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Abstract Mesenchymal stromal cells (MSC) have

attracted the attention of scientists and clinicians due to

their self-renewal, capacity for multipotent differentiation,

and immunomodulatory properties. Some essential prob-

lems remain to be solved before the clinical application of

MSC. Platelet lysate (PL) has recently been used as a

substitute for FBS in MSC amplification in vitro to achieve

clinically applicable numbers of MSC. In addition to

promising trials in regenerative medicine, such as in the

treatment of major bone defects and myocardial infarction,

MSC have shown therapeutic effect other than direct

hematopoiesis support in hematopoietic reconstruction. It

has been confirmed that MSC promote hematopoietic cell

engraftment and immune recovery after allogeneic hema-

topoietic stem cell transplantation, probably through the

provision of cytokines, matrix proteins, and cell-to-cell

contacts. Their suppressive effects on immune cells,

including T cells, B cells, NK cells and DC cells, suggest

MSCs as a novel therapy for GVHD and other autoimmune

disorders. These cells thus present as promising candidates

for cellular therapy in the fields of regenerative medicine,

allogeneic hematopoietic stem cell transplantation, and

autoimmune disorders.
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Introduction

Mesenchymal stromal cells (MSC) constitute a population

of non-hematopoietic cells in the bone marrow, from which

these were identified for the first time. Subsequently, MSC

have been identified from various tissues including skin,

skeletal muscle, adipose tissue, liver, amniotic fluid,

embryonic placenta, umbilical cord blood (UCB), teeth,

and other tissues [1–8]. MSC are characterized by self-

renewal and multiple differentiation capacity into mesen-

chymal tissue, including osteocytes, chondrocytes, and

adipocytes. There is also evidence that MSC could differ-

entiate into endothelial cells, neural cells, astrocytes,

cardiomyocytes, and other cells that are developmentally

derived from the endoderm and exoderm [9–14]. So far,

there is no specific surface marker available to prospec-

tively identify and isolate MSC. Although stage-specific

embryonic antigen-1 (SSEA-1) has been reported to suc-

cessfully isolate a subset of cells biologically similar to

MSC from murine bone marrow, and some molecules such

as SSEA-4, STRO-1, CD140b and CD271 have been pro-

posed to be specific surface markers for the enrichment of

human MSC [15–20], the practical roles played by these

surface markers in experimental and clinical application

need to be further evaluated. Recently, a promising
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technique called analytical pipeline aimed at detecting

surface proteome of MSC has been developed. Surface

proteins of intact cells are biotinylated and enriched by

cell-impermeable, cleavable sulfo-NHS-SS-biotin, and

identified with extremely high confidence by mass spec-

trometry. The technique provides the basis for better

understanding the specific surface markers of MSC [21]. At

present, MSC is usually defined as positive for a combi-

nation of molecules (CD73, CD90, CD105, CD166, CD44,

and CD29) and negative for CD14, CD34, CD31, and

CD45 [22, 23]. Characterization of MSC in vitro also relies

on its functional property including differentiation capa-

bility toward osteoblast, adipocytes, and chondroblasts.

MSC have great therapeutical potential in regenerative

medicine because of their in vitro differentiation capacity,

homing to inflammatory tissues after infusion in vivo [24],

and secreting various bioactive molecules [25]. MSC, the

most important component of marrow stroma and capable

of generating most mature mesenchymal cells in the mar-

row stroma [26–28], functions in regulating hematopoiesis

via providing cytokines, matrix proteins, and cell-to-cell

contact [29]. This property leads to the coinfusion of MSC

in allogeneic hematopoietic stem cell transplantation

(HSCT) aiming to promote hematopoietic cell engraftment

and immune recovery. The involvement of MSC in T-cell

positive selection in thymus [30] has promoted the study on

the interaction between MSC and immune cells. Growing

evidence indicate that MSC exhibit immunosuppressive

activity on T-cell responses triggered by mitogen, alloan-

tigen, peptide antigen, and CD3/CD28 antibody [31–35].

