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Introduction

Acute myeloid leukemia (AML) is a heterogeneous dis-
ease characterized by a multitude of molecular abnormali-
ties. Despite increasing understanding of the pathogenesis 
no significant changes in treatment have been achieved as 
yet. With current treatment strategies, the percentage of 
adult patients achieving complete remission has increased, 
mainly due to better risk classifications and improvements 
in supportive care. However, with still roughly half of these 
patients relapsing, survival rates remain low. A rare popula-
tion of therapy resistant cells is believed to be at the ori-
gin of the relapse. Since these cells have the self-renewal 
capacity to repopulate a leukemia despite their low fre-
quency, they are considered leukemic stem cells (LSC), 
also referred to as the leukemia-initiating cells (LIC). 
Whether these cells originate from normal hematopoietic 
stem cells (HSC) or from more mature progenitors that 
gained stemness features remains elusive and may differ 
among patients. Currently, many studies reveal the impor-
tance of estimating LSC burden for prognostic purposes 
and strategies to eradicate these cells in order to completely 
eliminate the leukemia. In this review, we will focus mainly 
on the identification of these LSC using flow cytometry 
and summarize novel opportunities for elimination of these 
LSC.

Identification of leukemic stem cells

In order to identify LSC, knowledge of their specific char-
acteristics is essential. The recognition of stemness features 
(e.g., drug resistance, self-renewal and undifferentiated 
state) [1] alone is not sufficient since those features are also 
characteristics for HSC coexisting in the bone marrow (BM) 
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[2]. The existence of leukemic cells that meet these criteria 
was first demonstrated over 20 years ago. In the 1990s, Dick 
and colleagues demonstrated that a rare fraction of AML 
cells (i.e., cells with the CD34+/CD38− immunopheno-
type, similar to HSC) was capable of generating leukemia 
in immunodeficient mice [3, 4]. Since this discovery, these 
putative LSC have been the focus of extensive research. 
Golden standard property of LSC populations is the ability 
to engraft and initiate leukemia in a recipient mouse (ini-
tiation), to grow out after re-transplantation into secondary 
recipients (self-renewal) and preferable in tertiary recipi-
ents. Since normal CD34+/CD38− cells possess similar 
features as LSC and the design of new therapies require 
the specific eradication and monitoring of CD34+/CD38− 
LSC it is crucial to specifically discriminate LSC-containing 
fractions from HSC using cell-surface markers. Table 1 pre-
sents a summary of markers that are commonly used to dis-
tinguish LSC from HSC, thereby allowing to define the con-
tribution of both the LSC and the HSC to the total CD34+/
CD38− compartment. However, each marker allowed iden-
tification of LSC only in part of the AML patient population 
and often identified only part of the total LSC population 
in a particular patient [5, 6]. Combining all markers and 
other properties that distinguish LSC from HSC [5] allows 
to robustly identify the LSC and to estimate its frequency. 
Since the use of all markers to identify CD34+/CD38− 
LSC fraction of the total CD34+/CD38− compartment in 
each patient would require a dramatic amount of work and 
money, we developed a simplified comprehensive panel of 
markers that included only non-redundant LSC markers [6].

The existence of LSC outside the CD34+/CD38− frac-
tion has been proposed as early as 1996, when CD34− 
cells were shown initiating leukemia in immune-deficient 
mice [6, 7]. Indeed, in less immunodeficient mice strains, 
both CD34+ and CD34− populations engraft [8–10]. 
Besides the influence of distinct properties of the mouse 
models used on engraftment, important studies of Bonnet 
et al. showed that there is another phenomenon that deter-
mines engraftment: they showed that the anti-CD38 anti-
body (used to purify CD34+/CD38−, CD34+/CD38+, 
CD34−/CD38− and CD34−/CD38+ cells prior to trans-
plantation) inhibited subsequent engraftment [11, 12]. This 
is suggesting that earlier results could be based on technical 
interference rather than true biological differences of the 
CD38− and CD38+ populations.

