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Abstract
FF-10501 is a novel inhibitor of inosine monophosphate dehydrogenase (IMPDH). Clinical trials of FF-10501 for myelodys-
plastic syndromes (MDS) and acute myeloid leukemia (AML) are currently being conducted in the United States. Although 
it has been shown that FF-10501 induces apoptosis in hematological malignant cells, the intracellular mechanisms of this 
effect have not been characterized. We conducted an in vitro study to elucidate the mechanisms of FF-10501-induced cell 
death using 12 hematological malignant cell lines derived from myeloid and lymphoid malignancies. FF-10501 suppressed 
the growth of each cell line in a dose-dependent manner. However, the clinically relevant dose (40 μM) of FF-10501 induced 
cell death in three cell lines (MOLM-13, OCI-AML3, and MOLT-3). Investigation of the cell death mechanism suggested 
that FF-10501 induces both apoptotic and necrotic cell death. FF-10501-induced apoptosis was mediated by caspase-8 activa-
tion followed by activation of the mitochondrial pathway in MOLM-13 and MOLT-3 cells. FF-10501 induced necrotic cell 
death via endoplasmic reticulum stress in OCI-AML3 cells. The present study is the first to identify intracellular pathways 
involved in FF-10501-induced cell death.
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Introduction

Myelodysplastic syndromes (MDS) are a heterogeneous 
group of clonal disorders of hematopoietic stem and pro-
genitor cells characterized by ineffective hematopoiesis, 
abnormal cell morphology, and high risk of transition to 
acute myeloid leukemia (AML) [1, 2]. The only potentially 
curative therapy for MDS is allogenic hematopoietic stem 
cell transplantation (HSCT). Although 30–40% of patients 
who undergo HSCT show long-term disease-free survival, 
its use is restricted to younger patients with an appropri-
ate donor. Azacytidine is the only agent demonstrated to 
improve overall survival in the high-risk MDS group com-
pared with supportive care alone [3]. However, complete 
remission rates in response to currently available agents are 
low, and recurrence is a common problem. Therefore, new 
therapeutic options are essential.

Inosine monophosphate dehydrogenase (IMPDH) is a 
rate-limiting enzyme for biosynthesis of guanine nucleo-
tides [4]. This enzyme mediates the conversion of IMP 
to xanthine monophosphate, which is subjected to the 
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synthesis of guanosine monophosphate [4]. In mammals 
there are two IMPDH isoforms, termed IMPDH1 and 
IMPDH2, which are encoded by distinct genes [5, 6]. 
IMPDH1 is expressed ubiquitously, while IMPDH2 has 
been shown to be increased in a variety of tumors includ-
ing hematological malignancies [7, 8]. Therefore, tar-
geting IMPDH is recognized as a promising therapeutic 
approach for hematological malignancies. FF-10501 is a 
novel IMPDH inhibitor and is intracellularly metabolized to 
mizoribine 5′-monophosphate by adenine phosphoribosyl-
transferase (APRT), which inhibits IMPDH [9]. Currently, 
a clinical trial for FF-10501 in patients with relapsed or 
refractory hematological malignancies, including MDS 
and AML, is being conducted in the United States, and 
FF-10501 treatment has resulted in partial remissions and 
stabilized disease status without severe side effects (https​
://clini​caltr​ials.gov/ct2/show/NCT02​19395​8, https​://clini​
caltr​ials.gov/ct2/show/NCT03​19468​5). Previous studies 
have detailed the anti-tumor characteristics of FF-10501 
in vitro. Murase et al. [10] showed that FF-10501 effectively 
killed cells resistant to azacytidine, decitabine, and cyta-
rabine, suggesting that FF-10501 could be an alternative 
treatment to azacytidine in patients with leukemia. Ichii 
et al. [11] demonstrated that FF-10501 promoted differen-
tiation to erythroid and myeloid lineages via production 
of reactive oxygen species followed by the activation of 
the mitogen-activated protein kinase pathway. Moreover, 
Yang et al. [12] demonstrated the induction of apoptosis in 
myeloid leukemia cells by FF-10501. However, the intracel-
lular mechanisms of FF-10501-induced cell death have not 
been characterized.