MSC also inhibit the function of B cells, DC, and NK cells

[35–40]. The immunomodulatory effect of MSC has been

investigated to potentially treat GVHD and autoimmune

diseases, for example, diabetes. This review will outline the

advances in the manipulation of MSC in regenerative

medicine, HSCT and autoimmune disorders, and the

understanding of the roles played by MSC therein.

Safe and effective expansion of MSC

With increasing number of clinical trials regarding MSC

application, obtaining a sufficient amount of clinical-

grade cellular product (usually more than 1 9 106/kg) by

appropriate expansion in vitro remains a critical problem.

MSC are usually cultured in vitro in basal medium (such as

a-MEM or DMEM) supplemented with 10–20% fetal

bovine serum (FBS). Recently, a study showed that DMEM

have advantages over IMDM in terms of cell proliferation,

differentiation, and stem feature preservation of MSC [41].

One concern about the clinical use of MSC is the possible

immune response elicited by infused FBS and its safety.

There is a report about FBS-induced arthus-like immune

response against xenogenic antigens in patients [42, 43].

Due to its susceptibility to microbial contamination, FBS

might lead to the transmission of bacterium and virus or

prion diseases, such as bovine spongiform encephalitis to

patients [42, 44]. So culture and expansion of MSC without

animal serum has become a focus preceding the clinical

application of MSC. One of the candidate substitutes for

FBS is autologous serum, and human plasma has been

demonstrated to be a suitable FBS replacement for the

expansion and differentiation of MSC, providing a feasible

alternative for tissue engineering with GMP-compatible

protocols [45]. MSC can be expanded for a small number

of passages using autologous serum without changing their

properties [46–48]. However, the amount of autologous

serum one patient can provide is limited for large-scale

clinical expansion of MSC. Although the protocol, in

which the cultures are first expanded in a medium con-

taining FBS and then transferred to autologous human

serum, can remove at least 99.99% of all FBS contami-

nation [49]; there are also potential risks, especially for

microbial pathogens. Allogeneic human serum is not a

selection because the growth of MSC will be arrested in the

presence of the serum for unknown reasons [47, 49].

Another expansion protocol has been recently established,

in which GMP-produced basic medium LP02 supple-

mented with 5% of platelet lysate (PL) obtained from

human thrombocyte concentrates was used [50]. MSC

expanded with PL exhibit higher proliferation activity and

less immunogeneic potential compared to cells with FBS.

Notably, a normal karyotype can be preserved in MSC with

PL-supplemented medium (PLSM) at least for six pas-

sages. Subsequent several researches also demonstrated

that PL was superior to FBS in the aspects of proliferation

potential, colony-forming unit fibroblast frequency, and

cell senescence of MSC from various tissues, such as

human umbilical cord, UCB, and adipose tissues [51–56].

Further studies are needed to investigate possible func-

tional changes in MSC cultured with PL in comparison

with FBS. In a clinical trial, BM-derived MSC, expanded

in PLSM from unrelated HLA disparate donors, were

infused to treat patients with acute GVHD [57]. Although

the response to MSC transfusion was lower than in the

previous reports, PL was a promising media supplement

candidate for clinically safe and efficient expansion of

MSC. Human allogeneic cord blood serum (CBS) is

another non-animal serum substitute, with which cultured

MSC display higher self-renewal and enhanced osteoge-

neic potential [58]. As there were few studies that tested

the application of CBS, no clear conclusion could be drawn

at this time.

Idea medium for safe expansion and application of

hMSC in clinical settings is that the medium composition

can be completely defined. The effect of a set of growth
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and attachment factors has been identified by Aguilar et al.,

who found that basic fibroblast growth factor (bFGF) is

critical and works synergistically with transforming growth

factor (TGF)-beta1 to allow significant cell expansion of

hMSC. Ascorbic acid, hydrocortisone, and fetuin are also

found to be important growth and attachment factors. They

have formulated a medium (PPRF-msc6), consisting of key

recombinant and serum-derived components [59]. Using

recombinant human platelet-derived growth factor-BB

(PDGF-BB), bFGF, and TGF-beta1 supplemented serum-

free medium, Chase et al. [60] obtained extensive propa-

gation of MSC with retained phenotypic differentiation and

colony-forming unit potential while there was no change in

the global gene expression. Panserin 401 is a specifically

developed medium for serum-free cell cultivation. When

bone marrow MSC were cultured in serum-free media

DMEM or Panserin 401, there was no obvious prolifera-

tion. Only when Panserin 401 was supplemented with both

2% FBS and growth factors (as well as with 10% FBS), the

best proliferation was obtained, and multipotency wad

maintained [61]. One study tested the effect of serum-

deprived culture conditions on the survival and replication

of MSC, and found a significant upregulation of prosur-

vival and angiogenic factors including VEGF-A, ANGPTs,

IGF-1, and HGF. The cells have the potential to differen-

tiate into endothelial-like cells [62].

