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Abstract
Polycomb proteins function in the maintenance of gene silencing via post-translational modifications of histones and chroma-
tin compaction. Genetic and biochemical studies have revealed that the repressive function of Polycomb repressive complexes 
(PRCs) in transcription is counteracted by the activating function of Trithorax-group complexes; this balance fine-tunes the 
expression of genes critical for development and tissue homeostasis. The function of PRCs is frequently dysregulated in 
various cancer cells due to altered expression or recurrent somatic mutations in PRC genes. The tumor suppressive functions 
of EZH2-containing PRC2 and a PRC2-related protein ASXL1 have been investigated extensively in the pathogenesis of 
hematological malignancies, including myeloproliferative neoplasms (MPN). BCOR, a component of non-canonical PRC1, 
suppresses various hematological malignancies including MPN. In this review, we focus on recent findings on the role of 
PRCs in the pathogenesis of MPN and the therapeutic impact of targeting the pathological functions of PRCs in MPN.
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Introduction

Polycomb group (PcG) proteins were originally identi-
fied in Drosophila as regulators of body segmentation 
through the repression of homeotic genes and were subse-
quently identified in mammals. PcG proteins function in 
the maintenance of gene silencing via post-translational 
modifications of histones and chromatin compaction. In 
mammals, there are two major complexes of PcG com-
plexes: Polycomb repressive complex 1 (PRC1) and 2 
(PRC2), which modify mono-ubiquitination at lysine 
119 of histone H2A (H2AK119ub1) and mono-, di-, and 
tri-methylation at lysine 27 of histone H3 (H3K27me1/
me2/me3), respectively [1, 2]. Genetic and biochemical 
studies have revealed that the repressive function of PcG 

complexes in transcription is counteracted by the acti-
vating function of Trithorax-group (TrxG) complexes, 
which methylate H3K4. The functional balance between 
PcG and TrxG complexes fine-tunes expression of criti-
cal genes for development, adult tissue homeostasis [3], 
and stem cells [1]. On the other hand, dysregulated PRC 
results in a failure to maintain cellular homeostasis. The 
function of PRCs is frequently dysregulated in various 
cancer cells because of altered expression or recurrent 
somatic mutations in PRC genes, which have oncogenic 
and tumor suppressive roles that depend on cancer types 
[4, 5]. EZH2, which encodes the enzymatic component 
of PRC2, is one such PcG gene. The pathological role for 
deregulated EZH2 has been extensively investigated in 
various hematological malignancies, including myeloid 
malignancies, lymphoma, and acute T-cell lymphoblastic 
leukemia (T-ALL). Gain-of-function mutations in EZH2 
play an oncogenic role in the development of B-cell lym-
phoma, while EZH2 also has a tumor suppressive role as 
missense and frame-shift mutations in EZH2 that abrogate 
its methyltransferase activity are frequently observed in 
MDS, MPN, and MDS/MPN overlap disorders [6]. There 
is also a tumor suppressive function of PRC1.1, a non-
conical PRC1, in the pathogenesis of myeloid malignan-
cies [7]. In this review, we focus on recent findings on 
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the role of PRCs in the pathogenesis of myeloproliferative 
neoplasms (MPN) and the therapeutic impacts of target-
ing the pathological function of PRCs in MPN and related 
hematological malignancies.

Composition of Polycomb repressive 
complexes

PRC2 contains three core subunits: SUZ12, EED, and 
one of the two methyltransferases, EZH1 or EZH2. PRC2 
is recruited to non-methylated CpG islands (CGIs) and 
tri-methylates H3K27 (H3K27me3), which subsequently 
recruits canonical PRC1 via chromodomain proteins 
(CBX), a subunit of PRC1 that binds to H3K27me3 [8]. 
Canonical PRC1 contains four core subunits: PCGF4/
BMI1 or PCGF2/MEL18, PHC, CBX and one of the two 
histone H2A mono-ubiquitylases, RING1A or RING1B, 
which has E3 ubiquitin ligase activity on histone H2A 
at lysine 119 (H2AK119ub1) thereby inducing the com-
paction of chromatin (Fig. 1) [9]. In addition to canoni-
cal PRC1, four non-canonical PRC1 variants (PRC1.1, 
PRC1.3, PRC1.5, and PRC1.6) containing a distinct 
PCGF subunit have been identified [10]. Non-canonical 
PRC1 complexes bind to target sites independently of 
PRC2-mediated H3K27me3 and deposit H2AK119ub1, 
which results in the subsequent recruitment of PRC2 and 
deposition of H3K27me3. In the case of PRC1.1, KDM2B 
binds to non-methylated CGIs through its DNA-binding 
domain and recruits other components of PRC1.1 (Fig. 1).