We conducted this study to elucidate the mechanisms of 
action of FF-10501 in hematological malignant cultured cell 
lines and found that FF-10501 induced not only apoptotic 
but also necrotic cell death. FF-10501-induced apoptotic 
cell death was induced by activation of caspase-8 and mito-
chondrial pathway. FF-10501-induced necrotic cell death 
was mediated by endoplasmic reticulum (ER) stress. For 
the first time, we characterized the mechanisms of action of 
cell death induced by FF-10501.

Materials and methods

Cell culture

We used 12 cell lines derived from a variety of hemato-
logical malignant diseases: two cell lines established from 
patients with AML at relapse after initial MDS (MOLM-
13, SKM-1), two acute promyelocytic leukemia cell lines 
(HL-60, NB-4), two de novo AML cell lines (OCI-AML3, 
THP-1), two CML cell lines (K562, MEG-01), two acute 
T lymphoblastic leukemia cell lines (MOLT-3, Jurkat), 

Burkitt’s lymphoma cell line (Raji), and a multiple mye-
loma cell line (RPMI8226). NB-4, THP-1, K562, MEG-
01, MOLT-3, Jurkat, Raji, and RPMI8226 cells were pur-
chased from ATCC (VA, USA). HL-60 cells were from 
RIKEN Inc. (Tokyo, Japan). OCI-AML3 cells were from 
DSMZ (Braunschweig, Germany). MOLM-13 and SKM-1 
cells were kindly provided by FUJIFILM Corporation. All 
cell lines were maintained in RPMI1640 with 10% fetal 
bovine serum (ThermoFisher Scientific, MA, USA) and 
1% penicillin and streptomycin (FUJIFILM Wako Pure 
Chemical Corporation, Osaka, Japan). The cells were cul-
tured at 37 °C in a humidified atmosphere of 5% CO2 in 
air.

Measurement of cell viability

Cell viability was measured using PrestoBlue Viability 
Reagent (ThermoFisher Scientific, MA, USA) according to 
the manufacturer’s instructions. Fluorescence intensity was 
measured using a DTX 880 Multimode Detector (Beckman 
Coulter Inc. CA, USA). Curves were generated and GI50 was 
calculated using Prism 6 (GraphPad Software, CA, USA).

Measurement of the percentage of viable cells

Cells were stained with GUAVA ViaCount Reagent (Merck 
KGaA, Darmstadt, Germany) according to the manufactur-
er’s instructions, and fluorescence intensity was analyzed 
using GUAVA ViaCount software in GUAVA PCA (Merck 
KGaA, Darmstadt, Germany).

Annexin V/PI staining

Cells were stained using MEBCYTO® Apoptosis Kit 
(Annexin V-FITC Kit) (Medical and Biological Laboratories 
Co., Ltd, Nagoya, Japan) according to the manufacturer’s 
instructions. Fluorescence was detected using FACSVerse 
(BD Biosciences, NJ, USA).

Analysis of mitochondrial membrane potential 
(∆ψm)

Cells were stained using 100 nM of MitoTracker Orange 
CMTMRos (ThermoFisher Scientific, MA, USA) accord-
ing to the manufacturer’s instructions. Fluorescence was 
detected using FACSVerse (BD Biosciences, NJ, USA).

Flow cytometric TUNEL assay

Cells were fixed in 1% paraformaldehyde for 15 min on 
ice and then permeabilized in ice-cold 70% ethanol at 
− 20 °C overnight. The cells were then stained using a 

https://clinicaltrials.gov/ct2/show/NCT02193958
https://clinicaltrials.gov/ct2/show/NCT02193958
https://clinicaltrials.gov/ct2/show/NCT03194685
https://clinicaltrials.gov/ct2/show/NCT03194685


608	 T. Matsumoto et al.

1 3

GUAVA TUNEL Kit (Merck KGaA, Darmstadt, Ger-
many) according to the manufacturer’s instructions. 
Fluorescence was measured using FACSVerse (BD Bio-
sciences, NJ, USA).