Another concern about the clinical use of MSC is their

potential malignant transformation. The high proliferative

capacity in vitro of MSC probably renders the cells with

more chances to acquire gene mutation, which may finally

lead to malignant transformation. Although it has been

demonstrated that mouse MSC subjected to extensive

passaging in vitro were susceptible to malignant transfor-

mation evidenced by cytogenetic aberration and sarcoma

development in vivo [63–66], the results of studies on the

transformation of human MSC are controversial. Human

MSC have been demonstrated to exhibit more resistance to

transformation without genomic instability in vitro and no

tumor was induced after infusion for long-term in vivo

[64, 67–69]. In a study, MSC derived from human adipose

tissue exhibited transformation evidenced by up-regulation

of myc, repression of p16, and acquisition of telomerase

activity, and carcinoma was generated in mice [70].

However, these results are contrary to the following

experiments suggesting that MSC malignant transforma-

tion probably resulted from contamination with another

tumor epithelial cell line [71]. One recent study showed

that donor-dependent aneuploidy was detected in human

MSC in vitro regardless of culture conditions, but trans-

formation did not occur when MSC were tested in mice for

in vivo tumorigenesis [72]. More preclinical and clinical

trials are needed to further and better understand the pos-

sibility of human MSC transformation and its mechanisms.

Preservation

Expansion of MSC in vitro to sufficient numbers meeting

clinical requirement needs different lengths of time, based

on cell sources, isolation, and culture protocols. It is worth

weighing the benefits and risks between culturing MSC

over a long time and treating patients with other alternative

methods. Hence, cell cryopreservation remains a critical

issue that should be addressed currently for increasing

MSC application in clinical trials. Several studies have

suggested that when using DMSO as cytoprotectant, MSC

could be frozen with a slow drop in temperature (1�C/min)

and finally stored at -196�C in liquid nitrogen without

changing its proliferation and differentiation capabilities

after thawing at 37�C [73–77]. In a recent study, human

adipose tissue-derived MSC were cryopreserved in xeno-

free and chemically defined medium supplemented with

5% DMSO, and cell membrane integrity, cell recovery,

repopulation, and functionality were not influenced in

comparison to conventional cryopreservation method using

FBS [78]. So, the elimination of FBS and the reduced

addition of DMSO in this chemically defined medium are

good for further standardization of cryopreservation pro-

tocol. Using penetrating ethylene glycol (EG, MW 62 Da)

as basic cryoprotectant represents another novel approach

for cryopreservation of MSC without any adverse effects

on cell proliferation and differentiation [79]. It is necessary

to formulate a standard operating protocol for MSC pres-

ervation before its extensive application in regenerative

medicine and tissue engineering.

Sources

MSC are originally isolated from bone marrow, which

represents the main source of MSC. MSC approximately

forms 0.001–0.01% of nucleated marrow cells. Due to the

number and quality decline with aging of donors and

invasive procurement of bone marrow, more attention has

been paid to search for alternative MSC sources. It is

demonstrated that MSC can be identified and isolated from

all the aforementioned tissues, including adipose tissue and

human UCB (hUCB). Low frequency and inconsistency in

successful isolation of MSC in hUCB are probably major

obstacles limiting its potential clinical application. In a

recent study, the rate of success in isolating MSC from

hUCB was raised to 90% when cord blood volume was

C90 ml and the interval time between collection and

management was B2 h [80]. Immunophenotype, prolifer-

ation, and differentiation of MSC may vary among dif-

ferent sources. For example, MSC derived from adipose

tissue initially expressed surface antigen CD34, which

disappeared with expansion in vitro. Significant difference
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in the expression of multiple molecules, including PODXL,

CD36, CD49f, CD106, and CD146, between MSC from

adipose and bone marrow has also been demonstrated [81].