Role of PRC in normal hematopoiesis

The biological function of canonical PRC1 and PRC2 has 
been characterized in detail in ES cells and hematopoietic 
stem cells (HSCs). Canonical PRC1 and PRC2 regulate the 
transcription of critical regulators for self-renewal and multi-
potency of HSCs to maintain homeostasis in hematopoiesis. 
The dysfunction of PRCs induced by targeted gene ablation 
of PRC component genes leads to the exhaustion of HSCs 
and/or impaired differentiation and production of blood cells 
[1, 11].

The loss of PRC2 function by the deletion of Eed mark-
edly compromises adult hematopoiesis and impairs HSC 
function, in part, because of aberrant activation of Cdkn2a, a 
major target of PRCs that encodes p16Ink4a and p19Arf genes 
[12]. Ezh1 prevents premature senescence of HSCs via 
silencing the expression of Cdkn2a [13], while Ezh2 is dis-
pensable for self-renewal of HSCs, at least in part, because 
of the compensatory function of Ezh1. Ezh1 co-regulates 
a large number of Ezh2 target genes and redistributes to a 
significant portion of Ezh2-specific targets in the context of 
Ezh2 insufficiency in normal and malignant hematopoietic 
stem cells [14, 15]. Ezh2-containing PRC2 (Ezh2-PRC2) 
also regulates the differentiation of B- and T-lymphoid cells 
and myeloid cells by regulating the expression of lineage-
specific transcription factors [16]. These findings indicate 
that Ezh1-PRC2 and Ezh2-PRC2 coordinately regulate the 
transcription of PRC2 target genes but also have distinct 
functions in hematopoiesis.

PRC1.4, one of two canonical PRC1 that contain BMI1/
PCGF4, is essential for the self-renewal capacity of HSCs 
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Fig. 1   Canonical PcG complexes and non-canonical PRC1.1. PRC2 
is recruited to non-methylated CGIs and tri-methylates H3K27 
(H3K27me3), which subsequently recruits canonical PRC1 via 
chromodomain proteins (CBX), a subunit of PRC1 that binds to 
H3K27me3. Canonical PRC1 mono-ubiquitylates histone H2A at 
lysine 119 (H2AK119ub1), thereby inducing the compaction of 

chromatin (left panel). Non-canonical PRC1 complexes bind to tar-
get sites independently of PRC2-mediated H3K27me3 and deposit 
H2AK119ub1, which results in the subsequent recruitment of PRC2 
and deposition of H3K27me3. In the case of PRC1.1, KDM2B 
binds to non-methylated CGIs through its DNA-binding domain and 
recruits other components of PRC1.1 (right panel)
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via repressing expression of Cdkn2a [17]. Bmi1-deficient 
HSCs de-repress the expression of p16Ink4a and p19Arf. The 
deletion of both p16Ink4a and p19Arf largely rescues the self-
renewal defect of Bmi1-deficient HSCs [18]. Conversely, 
overexpression of Bmi1 augments the function of HSCs by 
enhancing symmetrical cell division [18, 19]. PRC1.4 also 
restricts the ectopic expression of lineage-specific transcrip-
tion factors, such as B cell master regulator genes Ebf1 and 
Pax5, in HSCs and multipotent progenitors (MPPs). Bmi1-
deficient HSCs and MPPs have enhanced B cell commit-
ment via premature activation of Ebf1 and Pax5 in HSCs 
and MPPs [20].