Western blotting

Cells were lysed in 2% SDS lysis buffer (Tris-buffered 
saline containing 2% SDS and protease inhibitor cock-
tail), then sonicated. Nuclear fractions were extracted 
using EzSubcell Extract (ATTO, Tokyo, Japan) according 
to the manufacturer’s instructions. Protein concentrations 
of cell lysates were determined using the Pierce™ BCA 
Protein Assay Kit (ThermoFisher Scientific, MA, USA). 
Cell lysates containing 10 μg of protein were fractionated 
by SDS-PAGE on a 4–15% mini-protean TGX precast 
gel (Bio-Rad, CA, USA), then transferred to Immun-blot 
PVDF membranes (Bio-Rad, CA, USA). Membranes were 
blocked with 5% bovine serum albumin (BSA) containing 
Tris-buffered saline with 0.1% Tween 20 (TBST) for 1 h at 
room temperature. Membranes were then incubated with 
primary antibodies. Antibodies were purchased from Cell 
Signaling Technology, Inc., except for anti-caspase-8 anti-
body, anti-cytochrome c antibody, and anti-BID antibody, 
which was purchased from Santa Cruz Biotechnology, 
BioLegend, and R&D Systems respectively. The follow-
ing antibodies were incubated as follows: anti-Bax (Cat#: 
2772), anti-Mcl-1 (Cat#: 4572), anti-cytochrome c (Cat#: 
612301), anti-caspase-9 (Cat#: 9502), anti-caspase-8 (Cat#: 
sc-56070), anti-cleaved caspase-8 (Cat#: 9496), anti-cas-
pase-3 (Cat#: 9662), anti-poly(ADP-ribose) polymerase 
(PARP) (Cat#: 9542), anti-cleaved PARP (Cat#: 5625), 
anti-β-actin (Cat#: 4970), anti-BID (Cat#: AF860-SP), 
anti-apoptosis inducing factor (AIF) (Cat#: 5318), anti-
endonuclease G (Endo G) (Cat#: 4969), anti-Histone H3 
(Cat#: 9717), and anti- CCAAT/enhancer-binding protein 
homologous protein (CHOP) (Cat#: 2895) antibodies were 
incubated in 5% BSA containing TBST overnight at 4 °C. 
Membranes were washed three times and incubated with 
horseradish peroxidase-linked anti-rabbit IgG (Cat#: 7074) 
or anti-mouse IgG (Cat#: 7076) in 5% BSA containing 
TBST for 1 h at room temperature. After the membranes 
were washed three times with TBST, immunostaining was 
visualized with 20× LumiGLO® Reagent and 20× Peroxide 
(Cell Signaling Technology, Inc.) using a ChemiDoc Touch 
imaging system (Bio-Rad).

Statistical analysis

Values are expressed as mean ± standard deviation. Statistical 
comparisons were made using one-way ANOVA. P < 0.05 was 
considered statistically significant.

Results

Growth inhibitory and cytotoxic effects of FF‑10501 
on hematological malignant cells

To investigate the anti-tumor effects of FF-10501 on hema-
tological malignant cells, 12 human hematological malig-
nant cell lines were treated with 0–1000 μM FF-10501 for 
72 h. Cell viability was measured and the concentration of 
FF-10501 that inhibited the growth of cells by 50% (GI50) 
was calculated. FF-10501 reduced cell viability of each 
cell line, but the response to FF-10501 varied between 
the cell types (Fig. 1a; Table 1). We defined high sensi-
tivity as GI50 less than 40 μM and low sensitivity as GI50 
greater than 40 μM because previous reports demonstrated 
that the maximum plasma concentration following oral 
administration of FF-10501 was ~ 56 μM [11]. Among the 
eight myeloid cell lines, six cell lines (MOLM-13, SKM-1, 
NB-4, OCI-AML3, THP-1, and K562) showed high sen-
sitivity to FF-10501. Both acute T lymphoblastic leuke-
mia (T-ALL) cell lines (MOLT-3 and Jurkat) also showed 
excellent response to FF-10501. In contrast, B cell lineage 
cell lines (Raji and RPMI8226) showed low sensitivity to 
FF-10501.

