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Abstract
Natural killer (NK) cells are part of the innate immune system and represent the first line of defense against infections and 
tumors. In contrast to T cells, NK cells do not require prior antigen sensitization to induce cytotoxicity and do not cause 
graft-versus-host disease. These, along with other advantages, make NK cells an attractive candidate for adoptive cellular 
therapy. Herein, we describe the mechanisms of NK cell cytotoxicity, which is governed by an intricate balance between 
various activating and inhibitory receptors, including the killer cell immunoglobulin-like receptors (KIRs). We illustrate 
the advantages of NK alloreactivity as demonstrated in various types of hematopoietic stem cell transplants (HSCT), such 
as haploidentical, human leukocyte antigen-matched related or unrelated donor and umbilical cord blood transplant. We 
elaborate on different models used to predict NK cell alloreactivity in these studies, which are either based on the absence of 
the ligands for inhibitory KIRs, presence of activating NK cell receptors and KIR genes content in donors, or a combination 
of these. We will review clinical studies demonstrating anti-tumor efficacy of NK cells used either as a stand-alone immu-
notherapy or as an adjunct to HSCT and novel genetic engineering strategies to improve the anti-tumor activity of NK cells.
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Introduction

Natural killer (NK) cells are very potent effector lympho-
cytes that can induce cytotoxicity against a vast array of 
tumors without the need for antigen specificity. They are 
the first subset of lymphocytes to reconstitute after hemat-
opoietic stem cell transplant (HSCT) [1], and likely play an 
important role in offering protection against relapse in the 
early months after transplant. In contrast to T cells, NK cells 
do not cause graft-versus-host disease (GVHD) in the alloge-
neic setting; indeed, a number of preclinical studies suggest 
that they may even protect against GVHD by targeting the 
recipient’s dendritic cells [2–5]. Owing to these unique prop-
erties, multiple studies are exploring the role of NK cells in 
the context of HSCT or as adoptive cellular therapy (ACT). 
There are multiple potential source of NK cells for adoptive 

cellular therapy, including bone marrow (BM), peripheral 
blood (PB), readily available cryopreserved umbilical cord 
blood (CB), various cells lines, such as the NK-92, KHYG-1 
[6, 7], or human embryonic stem cells (hESCs) [8] and 
induced pluripotent stem cells (iPSCs) [8, 9].

Mechanism of action of NK cells

NK cells are CD3− and CD56+/CD16+ large granular 
lymphocytes that can be classified into two broad sub-
sets—the naïve CD56brightCD16dim cells and the mature 
CD56dimCD16bright cells which are highly cytotoxic [10]. 
Contrary to T cells, NK cells do not require prior antigen sen-
sitization or antigen presentation by the major histocompat-
ibility complex (MHC) class I molecules to recognize their 
targets [11–13]. Their cytotoxicity rather depends upon com-
plex interactions between their various germline-encoded 
activating and inhibitory receptors and ligands on the sur-
face of target cells. Among these, the NK cell killer immu-
noglobulin (Ig)-like receptors (KIRs) are most extensively 
studied. The inhibitory NK cell receptors include various 

Advances in immunotherapy for hematological malignancies

 *	 Rohtesh S. Mehta 
	 Rmehta1@mdanderson.org

1	 Department of Stem Cell Transplant and Cellular Therapy, 
University of Texas M. D. Anderson Cancer Center, Unit 
0423, 1515 Holcombe Blvd., Houston, TX 77030, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s12185-018-2407-5&domain=pdf