Taken together, these studies advocate that LSC might 
co-exist in all CD34/CD38 defined subpopulations. In a 
recent study of Ng et  al., the four CD34/CD38 defined 
cell populations of AML patients were sorted and were 
subsequently injected into mice and screened for their 
leukemia-initiating ability [13]. This exquisite approach 
confirmed that LSC activity was detected in all fractions; 
however, with a majority of CD34+ fractions, especially 
CD34+/CD38−, and minority of CD34− fractions con-
taining LSC. The fact that there were hardly cases in 
which leukemia-initiating cells originated from CD34− 
and/or CD34+/CD38+ without concomitant activity in 
CD34+/CD38− suggests that the CD34+/CD38− frac-
tion contains the most important leukemia-initiating 
cells when the other fractions are concomitantly present. 

Table 1   Distinct leukemic stem cell markers

Marker Identified as Expression References

Normal In AML (%) HSC CD34+ CD38− LSC

IL1RAP IL1R3 T cells 79 − + [70–72]

CLL-1 CLEC12A, MICL, DCAL-2 Myeloid cells 70 − + [6]

TIM-3 T-cell Ig Mucin 3 Activated T cells, NK cells 91 − + [73]

CD2 SRBC, LFA2, T11 T cells, NK cells 87 − + [14]

CD7 GP40, TP41, LEU-9 T cells 43 − + [6]

CD11b Integrin alpha M, Mac-1 Myeloid cells 55 − + [6]

CD22 BL-CAM, Siglec-2 B cells 51 − + [6]

CD25 IL2RA, TAC Activated B and T cells 25 − + [74]

CD33 P67, Siglec-3 Myeloid cells, NK cells 82 + ++ [6] [75]

CD44 Adhesion molecule Ubiquitously 100 + ++ [6]

CD45RA Tyrosine phosphatase receptor type C T cells, myeloid cells 65 − + [76]

CD47 Integrin-associated protein (IAP) Ubiquitously 100 + ++ [77]

CD56 N-CAM, MSK39 NK cells, activated T cells 32 − + [6]

CD96 TACTILE Activated T cells 33 − + [6]

CD99 MIC2, single-chain type-1 glycoprotein Myeloid cells 83 − + [78]

CD123 IL3R Myeloid cells 82 + ++ [6] [48] [79]
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This hypothesis is confirmed by other observations: in 
transplantation experiments using NOD/SCID mice of 
unfractionated AML, engraftment correlated only with 
the CD34+/CD38− frequency in the original sample, but 
not with the CD34+/CD38+ or CD34 frequency [14]. In 
addition, in line with the finding of in vitro and in vivo 
therapy resistance [15, 16], it was found that it is only 
the CD34+/CD38− LSC frequency that correlates with 
therapy outcome and minimal residual disease (MRD) 
levels, i.e., number of leukemic blasts detected after ther-
apy [5]. This suggests that it is this fraction, and not the 
CD34+/CD38+ and CD34− fractions, that preferentially 
survives therapy and recapitulates leukemia.

The frequency of LSC within all mononuclear cells is 
shown to vary widely between patients (1 in 1.6 × 103 in 
1.1  ×  106) [10]. Since the CD34+/CD38− population 
frequency is 1 in 5 × 103 [17], we need, at least in part of 
the patients, assays to identify the smaller subpopulation 
of LSC within this population. Exploiting other (non-
immunophenotypical) features of the LSC allows this.

About 20% [18] of AML cases are characterized by 
absence of neoplastic CD34+ cells [18, 19]. In these 
cases the commonly small CD34+ (<1%) blast popu-
lation does not contain leukemic cells [18, 20, 21]. By 
definition, these CD34− patients lack CD34+/CD38− or 
CD34+/CD38+ leukemic populations; however, a poten-
tial LSC population should be found within the remain-
ing CD34− fraction. Apparently, there are small and yet 
unidentified subpopulations to consider as most leukemo-
genic and therapy resistant in these AML cells.