To investigate whether FF-10501 induced cell death in 
FF-10501-sensitive cell lines, we measured the percent-
age of viable cells following treatment with 0 or 40 μM 
FF-10501 for 72 h. FF-10501 strongly induced cell death 
in MOLM-13, OCI-AML3, and MOLT-3 cells. In con-
trast, FF-10501 was only slightly cytotoxic toward the 
other cell lines evaluated (Fig. 1b). These results showed 
that a clinical dose of FF-10501 exerted anti-proliferative 
effects on SKM-1, HL-60, NB-4, THP-1, K562, MEG-01, 
Jurkat, Raji, and RPMI8226 cells and cytotoxic effects on 
MOLM-13, OCI-AML3, and MOLT-3 cells.

Type of cell death by FF‑10501

To investigate the type of cell death induced by FF-10501, 
MOLM-13, OCI-AML3, and MOLT-3 cells were treated 
with 0 or 40 μM FF-10501 for 72 h, then stained with 
annexin V/PI to distinguish between apoptotic and necrotic 
cells as below; apoptotic cells: annexin V+PI−, necrotic 
cells: annexin V+PI+ [13]. Treatment with FF-10501 
increased annexin V+PI− cells and annexin V+PI+ cells 
in MOLM-13 and MOLT-3 cells, whereas it largely 
increased annexin V+PI+ cells with slight increase of 
annexin V+PI− cells in OCI-AML3 cells (Fig. 2a). We 
also performed TUNEL assay to evaluate fragmentation 
of genomic DNA associated with apoptosis. TUNEL posi-
tive cells were 14.9%, 16.7%, and 25.8% in MOLM-13, 
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OCI-AML3, and MOLT-3 cells, respectively. (Figure 2b). 
The percentage of TUNEL positive cells was smaller 
than percentage of total annexin V positive cells and 
comparable with percentage of annexin V+PI− positive 
cells (Fig. 2a, b). These results indicated that FF-10501 
induced apoptotic and necrotic cell death in MOLM-13 
and MOLT-3 cells, whereas it mainly induced necrotic cell 
death in OCI-AML3 cells.

Effect of FF‑10501 on mitochondrial membrane 
potential

We next investigated induction of intracellular apoptosis 
pathways by FF-10501. Since loss of mitochondrial mem-
brane potential (∆ψm) is involved in the induction of apop-
tosis, we determined ∆ψm in MOLM-13, OCI-AML3, and 
MOLT-3 cells treated with 0 or 40 μM FF-10501 for 24 h 
(Fig. 3a). We observed loss of ∆ψm in 24.3% and 24.4% of 
MOLM-13 and MOLT-3 cells, respectively. In contrast, the 
decrease in ∆ψm was significant but small in OCI-AML3 
cells. Bcl-2 family proteins are associated with retention of 
∆ψm and the dysregulation of expression of Bcl-2 family 
proteins cause disruption of ∆ψm followed by apoptosis 
[14]. Therefore, we examined the effect of FF-10501 on 
expression of Bcl-2 family proteins, such as Bax and Mcl-1. 
FF-10501 increased Bax expression in MOLT-3 cells but 
not in MOLM-13 and OCI-AML3 cells. Mcl-1 expression 
was decreased by FF-10501 in MOLM-13 and MOLT-3 

but not in OCI-AML3 cells (Fig. 3b). FF-10501 increased 
cytosolic cytochrome c in MOLM-13 and MOLT-3 but not 
in OCI-AML3 cells (Fig. 3c). These results suggested that 
the mitochondria-mediated pathway was associated with 
FF-10501-induced apoptosis in MOLM-13 and MOLT-3 
cells, whereas the contribution of mitochondria was only 
marginal in FF-10501-induced cell death in OCI-AML3 
cells.