263NK cell therapy for hematologic malignancies﻿	

1 3

KIRs (KIR2DL1, KIR2DL2/L3, KIR2DL4, KIR2DL5A, 
KIR2DL5B, KIR3DL1, KIR3DL2 and KIR3DL3) [14] and 
a C-type lectin receptor—NKG2A. Known ligands for some 
of the inhibitory KIRs are HLA-C1-related alleles (Cw2, 
Cw5, and Cw6) for KIR2DL2 and KIR2DL3; HLA-C2-re-
lated alleles (Cwl, Cw3, Cw7, and Cw8, C*02/04/05/06/1
2:42/15/16:02/17) for KIR2DL1 and HLA-Bw4 alleles for 
KIR3DL1 [15–18]. Various activating receptors on NK cells 
include the natural cytotoxicity receptors (NCRs—NKp30, 
NKp44 and NKp46), C-type lectin receptors (NKG2C and 
NKG2D), the DNAX accessory molecule-1 (DNAM-1 or 
CD226) and the activating KIRs (KIR2DS1, KIR2DS2, 
KIR2DS3, KIR2DS4, KIR2DS5) [14, 19–27]. In contrast 
to the inhibitory KIRs, the ligands for activating KIRs are 
less well understood, except KIR2DS1 and KIR2DS5, both 
of which recognize HLA-C2-related alleles, albeit with a 
lower affinity than their inhibitory counterparts [28–31]. 
KIR2DS2 was initially reported to recognize HLA-A*11—
the functional significance of which remains unknown [32], 
and more recently shown to interact with an as yet unknown 
β2-microglobulin-independent ligand on cancer cells [33]. 
Other NK cell-activating receptors such as NKG2D rec-
ognize stress-induced molecules including the MHC class 
I-related genes (MICA and MICB) and UL16-binding pro-
teins (ULBP) [19, 20, 34].

The interaction of the inhibitory receptors with their 
ligands (self MCH class I molecules) inhibits NK cell activ-
ity. According to the “missing self” hypothesis, if this inhibi-
tory signal is lost or dampened [11, 35, 36], as is the case 
on tumor cells or virally infected cells, NK cells become 
predestined to kill [37, 38]. Although “missing self” is criti-
cal, it is not sufficient to trigger NK cytotoxicity, which also 
requires stimulatory signals generated by the ligation of acti-
vating receptors [39–41]. Further, the activity of NK cells is 
also uniquely augmented by the expression of CD16, which 
is a transmembrane receptor that binds to the Fc portion of 
IgG on target cells leading to antibody-dependent cellular 
cytotoxicity (ADCC) [42, 43].

Autologous NK cell immunotherapy

Many early clinical trials initially explored the possibility 
of expanding and enhancing the anti-tumor activity of the 
native lymphocytes of patients in vivo simply by giving 
patients high-dose interleukin-2 (IL-2) [44–50]. The use 
of high-dose IL-2 led to enormous expansion of NK cells 
in vivo—up to 2500% or more over baseline [46–50] and 
enhanced in vitro lytic activity against NK-resistant cell lines 
[47–49]. The foundation of ACT was laid by the National 
Cancer Institute group led by Rosenburg et al. in the early 
1980s using autologous “lymphokine-activated killer” 
(LAK) cells generated ex vivo by incubating human PB 

lymphocytes with IL-2 [51, 52]. The clinical responses to 
LAK cells infused along with high-dose IL-2 were less than 
optimal and produced unacceptable IL-2 related toxicities. 
Nonetheless, responses in some of the end-stage metastatic 
cancer patients, with some complete remissions (CR), were 
exciting and generated further interest in the field [51–54]. 
Thereafter, many studies utilized ex vivo activated/expanded 
autologous NK cells along with intravenous or subcutane-
ous low-dose IL-2 [46, 55–57]. Although low-dose IL-2 
was better tolerated, responses remained suboptimal, likely 
due to IL-2-induced expansion of regulatory T cells (Tregs) 
which inhibit NK cell proliferation and function [58], and/
or due to the inhibition of autologous NK cells by the self-
HLA molecules on the tumor cells. Due to these limitations, 
the use of allogeneic NK cells was the next logical step for 
investigators to explore.

Allogeneic NK cell immunotherapy 
in the setting of HSCT

Allogeneic HSCT creates a unique condition for NK cell 
alloreactivity by virtue of the “missing-self” phenom-
enon. As the KIR genes (chromosome 19q13.4) and the 
HLA genes (chromosome 6p21) segregate independently, 
a donor–recipient pair can be HLA-matched and KIR-mis-
matched simultaneously [59]. In fact, only about 25% of the 
HLA-matched sibling donor/recipient pairs are KIR iden-
tical, while the probability of an HLA-matched unrelated 
donor (MUD)/recipient pair to be KIR identical is virtually 
zero [60]. A KIR ligand mismatch in HSCT can be predicted 
using an online calculator (https​://www.ebi.ac.uk/ipd/kir/
ligan​d.html) by entering the HLA types of the donor and 
the recipient.