MSC from cord blood exhibited higher proliferation rate in

vitro, and was more readily induced to differentiate into

chondrocytes than those from adipose and bone marrow

[80]. MSC from bone marrow showed higher capacity for

osteogenic differentiation compared to those from adipose

tissue. However, MSC from adipose tissue was more prone

to adipogenic differentiation [81, 82]. So, appropriate

option of the origin of MSC should be made based on

experimental and clinical application to achieve a satis-

factory effect.

Application of MSC in regenerative medicine

MSC-based tissue engineering in the treatment of major

bone defect

The well-defined property and well-established culture

protocol of differentiation along osteogeneic lineage of

MSC in vitro have made MSC promising candidate cells

for engineered tissue to treat bone defect. Large-area bone

defect is usually repaired by scarring and complicated by

nonunion. So far, no effective approach has been estab-

lished. To date, there are various preclinical and clinical

trials that try to treat the disease with MSC. There is evi-

dence that the number and function of MSC are reduced

in severe bone fractures, which finally lead to nonunion

[83, 84]. MSC combined with scaffold, for example

hydroxyapatite (HA)/tri-calcium phosphate, has signifi-

cantly promoted bone union after transplantation in several

experimental animal models [85–89]. PL seemed to be an

optimal culturing medium due to the enhanced osteogeneic

differentiation of MSC cultured in PL compared to those in

FBS [90]. In humans, three patients with loss of 4.0–7.0 cm

bone segment were transplanted with MSC-seeded mac-

roporous hydroxyapatite scaffolds. Abundant callus for-

mation along the implants and good integration at the

interfaces with the host bones were revealed by radio-

graphs and computed tomographic scans by the second

month after surgery [91]. In another study, four patients

with large bone diaphysis defects were transplanted with

porous hydroxyapatite (HA) ceramic scaffolds seeded with

MSC derived from autologous bone marrow, and complete

fusion between the implant and the host bone occurred

5–7 months after surgery. No major complications occur-

red in the early or late postoperative periods. In all patients

at the last follow-up (at least 6–7 years postsurgery), a

good integration of the implants was maintained, indicating

long-term durability of bone regeneration achieved by a

bone engineering approach [92]. A combination of gene

therapy and cell therapy for treatment of this disease has

attracted much more attention from scientists. In a study,

lentiviral-mediated expression of alpha5 integrin (ITGA5)

in human MSC showed higher bone repair potential com-

pared to MSC alone when mixed with coral/hydroxyapatite

particles and transplanted into the critical size long-bone

defect in nude mice, providing a novel therapy that uses

MSC for bone regeneration [93]. Although possessing

strong osteogeneic differentiation potential in vitro, MSC

engraftment and differentiated osteopoietic cell in vivo are

very low in most experimental studies. In addition to direct

differentiation to osteogenic cells, MSC can generate bone

tissue via an endochondral program (endochondral ossifi-

cation), which might be another mechanism for promoting

bone repair [94]. The beneficial effects of MSC on bone

repair and its underlying mechanisms need further in-depth

research.

MSC infusion for the treatment of myocardial

infarction

Acute myocardial infarction (MI) is characterized by a

massive loss of cardiomyocytes due to the disruption of

blood supply, which results in cell death and is usually

ensued by heart failure. Current clinical therapies include

thrombolytic therapy, bypass surgery, and percutaneous

coronary intervention (PCI), which have limited effect in

preventing the progression of heart failure in MI survivors

but reduce MI-related mortality. Cardiomyocyte regenera-

tion becomes the main goal of recovering heart function in

patients with MI. MSC have previously been demonstrated

to be capable of differentiating into cardiomyocytes in vitro

[9, 95]. On the basis of this fact, it is hypothesized that

MSC may promote cardiomyocyte regeneration in vivo and

hold promise in the treatment of MI. Transplantation of

MSC by intracoronary, transendocardial, intramyocardial,

or intravenous methods have shown positive results in

increasing blood supply, reducing infarct size, decreasing

arrhythmias, and improving left ventricular function in

animal models of MI [96–103]. Intracoronary injection

appears to lead to retention of more therapeutic cells in

infracted areas compared with other methods [104]. The

mechanisms underlying the beneficial effects of trans-

planted MSC remain elusive. However, it is indicated that

the paracrine property of MSC contributes to the antiapo-

ptotic effect on cardiomyocytes and enhances angiogene-

sis, thus improving whole heart function after MI.