In contrast, the function of non-canonical PRC1 in hemat-
opoiesis remains unclear. A genome-wide RNA interference 
screen found that Pcgf1, a component of PRC1.1, functions 
in concert with Runx1 transcription factor in Runx1-depend-
ent differentiation. The depletion of both Runx1 and Pcgf1 
resulted in the maintenance of proliferation of hematopoietic 
progenitor cells and perturbed their differentiation because 
of increased expression of posterior Hoxa cluster genes such 
as Hoxa9 [21]. Similarly, myeloid cells in mice lacking Bcor 
exons 9 and 10, which generates a truncated form of Bcor 
that does not bind Pcgf1, have a higher proliferative capac-
ity, which results in myeloid-biased hematopoiesis [22, 23]. 
Bcor-deficient HSCs have increased expression of Cebp 
family genes in MPPs and sustained expression of poste-
rior Hoxa cluster genes in myeloid progenitors [23]. These 
findings indicate that PCR1.1 negatively regulates critical 
transcriptional regulator genes, such as Cebp, and Hoxa9, 
to restrict the proliferation and differentiation of myeloid 
progenitor cells.

Additional sex combs like 1 (ASXL1) is a Polycomb-
related protein frequently mutated in myeloid malignancies 
and clonal hematopoiesis in older healthy adults [24, 25]. 
ASXL1 regulates the function of Ezh2-PRC2 and modifies 
the function of BAP1, a nuclear deubiquitinase [26]. Hemat-
opoietic-specific deletion of Asxl1 impairs the self-renewal 
capacity of HSCs, but results in multi-lineage cytopenia 
and dysplasia and increased numbers of stem and progeni-
tor cells, which are characteristic features of MDS [27]. Loss 
of Asxl1 reduces global H3K27me3 levels and activates the 
expression of posterior Hoxa genes, such as Hoxa9, because 
of impaired recruitment of PRC2, which leads to the induc-
tion of MDS despite the reduced repopulating capacity of 
Asxl1-deficient HSCs [27–29] (Fig. 2).

Roles of PRC and PRC‑related protein 
in myeloproliferative neoplasms

Classical MPNs include essential thrombocythemia (ET), 
polycythemia vera (PV), and primary myelofibrosis (PMF). 
Driver mutations in JAK2, MPL, and CALR genes occur in 

all subtypes of MPNs. These mutations are generally con-
sidered mutually exclusive, but 10–15% of ET and PMF 
patients do not carry any of these mutations. In addition to 
these MPN driver gene mutations, it is important to identify 
mutation profiles of additional clonal marker genes, such 
as mutations in ASXL1, EZH2, TET2, IDH1/2, and spliceo-
some-related genes, because of their prognostic and thera-
peutic implications [30]. In addition, mutations in epigenetic 
modifiers promote the initiation and progression of MPN. 
We overview the pathogenic function of PRC genes includ-
ing EZH2, ASXL1, and BCOR in the development of MPN.

Loss‑of‑function mutations in EZH2 promote 
the development of MPN

Although gain-of-function mutations in EZH2 have onco-
genic roles in the development of B-cell lymphoma, mis-
sense and frame-shift mutations in EZH2 that abrogate its 
methyltransferase activity are frequently observed in MDS, 
MPN, and MDS/MPN overlap disorders (Table 1). These 
mutations reduce global levels of H3K27me3 and have been 
shown to increase expression levels of EZH2 target genes 
including potential oncogenes in tumor cells in patients 
and murine models, which indicate that EZH2 has a tumor 
suppressor function [4, 30, 31]. Loss-of-function muta-
tions in EZH2 significantly predict poor outcomes in MDS, 
and the survival of patients with homozygous mutations is 
shorter than those with heterozygous mutations [32, 33]. 
Primary myelofibrosis (PMF) is a subtype of MPN driven 
by JAK2V617F activating mutations or CALR mutations that 
constitutively activate JAK2. EZH2 mutations independently 
predict poor survival in patients with PMF [34], consistent 
with the tumor suppressive function of EZH2. Monosomy 
7 and deletion of the long arm of chromosome 7 (-7/7q-), 
characteristic cytogenetic anomalies frequently observed in 
myeloid malignancies, commonly involve EZH2 at 7q36 and 
are associated with the poor prognosis of PMF. A functional 
mapping study using 7q- MDS patient-derived iPS cells 
demonstrated that impaired production of hematopoietic 
cells is rescued by exogenous EZH2, which indicates that 
EZH2 haploinsufficiency contributes to the pathogenesis of 
7q- MDS [35].