Since LSC are supposed to be relatively chemother-
apy resistant, the finding of a very small cellular com-
partment that is defined by high ABC drug transporter 
activity is of particular interest. Indeed a specific cell 
population [i.e., side population (SP)] could be identi-
fied using flow cytometry analysis in which the specific 
Hoechst dye 33342 [22, 23] is extruded efficiently by 
these drug pumps. These SP cells are resistant to AML 
therapies that include drugs that are used for treatment 
of AML patients like anthracyclines [24]. Purified SP 
cells were shown to have leukemic initiating capacity 
in NOD/SCID mouse models [24, 25] and contained 
both CD34+ cells and CD34− cells [26, 27] which are 
indeed in part neoplastic [28]. Although this suggest 
that a small part of the CD34− cells are therapy resist-
ant, it remains to be established whether the SP cells are 
candidates for the leukemia-initiating cells in so-called 
CD34− leukemia.

Since the SP population can contain both HSC and 
LSC, inclusion of LSC-specific surface markers should 
aid in distinction between the LSC and HSC within the 
SP.

Next, stem cells are known to protect themselves by high 
expression of aldehyde dehydrogenase (ALDH), which is 
a cytosolic enzyme involved in retinoic acid metabolism 
maintaining cellular homeostasis. ALDH is shown to pro-
tect against DNA damage induced by reactive oxygen spe-
cies and reactive aldehydes. In normal BM CD34+/CD38− 
HSC display high levels ALDH activity (ALDHhigh) [29]. In 
both normal BM and in the majority of AML BM cells, the 
CD34+/CD38−/ALDHhigh population is considered to con-
tain only HSC [21, 29, 30]. In contrast to normal BM, in 
AML a second population can be discriminated with cells 
having intermediate ALDH expression [29]. When puri-
fied, this population was most potent in AML engraftment 
in immunodeficient mice and was generally found positive 
for leukemic cytogenetic markers [29]. Furthermore, pres-
ence of this population after therapy was highly predictive 
for relapse [29]. In conclusion, ALDH activity can be used 
as a functional stem cell marker, identifying HSC popula-
tion and LSC population in AML. Validity to therapeutically 
target ALDH in AML treatment is controversial; a recent 
paper showed that in vitro and in vivo inhibition of ALDH 
selectively eradicates CD34+/CD38−ALDH+ cells [31]. 
In this study, the authors used the CD34+/CD38−/ALDH+ 
phenotype to describe LSC, which is distinct from most 
other studies that define CD34+/CD38−/ALDH+ to reflect 
HSC. To reveal whether these CD34+/CD38−/ALDH+ 
cells that are targeted, are indeed neoplastic cells, additional 
genetic characterization might be insightful.

LSC heterogeneity of LSC within a patient

Recently it was shown that the constitution of AML at 
relapse may differ from diagnosis due to clonal changes 
including clonal evolution, clonal regression and clonal 
selection, with possible changes on immunophenotypic 
[32, 33], cytogenetic [34], genetic [34, 35] and epigenetic 
[35] level. Detailed whole genome sequencing studies, ana-
lyzing paired diagnosis–relapse samples, showed that at 
time of diagnosis, patients could present with a wide array 
of small subclones of which some remained in relapse [36]: 
indicative for clonal selection under therapy pressure. In 
2012, we showed that immunophenotypically defined sub-
populations of cells prominent at relapse could be traced 
back as very minor immature (CD34+/CD38−/dim) sub-
populations of cells at diagnosis [32], again suggesting 
the importance of the CD34+/CD38− leukemic stem cell 
fraction. Since LSC are currently followed during therapy 
as biomarker of treatment efficacy and as prognostic fac-
tor for relapse, it is of great relevance to identify all (pos-
sibly minor) LSC populations that are potentially capable 
of causing relapse [37].
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Clinical relevance of LSC load for prognosis