However, direct transdifferentiation of MSC into cardio-

myocytes seems to play a small role [97, 98, 105–109].

Gene-modified MSC overexpressing neuropeptide Y

(NPY) [110], PGI2 [111], HGF, VEGF [112], or GSK-3b
[113] aimed at promoting MSC differentiation or angio-

genesis have more advantages over naı̈ve MSC in MI
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treatment. In humans, the first report was of a randomized

study of 69 patients with MI [114]. The patients with

intracoronary infusion of autologous bone marrow-derived

MSC exhibited improved left ventricular function and

increased EF at 3 months compared with controls. Adverse

effects related to MSC infusion did not occur. Another

randomized, double-blind, placebo-controlled phase I study

on intravenous infusion of allogeneic MSC in 53 patients

with MI has been recently reported [115]. The patients

transplanted with MSC intravenously showed no cellular

therapy-related complications. Increased left ventricular

function, decreased cardiac arrhythmias, and improved

pulmonary function were attained in patients with MSC

infusion. At the current stage, the optimal MSC source,

transplantation methods, dosing, and timing still need to be

further optimized.

MSC enhances the reconstruction of hematopoiesis

Allogeneic HSCT is an effective therapeutical modality for

hematological or nonhematological disorders considering

the extreme difficulties in finding gene-matched donors.

However, conditioning regimens such as chemotherapy

before HSCT usually damage the host marrow stroma and

lead to graft failure, which is a life-threatening complica-

tion after HSCT [116]. Moreover, immunologic resistance

and limited number of HSC are also the reasons for graft

failure. MSC, the main component of the bone marrow

microenvironment, have been shown to regulate hemato-

poiesis by mechanisms of secreting bioactive molecules

and by cell–cell contact [29]. Coinfusion of MSC has

shown to facilitate the engraftment of CD34? hematopoi-

etic cells derived from peripheral blood or UCB in several

animal models [117–123]. Our laboratory has previously

isolated a novel population of adherent fibroblast-like cells

from hUCB CD34? cells, and called it hUCB-derived

stromal cells (hUCBDSC) [124]. A series of surface

markers positive on hUCBDSC include CD29, CD31,

CD44, CD45, CD50, CD68, CD106, fibronectin (Fn),

laminin (Lm), and collagen IV, but not CD34. Compared

with MSC from bone marrow, hUCBDSC can synthesize

and secrete higher level of TPO and lower level of gran-

ulocyte-macrophage colony stimulating factor (GM-CSF)

and stem cell factor (SCF). In vitro coculturing tests

showed that hUCBDSC have the ability to promote CD34?

cell expansion and the formation of colony-forming unit

(CFU). When mice were cotransplanted with haploidenti-

cal hematopoietic cells and hUCBDSC, the engraftment of

hematopoietic cells was faster than in HSC-only control

[125]. Recently, MSC in combination with SCF, TPO, and

FGF-1 showed higher capacity of hematopoiesis enhance-

ment compared to MSC alone, evidenced by more CFU

formation in vitro, and rapid hematopoietic reconstitution

in mice [126]. It seems that compared with bone marrow,

MSC derived from adipose could lead to faster prolifera-

tion and differentiation of hematopoietic progenitors in

vitro and higher production of immature human hemato-

poietic progenitors and CD45(?) cells in mice [127]. The

mechanisms underlying the supportive roles of MSC on

hematopoietic reconstitution in vivo remain unclear. In

fact, the number of MSC distributed into the bone marrow

after infusion is limited [128], suggesting that considerable

engraftment of MSC may not be indispensable for its

effects [129]. It is possible that secreted cytokines by MSC

mainly mediate the engraftment improvement of hemato-

poietic cells. Infusion of in vitro expanded autologous

MSC in patients has been demonstrated to be safe with no

adverse events and ectopic tissue formation [130, 131].