Donor–recipient KIR ligand mismatch in the setting 
of haploidentical HSCT

The potent anti-tumor efficacy of allogeneic NK cells was 
first clinically demonstrated in the context of HSCT by Rug-
geri et al. [2] in a study of patients with acute myeloid leu-
kemia (AML) or acute lymphoblastic leukemia (ALL) who 
underwent T cell-depleted PB haploidentical transplant. As 
compared to the patients who received KIR ligand-matched 
HSCT, patients undergoing a KIR ligand-mismatched HSCT 
had a significantly lower risk of relapse (75 vs. 0% at 5 years, 
respectively) and improved overall survival (OS; 5 vs. 60%, 
respectively). For unclear reasons, the beneficial effect of 
KIR ligand mismatch was noticeable only in AML patients. 
Similar findings were observed in a subsequent study includ-
ing a larger cohort of AML patients [61].

Although these results are fascinating, T cell-depleted 
haploidentical HSCT is rarely performed nowadays due to 
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higher risk of relapse and non-relapse mortality as com-
pared with an unmanipulated (T-cell replete) HSCT [62–64]. 
Moreover, the introduction of novel GVHD prophylaxis reg-
imens, such as the use of post-transplant cyclophosphamide 
(PT-Cy) has led to a universal increase in the numbers of 
unmanipulated haploidentical HSCT [65–67]. The impact 
of PT-Cy on NK cell alloreactivity in patients undergo-
ing myeloablative unmanipulated haploidentical HSCT 
was recently explored by Russo et al. in 99 patients with 
hematological malignancies (60% with AML) [68]. Within 
the first few days of HSCT, mature graft-derived NK cells 
proliferated to a greater extent than T cells, but these prolif-
erating cells, including the potentially alloreactive single-
KIR+ NK cells, were rapidly eliminated by cyclophospha-
mide (administered on days +3 and +4 post HSCT). By day 
15, a second wave of NK cells emerged with an immature 
CD56brightNKG2A+CD62+ KIR− phenotype. Although 
NK cells remained the dominant lymphocytes for the first 
3 months post HSCT, full reconstitution of a mature popula-
tion took about 6–12 months. Consequently, patients with 
predicted NK alloreactivity (n = 41) had similar outcomes 
[GVHD, relapse and progression free survival (PFS)] as 
those without NK alloreactivity (n = 58) [68].

In contrast, two other studies in unmanipulated haploi-
dentical HSCT and PT-Cy showed conflicting effects of NK 
alloreactivity on outcomes. The larger of these included 144 
patients with various hematological (65% lymphoid) malig-
nancies who received primarily non-myeloablative condi-
tioning (65%). In this study, the benefit of KIR ligand mis-
match (lower relapse risk and improved PFS) was restricted 
to patients who had active disease at the time of HSCT, but 
not in those who were in CR [69]. Yet another study (n = 34) 
showed significantly higher risk of acute GVHD (13/17 vs. 
6/17, p = 0.001) and lower relapse (2/17 vs. 7/17, p = 0.05) 
in patients with KIR ligand mismatch than those with no 
mismatch [70]. Variability in the conditioning regimens, 
patient populations and methods to assess NK cell allore-
activity in these studies could account for the differences 
in outcomes. Nevertheless, these studies suggest that the 
donor–recipient KIR ligand mismatch should not be used 
a prime determinant while selecting a donor for patients 
undergoing T-cell replete haploidentical HSCT with PT-Cy.

Can the potentially detrimental effect of PT-Cy on NK 
cell alloreactivity be compensated for by supplemental 
infusions of NK cells in the peri-transplant setting? This 
question was assessed in a study by Ciurea et  al. [71] 
who administered multiple infusions of ex vivo expanded 
NK cells to patients with myeloid malignancies (n = 13) 
undergoing unmanipulated haploidentical HSCT. Patients 
received reduced intensity conditioning (RIC) with fludara-
bine and melphalan, followed by PT-Cy on days +3 and +4. 
NK cells were infused on days −2, +7 and +28. Five of the 
13 patients were KIR ligand mismatched with their donors. 