The CD34+/CD38− burden of AML patients is of strong 
prognostic value. In adult AML, patients with CD34+/
CD38− frequencies higher than 3.5% at diagnosis had 
a median relapse-free survival of 5.6  months, compared 
to 16  months in those with lower CD34+/CD38− fre-
quencies [14]. These results were later confirmed in other 
studies in adult AML [14] and in pediatric AML [38]. As 
knowledge on the makeup of the CD34+/CD38− fraction 
increased, other markers and properties were included 
anticipating better selectivity in defining LSC as previ-
ously summarized [5, 29]. In studies on the prognostic 
impact of CD34+/CD38− LSC on disease outcome, the 
prognostic influence of complete absence of this fraction 
was also discovered: CD34− status, characterized by the 
complete absence of neoplastic CD34+ cells [18], turned 
out to be an independent prognostic factor identifying 
patients with better prognosis in adult [17] and pediatric 
AML [39] compared to patient with high or low CD34+/
CD38− LSC frequencies.

Despite the accumulating evidence of the prognostic 
relevance of LSC load at diagnosis, this feature is cur-
rently not included in risk group stratification. It is our 
assumption that implementation of flow cytometric quan-
tification of LSC could be implemented without great 
effort using our one-tube assay [6]. Since prediction of 
outcome also greatly depends on many different factors 
during therapy, including LSC measurements during ther-
apy (for instance at MRD time points) is warranted [40].

Impact of LSC frequency during therapy

Assessment of the frequency of remaining leukemic cells 
present during and after therapy (measurable/minimal 
residual disease, MRD) is increasingly used as an early 
read-out of therapy efficacy [6, 41]. MRD frequency 
measurement has been shown to have independent prog-
nostic impact across different cytogenetic and molecular 
subgroups [42–45], and is currently used to refine risk 
group classifications after induction therapy. In particu-
lar, MRD is implemented in the HOVON/SAKK H132 
study to guide decisions for transplantation type in inter-
mediate risk patients. In this study, immunophenotypic 
MRD measurements are complemented with mutation 
analysis in NPM1-mutated patients, in which NPM1 sta-
tus at MRD is leading for the clinical decision. In fact, 
many MRD studies are currently being performed, which 
use (or include) molecular assays [57].

It is remarkable that in all immunophenotype and/
or molecular MRD studies still a proportion of MRD-
negative patients develop a relapse. There are multiple 

possible reasons for this, e.g., low assay sensitivity, 
occurrence of mutational/immunophenotypic shifts or 
different kinetics of MRD disappearance. There may, 
however, also be a biological explanation: it may not 
only be the number of leukemic blast cells, reflecting 
MRD, that defines the risk of relapse, but also the num-
ber of LSC present within this blast cell population. As 
we argued earlier, stem cells have been demonstrated to 
be more therapy resistant than leukemic blast cells. The 
MRD population is thus likely enriched with LSC, but 
these are too low in frequency to contribute significantly 
to the total frequency of MRD cells. Indeed, when the 
number of CD34+/CD38− LSC after therapy was deter-
mined, LSC load was an independent predictive factor for 
patient survival [5]. Such was found by others too, be it 
with different assays and different immunophenotypical 
and functional definitions of stem cells [29, 46]. Remark-
ably, assessment of both LSC and MRD led to better 
separation of patients risk group classification than either 
MRD or LSC alone [5, 17].

For newly tested therapies, survival end point is the most 
important determinant of the therapeutic effectiveness. 
However, large clinical trials are needed with high numbers 
of included patients. At best, it than takes approximately 
2–3  years to predict survival [47]. With increasing num-
bers of tested therapies, specifically targeting LSC, usage 
of LSC frequencies as surrogate intermediate endpoint for 
survival would be highly beneficial [48].