Subsequent clinical trials indicate that cotransplantation of

MSC with HSC contributes to rapid hematopoietic recov-

ery in patients, although the source and number of MSC

and HSC and patient conditions were different [132–136].

A recent phase I–II clinical trial enrolled fifteen pediatric

patients with high-risk acute leukemia [137]. Eight patients

were transplanted with single unit UCB and MSC from

haploidentical parental donors. No serious MSC-related

adverse events occurred. All eight evaluable patients

achieved neutrophil engraftment at a median of 19 days.

Probability of platelet engraftment was 75%, at a median of

53 days. Although the result is inspiring, further double-

blind and randomized controlled clinical trials are needed

to confirm the effect of MSC and optimal cell source,

dosing, and timing.

Immunomodulatory effect of MSC

Initially, MSC are identified to express HLA-I but not

HLA-II, and exhibit low immunogenicity. Later, MSC were

confirmed to be implicated in suppressing proliferation and

influencing effector functions of cells from both the innate

and adaptive immune system including natural killer cells,

monocytes, macrophages, dendritic cells, B cells, and

T cells (Table 1). It has been demonstrated that MSC has the

capability to inhibit the activation and proliferation of

T lymphocytes in vitro stimulated by mitogens [32, 138],

alloantigens [139, 140], as well as CD3 and CD28 anti-

bodies [141] in a dose-dependent manner. Several soluble

factors have been proposed to mediate the suppressive effect

of MSC including transforming growth factor-b, hepatocyte

growth factor, prostaglandin E2 (PGE2), indoleamine

2,3-deoxygenase, insulin-like protein, NO, heme-oxygen-

ase-1(HO), leukemia inhibitory factor, programmed death-

ligand1, jagged-1, B7-H1, IL-10, HLA-G galectin-1, and

adenosine depending on the stimuli [32, 139, 142–154].
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However, the requirement of cell-to-cell contact also cannot

be excluded [155]. In a recent study, complement-activating

properties of MSC were also shown to be probably involved

in its immunosuppressive effects on T cells in vitro

[156]. Further studies showed that MSC could skew type1

T-cell response toward type2 T-cell response [139, 157].

CD4?CD25?Foxp3? cells (Tregs) were also induced when

cocultured with MSC in vitro [139, 158]. MSC can also

strongly inhibit differentiation of naive CD4? T cells into

T helper (Th) 17 cells and induce a functionally Treg cell

phenotype in fully differentiated Th17 cells [159].

MSCs can inhibit proliferation of B cells stimulated by

anti-Ig antibodies, soluble CD40 ligand, or cytokines via

cell-to-cell contact or soluble factors such as PGE2 in most

studies. The differentiation, antibody production, and che-

mokine receptor expression (such as CXCR-4, CXCR-5 and

CCR7) of B cells are also reduced by MSC [36, 160, 161].

Monocyte and hematopoietic stem cell-derived DC

differentiation and maturation are impaired in the presence

of MSC [39, 139, 162–164]. The function of T cell stim-

ulated by DC cells is also suppressed by MSC. In addition,

MSC can inhibit the release of TNF-a by native myeloid

DC and promote IL-10 secretion by native plasmacytoid

DC, respectively [39, 139, 162–164]. MSC can induce the

generation of regulatory DC, which has the ability to

suppress the proliferation of T cells. Two aspects may be

involved in the mechanisms underlying the effect of MSC

on DC cells: cell-to-cell contact and soluble factors, such

as IL-6, M-CSF, PGE2, and IL-10 [39, 139, 163–166].

IL-2 or IL-15 stimulated NK cell proliferation is also

impaired by MSC. It seems that MSC could inhibit cyto-

toxicity of IL-2-activated rather than freshly isolated NK

cells [37]. MSC exhibits inhibitory effect on proinflam-

matory cytokine release including IFN-c and TNF-a by NK

cells. Cell-to-cell contact and soluble factors such as PGE2,

TGF-b, IDO, and HLA-G5 may contribute to the sup-

pressive effect of MSC on NK cells [37, 38, 138, 158, 167,

168]. In general, the immunosuppressive property has

made MSC attractive in the treatment of immune disorders.