Caspase‑8 activation by FF‑10501

Caspase cleavage is associated with induction of apopto-
sis [15]. Caspase-9 and -8 are initiators of and caspase-3 
executes apoptosis [15]. Therefore, we performed western 
blotting to analyze the expression of full-length and cleaved 
forms of caspase-9, -8 and -3 in MOLM-13, OCI-AML3, 
and MOLT-3 cells treated with 0 or 40 μM FF-10501 for 
24 h (Fig. 4a). The expression of cleaved caspase-9 did not 
change in response to FF-10501 in MOLM-13 and OCI-
AML3 cells, and slightly increased in MOLT-3 cells. In 
contrast, cleaved caspase-8 level was greatly increased in 
MOLM-13 and MOLT-3 cells, but not in OCI-AML3 cells, 
in response to FF-10501. Similar results were observed for 
the cleaved form of caspase-3 and poly(ADP-ribose) poly-
merase (PARP), which are downstream effectors of cas-
pase-8. Caspase-8 activates BH3 interacting-domain death 
agonist (BID) and truncated BID (tBID) promotes permea-
bilization of mitochondrial membrane [16]. Western blot-
ting analysis showed that FF-10501 reduced cytosolic BID 
in MOLM-13 and MOLT-3 cells but not in OCI-AML3 
cells (Fig. 4b). These results suggested that the caspase-8/
BID/mitochondria pathway was associated with apoptosis 
induction in MOLM-13 and MOLT-3 cells. Accumulation of 
apoptosis-inducing factor (AIF) and endonuclease G (Endo 
G) in the nucleus is a hallmark of caspase-independent apop-
tosis. We examined whether FF-10501 promoted accumula-
tion of AIF and Endo G in the nucleus of OCI-AML3 cells. 
Nuclear fractions of MOLM-13, OCI-AML3, and MOLT-3 
treated with 0 or 40 μM FF-10501 for 24 h were subjected 
to western blot analysis for AIF and Endo G (Fig. 4c). AIF 
expression was increased by treatment with FF-10501 in 
MOLM-13 and MOLT-3 cells, but not in OCI-AML3 cells, 
while FF-10501 did not change the expression of Endo G 
in any of the three cell lines. These results indicated that 
FF-10501 induced apoptosis in MOLM-13 and MOLT-3 
cells via caspase-dependent and caspase-independent path-
ways, and that OCI-AML3 cells were killed by FF-10501 
via other mechanisms.

We further examined the effect of pan-caspase inhibitor 
Z-VAD-FMK on cell death induced by FF-10501. Z-VAD-
FMK attenuated activation of caspase-8 and -3 in MOLM-
13 and MOLT-3 cells (Fig. 5a). In this condition, Z-VAD-
FMK did not show any effect on cytotoxicity of FF-10501 

Fig. 1   Anti-tumor effects of FF-10501 in hematological malignant 
cells. a Cell viability of the indicated cell lines treated with 0.01–
1000 μM of FF-10501 for 72 h. b The percentage of viable cells of 
the indicated cell lines treated with vehicle or 40 μM FF-10501 for 
72 h. Experiments were repeated in triplicate and results are reported 
as the mean ± SD of these replicates. **P < 0.01, *P < 0.05

◂

Table 1   GI50 of FF-10501 in hematological malignant cells

Cell line GI50 (μM)

Mean ± SE 95% CI

MOLM-13 6.1 ± 1.2 4.6–8.0
SKM-1 9.3 ± 1.1 7.6–11.3
HL-60 530.9 ± 2.2 97.5
NB-4 16.2 ± 1.2 11.7–22.3
OCI-AML3 25.1 ± 1.2 18.4–34.2
THP-1 25.8 ± 1.3 13.8–47.2
K562 6.3 ± 1.1 4.7–8.5
MEG-01 63.1 ± 1.3 37.7–105.0
MOLT-3 6.6 ± 1.2 4.9–8.8
Jurkat 18.5 ± 1.4 9.8–34.8
Raji 1297.2 ± 2.6 325.1
RPMI8226 56.6 ± 1.1 44.0–73.1
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in MOLM-13 and MOLT-3 cells (Fig. 5b). Interestingly, 
Z-VAD-FMK decreased annexin V+PI− cells and increased 
annexin V+PI+ cells with no change in total annexin V+ 
cells in MOLM-13 and MOLT-3 cells (Fig. 5c), indicating 
that Z-VAD-FMK switched cell death type from apoptosis 
to necrotic cell death. These results suggested that caspases, 
especially caspase-8, were involved in the regulation of cell 
death type in MOLM-13 and MOLT-3 cells. Cell death and 
annexin V positivity in OCI-AML3 cells were not affected 
by Z-VAD-FMK (Fig. 5b, c), indicating that FF-10501-in-
duced cell death in OCI-AML3 cells were independent of 
caspase activation.