As compared to historical controls (n = 45) treated with 
the same conditioning regimen but without the supplemen-
tal NK cell infusions, patients who received NK cells had 
higher frequencies of TNF-α and IFN-γ secreting NK cells 
at day 28 and had a higher proportion of mature/potentially 
alloreactive single-KIR+ NK cells expressing CD16 and 
NKG2C. Yet, the authors did not observe any differences 
in the incidence of acute or chronic GVHD, relapse or PFS; 
NK cells, however, appeared to be protective against cyto-
megalovirus reactivation (31% in the NK group vs. 70%—in 
the non-NK controls, p = 0.01).

Donor–recipient KIR ligand mismatch 
in HLA‑matched related or unrelated donor HSCT

The impact of KIR ligand mismatch on HSCT outcomes has 
also been studied extensively in the setting of HLA-matched 
related [72–76] or unrelated [73, 76–83] donor transplants 
using T-cell replete [73, 75, 76, 78–80, 82] or T-cell deplete 
[72, 74, 77, 79–81] grafts with conflicting results. A com-
mon factor that surfaces from these heterogeneous studies is 
that a T-lymphopenic environment, created using in vivo or 
ex vivo T-cell depletion, is critical to harness the benefits of 
NK cells. This echoes findings from studies showing that T 
cells can dominate and dampen NK cell alloreactivity [84, 
85].

The conflicting results can also be explained by differ-
ences in the definitions of KIR ligand mismatch among 
the studies, significant polymorphisms in the KIR genes 
and the stochastic surface expression of specific KIRs on 
individual NK cells. For instance, not all KIR ligand mis-
matches have equal “strength.” The inhibitory potential of 
KIR2DL1–HLA-C2 interaction is much stronger than that of 
KIR2DL2/3–HLA-C1 [16, 86, 87]. Moreover, even within a 
specific KIR–HLA ligand combination, the strengths of their 
interactions can vary among individuals. In case of HLA-
Bw4–KIR3DL1, the interaction can be strong (isoleucine; 
Bw4-80I) or weak (threonine; Bw4-80T), depending upon 
the HLA-Bw4 amino acid residue at position 80 and whether 
the surface expression of KIR3DL1 is high (3DL1high) or 
low (3DL1low) [86, 88, 89]. KIR3DL1high has a higher 
affinity for, and hence induces a greater inhibitory signal, 
with Bw4-80I than Bw4-80T, while the opposite is true for 
KIR3DL1low, which has a higher affinity for Bw4-80T [86, 
90]. The clinical implications of these findings were illus-
trated by Boudreau et al. [90] in a study of 1328 patients 
with AML who underwent 9/10- or 10/10-MUD HSCT. The 
authors categorized patients into having either weak/non-
inhibitory or strong inhibitory KIR3DL1/HLA-Bw4 inter-
actions. Patients with weak/no inhibition of KIR3DL1 had 
a significantly lower risk of relapse (HR, 0.72; p = 0.004) 
and improved PFS (64 vs. 39%, p = 0.05) compared to those 
with strong inhibitory combinations. This protective effect 
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was independent of and additive to the presence of donor 
activating KIR2DS1 [90].

Impact of activating NK‑cell receptors and KIR 
haplotypes on HSCT outcomes

In contrast to the KIR ligand mismatch model described 
above, which primarily focuses on the degree of mismatch 
between the inhibitory KIRs and their ligands, a different 
perspective of NK alloreactivity focuses on their activat-
ing KIR profile. Based on the composition of activating 
and inhibitory KIRs, the KIR repertoire can be classified 
broadly into two KIR haplotypes [14]. Haplotype A is char-
acterized by a predominance of inhibitory genes—specifi-
cally, 5 inhibitory KIR genes and a single activating gene 
(KIR2DS4) [14]. Conversely, haplotype B is character-
ized by a predominance of activating genes (KIR2DS1, 
KIR2DS2, KIR2DS3, KIR2DS5, KIR3DS1) and only one 
inhibitory gene (KIR2DL5) [14]. Furthermore, each KIR 
haplotype is a combination of a centromeric and a telomeric 
KIR gene motif [91]. Genes encoding the inhibitory recep-
tors for the HLA-C1 and C2 epitopes are located in the cen-
tromeric region, while the telomeric region contains genes 
encoding the activating receptor for HLA-C2 (KIR2DS1) 
and the inhibitory receptors for the HLA-Bw4 and HLA-
A3/11 epitopes [91]. This specific organization and content 
of KIR genes carry important clinical significance.