We and other groups have examined the impacts of loss-
of-function mutations of EZH2 on the pathogenesis of mye-
loid malignancies using Ezh2 conditional knockout mice. 
Hematopoietic cell-specific deletion of Ezh2 resulted in 
the development of myeloid malignancies including MDS, 
MDS/MPN, and T-ALL, but not AML, after a long latency 
[14]. EZH2 mutations frequently occur with loss-of-function 
mutations in TET2 and RUNX1 in patients [36, 37]. Loss 
of Ezh2 enhances the formation of RUNX1 mutant-induced 
MDS, but inhibits leukemic transformation [38], which 
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is consistent with an oncogenic role of Ezh2 observed in 
MLL-AF9-induced AML in which Ezh2 reinforces the tran-
scriptional repression of myeloid-differentiation regulator 
genes [39, 40]. An Ezh2 deficiency (Ezh2Δ/Δ) in combination 
with a Tet2 hypomorph (Tet2KD/KD) in mice accelerates the 
transformation of HSCs and induces MDS and MDS/MPN 
[41]. Loss of Ezh2 significantly promotes the development 
of JAK2V617F mutant-induced myelofibrosis, at least in part, 
because of enhanced production of megakaryocytes with 
dysplastic features in BM [42–44]. These findings indicate 
that EZH2 fine-tunes the commitment and differentiation of 
HSCs, and EZH2 insufficiency promotes the transformation 
of HSCs to MDS and MPN stem cells.

Targeting therapy against EZH1 and EZH2 
in myeloid malignancies

Because of the bimodal pathogenic functions of EZH2 as 
an oncogene and a tumor suppressor gene, pharmacological 
inhibition of EZH2 and both EZH1 and EZH2 has being 
tested extensively in pre-clinical and clinical studies in 
solid tumors, B-cell lymphoma, and AML [45]. An Ezh2 
insufficiency aberrantly activates expression of certain 
oncogenes because of reduced levels of H3K27me3, but 
Ezh1-PRC2 partly compensates for Ezh2 loss in the main-
tenance of transcriptional repression of Ezh2 target genes 
[46]. In good agreement with these findings, AML cells are 
efficiently eradicated by the deletion of both Ezh1 and Ezh2 
and treatment with EZH1/2 dual-inhibitors [47, 48], which 
indicates that Ezh1 is essential for the self-renewal capacity 
of leukemic stem cells in Ezh2-deficient conditions. These 
data support therapeutic approaches to target EZH1 and 
EZH2 using EZH1/2 dual inhibitors. A patient enrolled in a 
Phase I pediatric study (NCT02601937) of tazemetostat, an 
EZH2 inhibitor, for relapsed or refractory INI1 (a SWI/SNF 
component)-negative tumors or synovial sarcoma developed 
secondary T-cell lymphoblastic lymphoma (T-LBL), which 
suggests that caution is warranted when inhibiting the func-
tion of PRC2 for cancer therapy. However, the anti-tumor 
efficacies of Ezh2 and Ezh1/2 inhibitors are still encouraging 
[49]. Further investigation and comprehensive assessment of 
pre-clinical and clinical studies of Ezh2 and Ezh1/2 inhibi-
tors are now underway.