Involvement of ER stress in FF‑10501‑induced 
necrosis

Since receptor-interacting protein (RIP1) is a central media-
tor of necrotic cell death [17], we examined the effect of 
necrostatin-1 (Nec-1), a RIP1 inhibitor, on FF-10501-in-
duced cell death in OCI-AML3 cells. Nec-1 did not affect 
FF-10501-induced cell death in OCI-AML3 cells (Fig. 6a). 
Previous reports showed that ER stress induces apoptosis 
and necrosis independent of caspase activation [18]. There-
fore, we examined whether ER stress was associated with 
FF-10501-induced necrosis in OCI-AML3 cells. OCI-AML3 
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as the mean ± SD of these replicates. **P < 0.01
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cells were treated with FF-10501 in the absence or presence 
of 4-phenyl butyric acid (4-PBA), a chemical chaperone used 
to suppress ER stress, and the percentage of viable cells was 
measured. 4-PBA abrogated FF-10501-induced cytotoxicity 
in OCI-AML3 cells in a dose-dependent manner (Fig. 6b). 
Moreover, annexin V/PI staining showed that the FF-
10501-induced increase in annexin V+PI+ cells was blocked 
by 4-PBA in a dose-dependent manner, while the increase 
of annexin V+PI− cells by FF-10501 was not affected by 
4-PBA (Fig. 6c). FF-10501 induced the expression of C/
EBP homologous protein (CHOP), a crucial mediator of ER 
stress-induced cell death (Fig. 6d), and 4-PBA suppressed 
FF-10501-induced CHOP expression in OCI-AML3 cells 
(Fig. 6e). These results suggested that ER stress was associ-
ated with FF-10501-induced necrosis in OCI-AML3 cells.

Discussion

In this study, we demonstrated that FF-10501 induced 
apoptosis and necrosis in hematological malignant cells 
via at least two different signaling mechanisms in a cell 

type-dependent manner: caspase-8-mediated apoptosis and 
ER stress-mediated necrosis. Previous studies demonstrated 
the anti-tumor effects of FF-10501 on hematological malig-
nant cells. Yang et al. [12] showed that a clinically relevant 
dose (~ 40 μM) of FF-10501 suppressed the proliferation 
of 10 myeloid leukemia cell lines and induced apoptosis in 
three cell lines. Ichii et al. [11] reported that FF-10501 pro-
moted erythroid differentiation in hematological malignant 
cells and CD34+ hematopoietic progenitor cells. However, 
the intracellular mechanisms of FF-10501-induced cell death 
have not been characterized. The present study was the first 
to show the cell death pathways induced by FF-10501.

We first determined the anti-tumor properties of 
FF-10501 using cell lines derived from a variety of hema-
tological malignant cell lines including myeloid and lym-
phoid cell lines. Consistent with previous studies [10–12], 
FF-10501 suppressed cell growth of all cell lines evaluated 
in this study, but the sensitivity varied (Fig. 1, Table 1). 
FF-10501 substantially inhibited growth of myeloid leuke-
mia cells, except for HL-60 and MEG-01 cells. Previous 
studies showed that IMPDH is over-expressed in myeloid 
leukemia cells, and the IMPDH inhibitor tiazofurin exerted 