Potential application of MSC in GVHD and other

immune-related disease

Graft-versus-host disease (GVHD), a major cause of mor-

bidity and mortality after HSCT, is characterized by rec-

ognition and proliferation of alloreactive donor T cells and

subsequent attacking host target tissues and organs such as

skin, gut, and liver. Standard therapeutic approaches for

treatment of GVHD include conventional immunosup-

pressive drugs and/or T-cell depletion of the graft. How-

ever, 30–70% of recipients still suffer from GVHD after

HSCT [169, 170]. In fact, T-cell depletion increases the

incidence of graft failure, tumor relapse, and opportunistic

infections [171]. Based on the previous findings that MSC

have the capacity to regulate immune response in vitro, it

has been proposed that MSC infusion may benefit the

treatment of GVHD. In the following experiments, MSC

were demonstrated to significantly attenuate the incidence

and severity of GVHD after cotransplantation in most ani-

mal models. [121, 172–180]. Suppressing T-cell prolifera-

tion and activation, promoting T-cell traffic to secondary

lymphoid organs, changing cytokine microenvironment in

peripheral blood (decreased IFN-c and increased IL-10

Table 1 The immunomodulatory effects of MSC on immune cells and their mechanisms

Stimulator Immunomodulatory effects Mechanisms References

T cells PHA,

alloantigen,

CD3 and

CD28

antibodies

Inhibition of T-cell proliferation; Induction of

CD4?CD25?Foxp3? T cells (Tregs);

downregulation of Th1-type cytokine

secretion; upregulation of Th2-type cytokine

secretion

TGF-b, HGF, PGE2, IDO, ILP, NO, HO, LIF,

IL-10, HLA-G, programmed death-ligand1,

jagged-1, B7-H1, galectin-1 and adenosine;

activating complement; cell–cell contact

[32, 37,

138–158]

B cells Anti-Ig

antibodies,

soluble CD40

ligand

cytokines

Inhibition of B cell proliferation, differentiation

and antibody production. Downregulation of

CXCR-4, CXCR-5 and CCR7

PGE2, cell-cell contact [36, 160,

161]

DC cells GM-CSF, IL-4,

TNF-a
Inhibition of monocyte and HSC-derived DC

differentiation, maturation, T-cell stimulation

function; inhibition of TNF-a release by

native myeloid DC and promotion of IL-10

release by native plasmacytoid DC; induction

of regulatory DC

IL-6, M-CSF, PGE-2, IL-10 cell–cell contact [39, 139,

162–166]

NK cells IL-2, IL-15 Inhibition of NK cell proliferation and

cytotoxicity; downregulation of IFN-c and

TNF-a secretion

PGE2, TGF-b, IDO, HLA-G5, cell–cell contact [37, 38,

138, 158,

167, 168]
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levels), and downregulating DC migration to lymph nodes