Dysfunction of PRC2 sensitizes tumor cells 
to BRD4 inhibition

Because PRC2 represses target genes, loss-of-function muta-
tions in EZH2 may de-repress expression of potential onco-
genes in cancer. Indeed, loss of Ezh2 in JAK2V617F mice 
promotes an epigenetic switch characterized by reduced 
H3K27me3 levels followed by elevated H3K27 acetylation 
(H3K27ac) levels at promoter regions of PRC2 target genes, 
which results in the activation of potential oncogenes such 
as Hmga2 [42–44]. HMGA2 is significantly upregulated in 
CD34+ cells in PMF patients with EZH2 mutations [43, 50], 
and overexpression of Hmga2 in JAK2V617F HSCs increases 
the production of dysplastic megakaryocytes and the devel-
opment of PMF in mice [42, 51]. Bromodomain inhibitors 
inhibit the function of enhancers by competitively interfering 
with the binding of BRD4 to H3K27ac and abrogates the 
progression of tumors [52]. Loss of PRC2 increases sensitiv-
ity to bromodomain inhibition of JAK2V617F myelofibrosis-
initiating cells in vitro and in vivo [42]. Furthermore, a com-
bination of bromodomain and JAK kinase inhibition reduces 
NF-kB-induced inflammation, which completely reverses 
fibrosis in JAK2V617F model mice [53]. Vulnerability to 
BRD4 inhibition has also been observed in solid tumors 
with compromised function of Ezh2-PRC2 by somatic gene 
mutations in PRC2 genes or in tumors expressing MLL1, 
which interacts with the p300/CBP complex to cause loss of 
H3K27me and gain of H3K27ac [54, 55]. Thus, these stud-
ies suggest that bromodomain inhibition in combination with 
JAK kinase inhibition is a novel therapeutic rationale for 
eradicating tumors and removing fibrosis in MPN patients.

Implication of DNA hypo‑methylating 
therapy for MDS/MPN with EZH2 mutations

Promoter DNA hyper-methylation silences the expression 
of tumor suppressor genes, thereby promoting malignant 
transformation. Because MDS cells have higher levels of 
DNA hyper-methylation than de novo AML cells [56], hypo-
methylating agents, such as azacitidine (AZA) and decit-
abine (DAC), are clinically used to impede the progression 
of MDS in patients. However, the mutations of epigenetic 
modifiers and transcription factors, such as TET2 and TP53, 
do not always predict the response to AZA and DAC in 

Table 1   Mutations in PcG 
and PcG-associated genes in 
myeloid malignancies

EZH2 EED SUZ12 ASXL1 BCOR

MDS 3–13% Rare Rare 10.6–18.5% 4.2%
MPN 3% (PV) Rare Rare 1–3% (ET/PV) 1%

5–13% (PMF) 25% (PMF)
MDS/MPN 8–15.6% 1% 1.4% 15.6–43% 7.4% (CMML)
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patients with MDS, MPN, or AML [57–59]. PRC2 target 
genes defined in ES cells and normal HSPCs preferentially 
display DNA hyper-methylation in tumor cells, such as colon 
cancer, AML, and MDS, regardless of genetic mutations 
in epigenetic modifiers [60, 61]. Loss of Ezh2 significantly 
promotes the deposition of DNA methylation at promoter 
regions in many PRC2 target genes including development 
and differentiation regulator genes during the development 
of MDS and ETP-ALL in mice [46, 62]. Thus, PRC2 main-
tains a reversible gene silencing state of target genes by pro-
tecting them from aberrant DNA hyper-methylation. After 
mutation, deletion, or aberrant silencing of EZH2, alterna-
tive epigenetic machinery, such as promoter-hypermethyla-
tion, promotes transformation (Fig. 3).

Gain‑of‑function mutations in ASXL1 
in the pathogenesis of myeloid malignancies

Somatic mutations in ASXL1 frequently mark hematological 
malignancies, such as AML, MDS, MPN, and CMML, and 
are associated with advanced age and poor clinical outcomes 
(Table 1) [32, 63]. Similar ASXL1 mutations are also found 
in clonal hematopoiesis in healthy older adults. Deletion of 
Asxl1 activates the expression of posterior Hoxa genes, such 
as Hoxa9, because of impaired recruitment of PRC2, which 
induces MDS despite the reduced repopulating capacity 