Fig. 3   Effect of FF-10501 on 
the mitochondria-mediated 
apoptosis pathway. a Histo-
gram of ∆ψm in MOLM-13, 
OCI-AML3, and MOLT-3 
cells treated with vehicle (gray 
filled histogram) or 40 μM of 
FF-10501 (black line) for 72 h. 
Experiments were repeated 
in triplicate and results are 
expressed as the mean ± SD of 
these replicates. **P < 0.01. b, 
c The expression of Bax and 
Mcl-1 (b) and cytochrome c (c) 
in the cytoplasm of MOLM-
13, OCI-AML3, and MOLT-3 
cells treated with 0 or 40 μM of 
FF-10501 for 24 h
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anti-leukemia activity in a phase II study [19]. In addition, 
a recent report showed that IMPDH is the rate-limiting 
enzyme for synthesis of guanine nucleotides and is a tran-
scription factor for oncogenes including Myc, which is asso-
ciated with transformation and progression of cancer cells 
[20]. An IMPDH inhibitor, ribavirin, suppressed Myc gene 
expression [21]. Therefore, IMPDH inhibitors, including 
FF-10501, could be effective drugs to suppress growth of 
myeloid leukemia cells and to abrogate transformation of 
MDS to AML and inhibit CML blast crisis. Interestingly, 
FF-10501 also strongly suppressed growth of T-ALL cell 
lines in our study (Fig. 1a). A recent report showed that 
IMPDH inhibition is a promising approach for a part of T 
cell acute lymphoblastic leukemia (T-ALL). For example, 
Tzoneva et al. [22] showed that a gain-of-function muta-
tion of the 5′-nucleotidase cytosolic II (NT5C2), which is 
involved in resistance to 6-mercaptopurine and relapse of 
pediatric T-ALL, and inhibition of IMPDH using mizorib-
ine, induced cytotoxicity against NT5C2-mutant leukemia 
lymphoblasts. FF-10501 may also be effective in T-ALL with 
mutation of NT5C2. In contrast, B-cell lineage malignant 
cells tend to be resistant to FF-10501 (Fig. 1a). Ishituka et al. 
[23] reported that an IMPDH inhibitor, VX-944, induced 
apoptosis in multiple myeloma cell lines. Further studies 
should investigate the cell type-dependent regulatory factor 
involved in FF-10501 activity. In addition, further investiga-
tions should examine the correlation between GI50 and the 

expression of APRT, IMPDH, and hypoxanthine–guanine 
phosphoribosyltransferase (a rate-limiting enzyme in the 
salvage pathway of purine nucleotide synthesis).

FF-10501 was thought to induce intrinsic apoptosis via 
caspase-8/BID/mitochondria cascade in MOLM-13 and 
MOLT-3 cells (Figs. 3, 4). In these cells, the pan-caspase 
inhibitor Z-VAD-FMK did not suppress FF-10501-induced 
cell death and switched the mode of cell death (Fig. 5). 
Z-VAD-FMK has been shown to block apoptosis and sensi-
tized to necrotic and autophagic cell death [24]. RIP1 plays a 
central role in induction of necrotic cell death [17]. Stimula-
tion of death receptor results in activation of both caspase-8. 
The RIP1 transduces apoptotic and necrotic signaling while 
activated caspase-8 inactivates RIP1 by proteolysis followed 
by inhibition of necrotic signaling [25]. Thus, inhibition of 
caspase-8 by Z-VAD-FMK inhibits apoptosis and sensitizes 
to necrotic cell death [26]. Therefore, the switching of FF-
10501-induced cell death by Z-VAD-FMK could explain the 
involvement of caspase-8 in FF-10501-induced apoptosis in 
MOLM-13 and MOLT-3 cells.

Caspase-8 is well characterized as an essential media-
tor of extrinsic apoptotic pathway through the stimulation 
of death receptors [27]. We cannot exclude the possibility 
that FF-10501 may have induced the secretion of ligands for 
death receptors. Notably, previous studies demonstrated the 
suppressive effect of IMPDH inhibitors on cytokine secre-
tion by hematopoietic cells [28, 29]. On the other hand, it 

Fig. 4   The effect of FF-10501 
on caspase activity. a The 
expression of caspase-9, 
caspase-8, BID, caspase-3, and 
PARP in MOLM-13, OCI-
AML3, and MOLT-3 cells 
treated with vehicle or 40 μM 
FF-10501 for 24 h. β-actin was 
used as a reference protein 
for whole cell lysates. b The 
expression of AIF and Endo 
G in the nuclear fractions of 
MOLM-13, OCI-AML3 and 
MOLT-3 cells treated with 
vehicle or 40 μM FF-10501 for 
24 h. Histone H3 was used as a 
reference protein for the nuclear 
fraction. GAPDH, a major 
marker for the cytoplasmic 
fraction, was not detected in this 
fraction (data not shown)
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has been shown that caspase-8 is activated independently 
of death receptor. Several anti-cancer drugs (e.g. etoposide 
and mitomycin c) activated caspase-8 in CD95-deficient 
cells [30]. Sphingosine has been reported to induce apopto-
sis via caspase-8 activation in Fas-associated death domain 
(FADD)-deficient cells [31]. Although the precise mecha-
nisms are still unknown, FF-10501 may induce intrinsic 

apoptosis via activation of caspase-8 independently of death 
receptor.