Therapeutic opportunities eliminating LSC

General principles and challenges faced by targeting LSC

With the poor prognosis of AML and only little improve-
ments in therapeutic options, there is a pressing need for 
novel therapies. Therapies targeting LSC offer hope for 
such improvement. Fundamental to LSC therapy is the 
selection of the target and the timing of the therapy. Ide-
ally, the target is highly expressed by LSC, highly selective, 
i.e., absence of expression on other cells in particular HSC 
and no circulating antigens, and preferentially expressed by 
high numbers of patients. Acknowledging the many simi-
larities that LSC and HSC share, it is not surprising that 
current treatment approaches are limited. As the specific 
identification and, with that, the characterization of LSC 
has become more detailed, therapies directed to LSC, while 
sparing normal HSC, are becoming reality and are cur-
rently investigated as delineated below.

Distinct cell-surface markers have been proposed 
as potential LSC-specific targets (Table  1) and several 
approaches targeting some of these LSC surface markers 
are currently in clinical trials (see Table 2). Of these mark-
ers, therapies targeting CD33 are possibly the most studied 
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in AML patients. Although targeting CD33 was originally 
not meant as an anti-LSC therapy, it turned out that CD33 
was overexpressed in LSC compared to HSC [6]. Treatment 

with Gemtuzumab ozogamicin (GO) treatment was associ-
ated with reduced relapse risk and improved overall sur-
vival in patient subgroups [49, 50]. Whether GO targets 

Table 2   Evaluation of novel leukemic stem cell directed drugs

CDC cell-dependent cytotoxicity, ADCC antibody-dependent cell-mediated cytotoxicity, CFU colony forming unit
a  In chronic myeloid leukemia
b  In chronic lymphoid leukemia
c  In multiple myeloma

Target Antibody/small molecule Efficacy Trials References

Therapy targeting stem cell-specific surface markers

 CD33 AMG330 (CD33-CD3 
BiTE)

Reduced in vitro CFU I [80]

Gemtuzumab ozogamicin Selective kill of CD34+ CD38−CD123+ LSC, sparing HSC I–III [51]

SGN-CD33A Activity requires CD33 expression, activity does not correlate with 
expression levels

I–III [81]

 IL1RAP IgG mAb 81.2 Selective kill of IL1RAP-positive leukemic blasts and LSC-enriched 
populations

N/Aa [70]

 TIM3 ATIK2a Selective block of LSC engraftment/development, sparing HSC N/A [56]

 CLL-1 CLL1-CD3 BiTE Internalization leads to stem cell death, induction of CDC and ADCC 
activity

I [82]

 CD123 SL-101 Selective suppression of leukemic progenitors (in CFU) N/A [48]

SGN-CD123A Anti-leukemic activity in preclinical AML models I [83]

 CD44 IgG1 H90 Specificity towards leukemic cells over normal CD34+ cells, inhibits 
mTOR

I [84]

Therapy targeting LSC-related molecular pathways

 AKT MK-2206 Impaired leukomogenesis and reduced LIC frequency in vivo I–II [85]

Perifosine Reduced clonogenic activity, sparing normal CD34+ cells I [86]

 mTOR Torkinib, PP242 Reduced proportion of CD34+ cells in vivo N/A [87]

MLN0128 CFU inhibition in LSC isolated from primary and secondary xeno-
graft

N/A [88]

 BCL-2 ABT-263 Selectively targets LSC mitochondrial energy generation, induced cell 
death

N/Ab [89]

 XPO1 KPT-8602 Selective kill of blasts and LSC in AML patient-derived xenograft 
models

N/Ac [90]

Selinexor, KPT-330 Selective decrease of LIC frequency in AML cells isolated from 
xenografts

I–II [91]

 NF-kB Parthenolide Preferentially targets AML progenitors (in vitro CFU) and stem cell in 
SCID xenografts

N/A [92]

 Smoothened PF-913 Reduced fraction of CD34+ CD38− cells, sensitized AML cells to 
cytosine arabinoside

N/A [93]

 Proteasome Carfilzomib Reduced long-term survival of AML CD34+ cells I [94]

Bortezomib Bortezomib-treated mice showed significant decrease in LIC-enriched 
populations

I–III [95]

 Histone deacety-
lase

Chidamide Induced apoptosis in LSC-like cells and primary AML CD34+ cells I–II [96]