The impact of KIR haplotype on HSCT outcomes was 
evaluated by Cooley et al. in a study of 448 AML patients 
who received T-cell replete unrelated donor transplant [92]. 
There was no impact of recipient KIR haplotype on sur-
vival; however, HSCT from a KIR B/x donor as compared 
with KIR A/A donor was associated with a significantly 
improved PFS (28 vs. 17% at 3 years, p = 0.003) and OS 
(31 vs. 20% at 3 years, p = 0.007). This effect was noted in 
patients who received KIR ligand-matched (HLA-matched 
or -mismatched) HSCT, but not in HLA-mismatched/KIR 
ligand-mismatched HSCT. In an attempt to explore the 
underlying mechanism for this protective effect, the authors 
noted that two donor KIR genes—KIR2DL2 and KIR2DS2, 
which are in strong linkage disequilibrium with each other, 
had independent effects on survival, but definitive analyses 
were restricted due to limited power. This was investigated in 
their subsequent study with a larger cohort of patients with 
AML (n = 1086) or ALL (n = 323) who received myeloab-
lative, T-cell replete unrelated donor HSCT. Similar to the 
prior study, donor KIR B/x haplotype was associated with 
superior outcomes; however, the advantage was most pro-
nounced if the KIR B genes were homozygous and located 
in the centromeric region (Cen-B/B). This group (Cen-B/B) 
had a significantly lower probability of relapse than those 
with either Cen-A/A or Cen-A/B donor [93]. Moreover, 

the relapse protection offered by the donor KIR B genes 
appeared to be more specific for C1/x recipients than C2/
C2 recipients [94].

An independent role for specific activating genes on 
outcomes, particularly donor KIR2DS1 and KIR3DS1, has 
also been reported [95–97]. In a study of 1277 patients with 
AML who had received a MUD HSCT, Venstrom et al. 
showed that receipt of an allograft from a KIR2DS1-positive 
donor was associated with a 24% lower risk of relapse than 
from a KIR2DS1-negative donor [97]. However, this protec-
tion was dependent upon both donor and recipient HLA-C. 
The benefit was noted only for C1/x donors and recipients 
but not for HLA-C2/C2 donors or recipients. Also, donor 
KIR3DS1 was associated with 17% lower risk of mortality 
with no impact on relapse [97].

In contrast, KIR2DS4, which is the only activating 
gene within the KIR A haplotype, appears to impart det-
rimental outcomes after HSCT, especially if it is fully 
expressed on the cell membrane. KIR2DS4 has two allelic 
variants—full-length (KIR2DS4full—2DS4*00101) or 
deleted (KIR2DS4del—including 2DS4*003, S4*004 and 
S4*006) [98–100]. The latter yields a truncated KIR2DS4 
protein, which is not bound to the cell membrane but is 
rather secreted in a soluble form [99]. The impact of donor 
KIR2DS4 on HSCT outcomes was assessed in 111 Croa-
tian patients with a variety of hematological malignancies 
who underwent T-cell replete HLA-matched related or 
unrelated donor HSCT. Among related donor HSCT recipi-
ents, patients whose donors had 1–2 KIR2DS4full alleles 
had a significantly lower OS as compared to patients whose 
donors had a KIR2DS4del allele or no KIR2DS4 allele 
(HR = 7.9; p = 0.016). In the MUD group, HSCT from 
a KIR2DS4full donor was associated with a higher risk for 
GVHD (HR = 8.2; p = 0.012) and non-relapse mortality 
(NRM) than from a donor with KIR2DS4del allele or no 
KIR2DS4 allele [101]. Another study in 75 Chinese patients 
who underwent T-cell deplete MUD HSCT showed signifi-
cantly higher risk of acute GVHD (RR 9.0, p = 0.01) in 
patients whose donors were homozygous for KIR2DS4full 
allele [102]. It remains to be explored if these effects are 
restricted to particular racial and ethnic groups, as KIR 
diversity varies dramatically among different populations.