may all contribute to the suppressive effect of MSC on

GVHD in vivo [172–174, 177–181]. In our laboratory,

hUCBDSC have also been demonstrated to constitutively

express HLA-I, but not HLA-II and other costimulators

such as CD80, CD86, CD40, and CD40L. hUCBDSC

suppress xeogenic T-cell reaction stimulated by PHA and

DC possibly via the induction of CD4? Treg and reversion

of mature DC to immature [182]. When hUCBDSC were

infused into acute GVHD mouse model after haploidentical

stem cell transplantation, clinical and histopathologic

scores of GVHD were significantly reduced. The expression

levels of immune molecules including MHC-I, II, CD80

and CD86 on splenic CD11c? DC were dramatically

decreased at 1w, 2w, 3w, and 4w posttransplantation. The

proportion of CD4? Treg in splenic CD4? T cells was

also significantly increased. So, the protective effect of

hUCBDSC against GVHD in mice is probably ascribed to

the induction of CD4? Treg and the postponed DC matu-

ration [183], which is in accordance with in vitro results

[182]. The interaction between hUCBDSC and human

immune cells remains to be explored further. However,

some individual studies report that the severity of GVHD

could not be ameliorated by the infusion of MSC [179, 184,

185]. The possible reasons for this discrepancy may include

MSC sources, isolation and expansion methods, cell num-

ber, and timing of HSCT. However, clinical application of

MSC has generated more beneficial effects on the preven-

tion and treatment of GVHD. The first report was that a

9-year-old patient with severe treatment-resistant grade IV

acute GVHD completely recovered after transplantation

with haploidentical MSC [186]. In another study, MSC

(median 1.0 9 106/kg) were given to eight patients with

steroid-refractory grades III–IV GVHD. As a result, the

acute GVHD disappeared in six of eight patients, and the

survival rate was significantly higher than controls [187].

MSC from unrelated HLA disparate donors were expanded

in PL-containing medium, and then delivered to 13 patients

with steroid-refractory aGVHD (median 0.9 9 106/kg).

The overall response (OR) 28 days after MSC infusion was

54% [57]. It is possible that the responses and results may

vary with patient characteristics and MSC regimen.

Although promising in prophylaxis and treatment of

GVHD, one adverse effect of MSC transplantation is that it

probably decreases graft versus leukemia (GVL) effect in

HSCT. In a prospective randomized clinical trial [188],

patients with hematological malignancies were transplanted

HLA-matched HSC with or without MSC (median 3.4 9

105/kg). The incidence of grade II–IV GVHD in patients

cotransplanted with MSC was significantly reduced com-

pared with patients transplanted HSC alone (10 vs. 53%).

However, relapse occurred in 60% patients with MSC

cotransplantation, significantly higher than patients with

HSC alone (20%). The results indicate that MSC probably

decreases the GVL effect, which leads to the increased

rate of leukemia relapse. More large randomized con-

trolled clinical trials are needed to assess the benefits and

risks (such as malignant transformation, supporting tumor

growth and ectopic formation) of MSC, optimal source,

dosing, and timing.

Type 1 diabetes is characterized by damaged b cells in

the pancreas, attacked by specific T cells and subsequent

decreased insulin level and metabolism disorder. Although

exogenous insulin represents the current major therapy for

type 1 diabetes, the probability of diabetic complication in

patients is high due to the lack of physiological oscillation

in insulin secretion and high glucose level [189]. An ideal

approach for the treatment of type 1 diabetes should

address b cell deficit and immune response. The capability

of differentiation into insulin-positive cells [190, 191]

and immunomodulatory effect of MSC raise its possible

therapeutical application targeting type 1 diabetes. MSC

application has been confirmed to increase the level of

blood insulin and decrease blood glucose in animal models,

in which streptozotocin was used to damage the pancreas

[192–195]. Because less evidence supports the transdif-

ferentiation of MSC into insulin-secreting cells in vivo, it is

proposed that the soluble cytokines might mediate the

beneficial effects of MSC rather than transdifferentiation.

As data about MSC in clinical application for the disease

were limited, a solid conclusion cannot be drawn.

Conclusions and future directions

In summary, due to their multi-lineage differentiation

potential, secreting multiple biomolecules and immuno-

modulatory properties, MSC have become attractive can-

didates for cell therapy in the field of regenerative

medicine, hematology, and immunology. MSC have been

used to treat osteogenesis imperfecta, vascular diseases,

and neurological disorders besides the aforementioned

diseases. MSC also appear to have therapeutical potential

in the treatment of autoimmune disorders. Clinical trials

have tested the roles played by MSC in Crohn’s disease

and systemic lupus erythematosus. The effects of MSC in

vivo appear to be more linked with its paracrine function

rather than transdifferentiation. Development of tracking

technique may help observe MSC distribution and better

understand the roles played by MSC in vivo. Safe and

effective expansion, malignant transformation monitoring,

optimal cell source, application method, and dosing are

urgent issues that need to be addressed. So, clinical

application of MSC should be considered cautiously at

present. Large clinical trials are necessary to determine the

effect of MSC. In the near future, gene-modified MSC is
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expected to play much more powerful roles in experimental

and clinical application, because the selection of thera-

peutic gene(s) can be accomplished in a disease- or mole-

cule-specific way aiming to more effectively target clinical

settings.
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