Interestingly, characteristics of FF-10501-induced cell 
death in OCI-AML3 were totally different from MOLM-13 
and MOLT-3 cells. As FF-10501-treated OCI-AML3 cells 
were almost annexin V+PI+ cells, FF-10501 was thought 
to induce necrosis in OCI-AML3 cells. FF-10501-induced 
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b, c Percentage of viable cells (b) and annexin V+ cells (c) in OCI-
AML3 cells treated with 0 or 40 μM FF-10501 in absence or pres-
ence of Z-VAD-FMK for 48 h. Experiments were repeated in tripli-
cate, and results are expressed as the mean ± SD of these replicates. 
*P < 0.05
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cell death in OCI-AML3 was affected by neither Z-VAD-
FMK nor Nec-1 (Figs. 5b, 6a). Chaigne-Delalande et al. [32] 
reported that IMPDH inhibitor mycophenolic acid induced 
necrosis defined by loss of plasma membrane integrity, mito-
chondria swelling, and no trace of chromatin condensation, 
and MPA-induced necrosis was not abrogated by either 
Z-VAD-FMK or knockout of RIP1. This report is well in line 
with our current study and supports the induction of necrotic 
cell death by IMPDH inhibitor including FF-10501. OCI-
AML3 cells are AML cell lines with mutant nucleophosmin 
(NPM1), which is observed in 35% of patients with AML 
[33]. A previous study reported that mutant NPM1 inhibited 
caspase-8 through direct interaction with cleaved form of 
caspase-8 [34]. It is possible that the inhibition of casapase-8 
by mutant NPM1 blocked apoptotic signaling instead of 
induction of necrotic signaling by FF-10501 in OCI-AML3 
cells. Impairment and evasion of apoptosis are hallmarks 

of various cancers, including hematological malignancies, 
that contribute to tumor initiation, progression and treatment 
resistance [35]. Resistance to chemotherapy is currently a 
major problem in cancer treatment, and it is frequently asso-
ciated with failure of tumor cells to undergo apoptosis [35, 
36]. Therefore, there is an urgent need to develop new thera-
pies to promote cell death in cancers. Inducers of necrotic 
cell death, for example FF-10501, may offer an alternative 
option to trigger apoptosis-resistant cancer cell death.

How FF-10501 activates caspase-8 was unknown 
until now. We observed that FF-10501 induced the loss 
of ∆ψm while a large population of cells seemed to be 
increased the fluorescence of ∆ψm indicator. We used 
MitoTracker Orange CMTMRos to measure ∆ψm in this 
study. According to manufacturer’s instruction, this dye 
specifically accumulates in active mitochondria and is 
oxidized by reactive oxygen species (ROS) produced in 
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electron transfer system of the mitochondria, thus resulting 
in the generation of fluorescence. Therefore, the increase 
in MitoTracker’s fluorescence in FF-10501-treated cells, 
as observed in our study, was suspected to have resulted 
from ROS production by FF-10501. Consistent with this, 
in a previous study, FF-10501 was reported to induce cell 
differentiation via ROS production [10]. Further investi-
gations are needed to elucidate how FF-10501 activates 
caspase-8.

In summary, we demonstrated that FF-10501 induces 
apoptotic and necrotic cell death in hematological malig-
nant cells, including myeloid cells and lymphoid cells, via 
caspase-8 activation or ER stress in a cell type-dependent 
manner. The current study provides mechanistic evidence 
of anti-tumor characteristics of FF-10501, a promising 
therapeutic drug for the treatment of hematological malig-
nancies, including MDS and AML.
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