Role of NK cells in cord blood transplant

Umbilical cord blood transplant (CBT) generates a multifac-
eted NK cell alloreactive environment, especially in patients 
who receive double unit CBT, where three-way interactions 
between two CB units and the host make it even more com-
plex to fully comprehend the role of NK cells than in other 
types of HSCT. This has been investigated in a handful of 
studies that generated controversial findings. The beneficial 
effect of KIR ligand mismatch in CBT was demonstrated in 
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only one study in patients with acute leukemia (n = 218), 
in which the authors reported a lower risk of relapse and 
improved OS in the KIR ligand-mismatched group. The 
majority of patients in this study received in vivo T-cell 
depletion (82%) and myeloablative conditioning (83%) and 
all patients received a single CB unit [103]. Subsequent stud-
ies in heterogeneous populations that included either single 
or double unit CBT, with or without lymphodepletion and a 
blend of conditioning regimens displayed inconsistent out-
comes [104–107]. Three of these studies [105–107] showed 
no impact of KIR ligand mismatch on outcomes after CBT, 
while one study [104] revealed rather unfavorable outcomes 
in patients receiving KIR ligand-mismatched RIC-CBT, 
with a higher risk of acute GVHD and NRM and lower OS.

More recently, a study by our group assessed whether 
specific combinations of donor–recipient KIR–HLA geno-
types could improve outcomes after CBT [108]. This study 
included 110 patients with myeloid or lymphoid malignan-
cies who received predominantly double unit (95%) CBT 
following myeloablative (72%) or RIC regimens. HLA-
C1/x patients had significantly better outcomes (lower 
relapse and superior survival) than homozygous HLA-C2 
patients, related to the observation that the HLA-C1-specific 
KIR2DL2/L3/S2-expressing NK cells appeared significantly 
earlier and in greater numbers after CBT than the HLA 
C2-specific KIR2DL1/S1-expressing NK cells. Among HLA 
C1/x patients, those who received a graft with a combined 
HLA-C1-KIR2DL2/L3/S2 genotype (where donor NK cells 
were licensed for KIR2DL2 or 2DL3 and expressed activat-
ing KIR2DS2) had a significantly lower risk of relapse and 
improved OS than those with CB grafts lacking KIR2DS2 
or HLA-C1 (i.e., where donor NK cells were either not 
licensed or the activating KIR2DS2 gene was absent). Simi-
larly, HLA-C2/C2 patients had a lower risk of relapse and 
improved survival if they received a graft with the combined 
HLA-C2–KIR2DL1/S1 genotype (i.e., where CB NK cells 
were licensed for KIR2DL1 and the activating KIR2DS1 
gene was present) [108]. Based on these findings, we initi-
ated a clinical trial of personalized CBT in patients with 
hematological malignancies, where we select a CB unit with 
the best probability of eliciting NK alloreactive responses. 
For instance, for C1/x patients, we select at least one CB unit 
that is positive for licensed KIR2DL2/L3 and the activating 
KIR gene KIR2DS2. For C2/C2 patients, we infuse activated 
mature CB NK cells expressing the C2-specific NK receptor 
KIR2DL1 (expanded from the dominant CB unit determined 
at the time of engraftment by chimerism analysis) between 
1 and 3 months post-transplant to reduce the risk of relapse 
[NCT02727803]. In addition, given the unique advantages 
of CB-derived NK cells (reviewed in [109]), we are also 
conducting other clinical trials where ex vivo expanded 
CB NK cells are infused along with high-dose chemo-
therapy in the setting of HSCT in patients with lymphoma 

[NCT03019640], multiple myeloma [NCT01729091] or 
leukemia [NCT01619761].