 DOT1L EPZ004777 CFU inhibition in primary samples with DNMT3A mutation, not 
affecting cells without this mutation

N/A [97]

Therapy targeting the LSC microenvironment

 CXCR4 Plerixafor, AMD3100 Decreasing bone marrow homing I–II [66]

AMD3465 N/A [66]

BMS-936564 I [98]

 VLA4 Natalizumab II [99]
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CD33+ LSC, causing the reduction in relapse risk, remains 
unclear [50] as higher numbers of CD34+/CD38−/CD33+ 
cells and high CD33 expression levels decreased GO sensi-
tivity in vitro [51]. One lesson that can be learned from GO 
treatment is clear: high specificity of the therapy is impor-
tant. CD33 is, next to leukemic cells, also present on most 
HSC, on mature and immature myeloid cell and on various 
progenitors [52], possibly underlying toxicities as found in 
earlier studies [53]. Anti-CD123 therapy may have similar 
disadvantages [6], while results of clinical trials targeting 
newer discovered surface markers more specific for LSC 
(including CCL-1 [54, 55], TIM3 [55–57], CD96 [58]), 
will provide important insights in validity of therapies tar-
geting immunophenotypic markers.

Next to specificity, the design of the antibody in terms of 
conjugates is of importance for effectiveness. Novel engi-
neering of antibodies has potential to improve efficacy and 
reducing immunogenicity (mechanisms and constructs are 
reviewed by Scott et al. [59]. and Tiller and Tessier [60]).

One alternative way of direct LSC targeting is with the 
use of small-molecule inhibitors interfering in key sign-
aling pathways altered in LSC (see Table  2). Using this 
strategy the leukemic progenitor cells are also targeted 
since mutations found in signaling pathways in AML are 
not limited to the LSC, but are inherited by their progeny. 
Recent studies have also indicated the relevance of splicing 
on signaling pathways [61]; therefore, small molecules that 
affect the spliceosome are also investigated as novel thera-
peutics to eradicate LSC [62].

Future perspectives

LSC maintenance and functioning is related, at least in 
part, to signals from the BM microenvironment [63–65]. 
Therapeutic targeting is therefore not only directed to LSC. 
Initial studies inhibiting factors necessary for LSC homing 
(e.g., CXCR4, CXCL12) have shown to abrogate chemore-
sistance [66], suggesting combination therapies with LSC-
specific targets. Clinical trials targeting the LSC niche are 
in progress [67] (see Table 2).

In this review, we have conveyed the important role of 
LSC in AML with emphasis on the identification of LSC 
using flow cytometry. As the identification of CD34+/
CD38− LSC allows for the identification of patients with a 
poor prognosis, we consider LSC measurements as valuable 
asset for clinical decision-making. This concerns both risk 
group classification at diagnosis or definition of risk groups 
after therapy (in an MRD situation). In view of the large het-
erogeneity of LSC within and among patients, the identifica-
tion of all specific LSC would be too costly in terms of AML 
cells, time and money. For that reason, a broadly applicable 
simple one-tube approach has been developed, which can 

easily be implemented in routine diagnostics [6]. Addition-
ally, screening for CD34+/CD38− LSC also enables iden-
tification of CD34− patients, who generally have a better 
prognosis [18]. Furthermore, as LSC-specific therapies—
targeting LSC-specific surface markers—become available, 
individualized therapy may come in view. To select the most 
effective marker-directed therapy, the LSC phenotype of the 
individual patients needs to be determined. With increas-
ing numbers of markers becoming available, innovations in 
flow cytometers will continue to support a growing number 
of channels/colors available in simultaneous measurements. 
The currently available multicolor flow cytometry approach 
used in AML does not exceed ten colors [68]. While this 
allows a universal screening, for precise characterization of 
the most pure (very minor) LSC population, multiple mark-
ers are needed. Current technological advances will come 
from high-number-multicolor flow cytometry or CyTOF 
approaches [69] in which an extensive panel of LSC markers 
will be available.
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