of Asxl1-deficient HSCs [27–29]. Nonsense or frameshift 
ASXL1 mutations generate truncated proteins that lack the 
C-terminus region [64] and are always heterozygous. These 
findings imply that ASXL1 mutations are gain-of-function or 
dominant-negative. BAP1, a deubiquitinase of H2AK119, 
assembles complexes with ASXL1, ASXL2, or ASXL3. 
BAP1 promotes mono-ubiquitination of ASXL1 mutants, 
which in turn enhance the deubiquitinase activity of BAP1 
on H2AK119 and activates the expression of posterior Hoxa 
genes (Fig. 2) [65–67]. Expression of C-terminus-truncated 
ASXL1 mutants in mice induces myeloid malignancies, 
such as AML, MDS, MPN, and MDS/MPN, and promotes 
myeloid transformation in concert with additional mutations 
[68, 69]. In contrast to the reduced self-renewal capacity 
of Asxl1-deficient HSCs, HSCs with ASXLl1 mutants have 
sustained or enhanced competitive repopulating capacity in 
mice, and are accompanied by altered expression of genes 
critical for HSCs self-renewal and differentiation. Loss of 
Asxl1 reduces H3K27me3 levels but not H2AK119ub1 lev-
els, while Asxl1 mutants significantly reduce H2AK119ub1 
levels without affecting H3K27me3 levels (Fig. 2) [68]. Fur-
thermore, a liquid chromatography-tandem mass spectrome-
try experiment revealed that an ASXL1aa1–587 mutant protein 
interacts with BRD4. Correspondingly, bone marrow hemat-
opoietic cells expressing Asxl1Y588X have elevated levels of 
H3K27ac and H3K122ac and higher sensitivity to BRD4 
inhibitors (Fig. 2) [69]. These findings suggest that ASXL1 
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Fig. 3   EZH2 mutant-induced epigenetic alterations. PRC2 maintains 
a reversible gene silencing state of target genes by protecting them 
from aberrant DNA hyper-methylation. After mutation, deletion, or 

aberrant silencing of EZH2, alternative epigenetic machinery, such as 
promoter-hypermethylation, takes place and promotes transformation
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mutants have a gain-of-function role in the pathogenesis of 
myeloid malignancies and provide a novel therapeutic strat-
egy for ASXL1 mutant-induced malignancies.

Role of non‑canonical PRC1.1 
in the development of MPN

Among non-canonical PRC1 genes, loss-of-function muta-
tions in BCOR occur in various hematological malignan-
cies, such as AML, MDS, CMML, and lymphoid tumors 
(Table 1), indicating that BCOR functions as a tumor sup-
pressor in these tumors [70–72] Mice deficient for Bcor exon 
4 (Bcor∆E4/y), which generate a truncated protein that can-
not bind Bcl6, develop Notch-dependent T-ALL [73]. Mice 
lacking Bcor exon 9 and exon 10 (Bcor∆E9−10/y), which can-
not bind Pcgf1, develop T-ALL at a similar latency to that 
of Bcor∆E4/y mice and have myeloid-biased hematopoiesis. 
Bcor∆E9−10/y mice in combination with a Tet2 hypomorph 
develop lethal MDS, which transforms into MDS/MPN 
after a secondary transplantation. Bcor∆E9−10/y multipotent 
and myeloid progenitors have enhanced expression of Cebp 
family genes and posterior Hoxa cluster genes, respectively, 
because of reductions in H2AK119ub1 levels at the promot-
ers of myeloid-regulator genes [23]. In addition, deletion 
of Kdm2b accelerates oncogenic KRAS-mediated myeloid 
transformation, and ectopic expression of Kdm2b suppresses 
the progression of KRAS-induced myeloid malignancies 
[74]. These findings suggest that PRC1.1 functions as a 
tumor suppressor in myeloid malignancies, such as MPN, 
in concert with other driver mutations. In contrast, several 
PRC1.1 component genes are overexpressed in AML cells 
in patients, and their knockdown significantly reduces the 
proliferative capacity of AML cells [75, 76], which suggests 
that PRC1.1 has opposing roles in tumor progression in a 
context-dependent manner.

Conclusion

PcG complexes have multiple epigenetic activities that differ 
depending on cell context, coexisting mutations, and tumor 
type. The impact of PcG complexes on transcription is com-
plicated; they primarily function in transcriptional repres-
sion, but also activate transcription with non-PcG proteins. 
Therefore, it is important to determine how PRC dysfunction 
deregulates the expression of target genes and contributes 
to transformation. It is also important to understand alterna-
tive epigenetic pathways activated by PRC dysfunction such 
as epigenetic alteration of histone modifications and DNA 
methylation. A detailed understanding of PRC dysfunction 
will enable the development of new therapeutic approaches 

for individual cancer types by targeting novel therapeutic 
molecules or epigenetic pathways.
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