Allogeneic NK cells as a stand‑alone therapy

The findings generated from the studies of KIR ligand-mis-
matched haploidentical HCT suggested safety and potential 
efficacy of using allogeneic NK cells as stand-alone ther-
apy. This was first explored in the non-transplant setting by 
Miller et al. [110] in 43 patients with solid tumors, Hodg-
kin disease and relapsed/refractory AML who were given 
infusions of haploidentical NK cells followed by exogenous 
IL-2. All patients received one of three lymphodepleting 
preparative regimens to prevent rejection of donor cells, 
including (a) low-dose cyclophosphamide (750 mg/m2) and 
methylprednisolone, (b) fludarabine (25 mg/m2 for 5 days) 
or (c) high-dose cyclophosphamide (60 mg/kg for 1 or 2 
doses) and fludarabine (25 mg/m2 for 5 days) (“Hi-Cy/Flu”). 
Of these, the most potent lymphodepleting Hi-Cy/Flu regi-
men induced massive T-cell lymphopenia resulting in high 
endogenous concentrations of IL-15 and the best in vivo 
expansion of NK cells. No patient developed GVHD and 5 
of the 19 AML patients attained CR, with higher responses 
seen in those with a KIR ligand-mismatched donor [110]. 
In a subsequent study [111], the authors incorporated a 
recombinant IL-2 diphtheria fusion protein (IL2DT) into the 
Hi-Cy/Flu conditioning regimen (n = 15) to deplete Tregs 
and noted even higher expansion of NK cells, which trans-
lated into higher rates of CR at day 28 (53 vs. 21%; p = 0.02) 
and PFS at 6 months (33 vs. 5%; p < 0.01) compared to 
those who did not receive IL2DT (n = 42) [111].

Future directions: next generation 
engineered NK cells for immunotherapy 
of cancer

Allogeneic NK cells have proven to be safe with mod-
est efficacy in clinical trials as detailed above. However, 
there are still some limitations that need to be overcome 
for NK cellular therapy to have a larger clinical impact. 
Some of these obstacles include limited in vivo persistence, 
restricted homing to tumor sites, hampered function due to 
the immunosuppressive tumor microenvironment and lack 
of antigen specificity. The field of genetic engineering has 
seen tremendous advances in the past few years and has 
proven to be a powerful approach to improve the efficacy of 
immune effector cells for adoptive therapy. The most notable 
advances were seen with T-cell therapy, and have led to the 
Food and Drug Administration (FDA) approval of CD19-
redirected chimeric antigen receptor (CAR) engineered T 
cells for relapsed B-ALL in children and young adults [112] 



267NK cell therapy for hematologic malignancies﻿	

1 3

and for patients with relapsed NHL [113]. These advances 
have also applied to the field of NK cellular therapy where 
CAR engineering is being explored in multiple preclinical 
studies (reviewed in [114–116]). Our group is leading the 
first in-human clinical trial to test the safety and efficacy 
of off-the-shelf CB-NK cells engineered to express a CAR 
against CD19, ectopically produce IL-15 to support NK cell 
proliferation and persistence in vivo, and express a suicide 
gene, inducible caspase 9, to address any potential safety 
concerns for the treatment of refractory lymphoid malignan-
cies [NCT03056339]. Genetic engineering can be employed 
to enhance the effectiveness of adoptively transferred NK 
cells by increasing their in vivo persistence and cytotoxic-
ity, improve their trafficking and homing to tumor sites and 
enhance their ability to circumvent the immunosuppressive 
tumor microenvironment [reviewed in [115, 116]. In addi-
tion to CAR engineering, other strategies, including bi-spe-
cific killer cell engagers (BiKEs) and tri-specific killer cell 
engagers (TriKEs) are also being employed to enhance the 
efficacy of NK cellular therapy (reviewed in [117–119]).

Conclusion

The field of NK cell immunotherapy has advanced remark-
ably over the last decade. Although initial studies with 
autologous NK cells were discouraging, the use of allo-
geneic NK cells has resulted in favorable outcomes both 
in the transplant and non-transplant settings. Our increas-
ing understanding of the biology of NK cells along with 
the advancements in the field of ex vivo manipulation and 
genetic engineering is laying the foundation for readily avail-
able universal, yet customizable, NK cells for the adoptive 
immunotherapy of cancer.
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