually refer to technical systems, diagnostic problems of the medical
context relate to individuals. When dealing with individuals, the side effects of
problem-solving behavior (e.g., painful tests) are especially important. These side
effects might influence the problem-solving process. Moreover, it should be stressed
that the theory concentrates on specific aspects and does not cover other process aspects
(e.g., the two-system view, Schwartz and Elstein 2008, p. 229).

Methodically, it should be borne in mind that the statistical analyses might be biased
by categories comprising too few observations. It is questionable whether this problem
can be solved by increasing the sample size, since near-to-zero categories could be in
line with the theory. For example, there might be diagnostic situations in which the
Bcorrect^ critical test behavior and the success correlate (very) closely, implying near-
to-zero categories in contingency tables. Another limitation of the study is that
treatment options (e.g., repair) were excluded by definition. Including treatment
options might seriously affect the diagnostic problem-solving process (Holmboe
and Durning 2014, p. 114).

Critical diagnostic hypotheses are the key component of the presented theory. Donner-
Banzhoff et al. (2016) still argue that experienced physicians often do not formulate
diagnostic hypotheses; instead, they extensively explore the patient’s situation and some-
times even unconsciously collect information. In this context, it should be underlined that
the process theory does not imply statements on strategies used by a diagnostician and her/
his level of awareness. Diagnostic problems might be solved based on routines, deliberate
approaches, or a mixture of both. Diagnostic hypotheses might be formulated early or late
in the process, consciously or unconsciously. Such considerations are beyond the scope of
the theory. A crucial point of the theory, however, is that successful diagnostic problem
solving relies on diagnostic hypotheses. In the end, information collection is completely
useless as long as there is not at least one piece of information (i.e., evidence) that
corroborates a specific hypothesis and refutes others. Even if a hypothesis is not actively
and consciously formulated, it is pivotal: From a theoretical viewpoint, a well-founded
solution of a diagnostic problem is nothing but an evidence-based diagnostic hypothesis.
This point was also made by Barrows and Feltovich (1987, p. 89).

Overall, the theory could be useful to empirically investigate the problem-solving
process in different professional contexts, but it needs further empirical investigations
in the context of car mechatronics and other professional contexts. It is an open
question whether the presented approach to operationalize the sub-processes’ quality,
that is, to identify critical behavior, would apply to other professional contexts. In future
studies, the theory could also be examined using verbal reports on thought processes. In
this case, the idea that verbalization Bmay lead to rationalizations that do not accurately
explain actual cognitive processes^ (Durning et al. 2015, p. 128) should be considered.

From a didactical perspective, the theory gives helpful orientation. It advises
ensuring that individuals learn how to gather problem-relevant information and have
the knowledge as well as the skills to formulate, test and evaluate critical hypotheses.
Following van Merrienboer (2013), it seems wise to teach problem-solving skills
providing Bwhole^ rather than Bpieces^ of diagnostic problems, starting with simple
problems and gradually increasing the difficulty. When teaching diagnostic problem
solving, the theory helps to clarify the content of the lessons, to identify the areas where
students need support and to figure out relevant learning difficulties. On top of that, it
emphasizes the relevance of experience and diagnostic knowledge.

Diagnostic Problem-Solving Process in Professional... 155



Finally, I would like to stress the role of research on the professional problem-
solving process for vocational education and training. Undoubtedly, teaching profes-
sional problem solving is essential to prepare students for their professional lives (van
Merrienboer 2013). Learning to solve diagnostic problems means acquiring the skills
necessary to successfully organize a process. In some fields, we can reliably and validly
assess whether someone can solve a professional problem (e.g., Rausch et al. 2016;
Walker et al. 2016) but we still know very little about the process which underlies the
problem’s solution or failure. In short, we do not know a lot about the process which we
want to foster. Given an elaborated process theory, log-file data provide an immense
potential for examining this process, but have been rarely used to date. This is
particularly unsatisfactory, since such data can help to understand what students have
learned and still have to learn (Greiff et al. 2015, p. 103), and it can be smoothly
combined with other process data. For example, interesting insights might be gained
when considering whether a relevant information sheet was selected and whether
relevant areas of the sheet were focused on for a certain time. From this perspective,
combining log-file and eye-tracking data makes a Bpromising match^ that can further
enhance our understanding of the professional problem-solving process.
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Appendix 1

Table 8 Contingency tables: Numbers of testees that solved the problems and showed the critical behavior

Critical behavior Problem 1 Problem 2

0: Unsuccessful 1: Successful Total 0: Unsuccessful 1: Successful Total

Information behavior

PD 0: Not shown 2 0 2 1 0 1

1: Shown 144 190 334 284 54 338

Total 146 190 336 285 54 339

ES 0: Not shown 14 7 21 13 0 13

1: Shown 132 183 315 272 54 326

I1 0: Not shown 42 60 102 75 20 95

1: Shown 104 130 234 210 34 244

I2 0: Not shown 101 94 195 152 33 185

1: Shown 45 96 141 133 21 154

I3 0: Not shown 111 118 229 180 34 214

1: Shown 35 72 107 105 20 125

LD 0: Not shown 113 108 221 198 25 223

1: Shown 33 82 115 87 29 116
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