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Abstract
In this paper, an efficient multigrid-DEIM semi-reduced-order model is developed to accelerate the simulation of unsteady 
single-phase compressible flow in porous media. The cornerstone of the proposed model is that the full approximate storage 
multigrid method is used to accelerate the solution of flow equation in original full-order space, and the discrete empirical 
interpolation method (DEIM) is applied to speed up the solution of Peng–Robinson equation of state in reduced-order sub-
space. The multigrid-DEIM semi-reduced-order model combines the computation both in full-order space and in reduced-
order subspace, which not only preserves good prediction accuracy of full-order model, but also gains dramatic computational 
acceleration by multigrid and DEIM. Numerical performances including accuracy and acceleration of the proposed model 
are carefully evaluated by comparing with that of the standard semi-implicit method. In addition, the selection of interpola-
tion points for constructing the low-dimensional subspace for solving the Peng–Robinson equation of state is demonstrated 
and carried out in detail. Comparison results indicate that the multigrid-DEIM semi-reduced-order model can speed up the 
simulation substantially at the same time preserve good computational accuracy with negligible errors. The general accelera-
tion is up to 50–60 times faster than that of standard semi-implicit method in two-dimensional simulations, but the average 
relative errors of numerical results between these two methods only have the order of magnitude 10−4–10−6%.

Keywords  Compressible flow · Porous media · Multigrid method · Discrete empirical interpolation method · Peng–
Robinson equation of state

1  Introduction

As a kind of primary energy, petroleum plays a significant 
role in industrial production and daily life. According to 
BP Energy Outlook (BP 2019), the proportion of oil and 
gas consumption in total energy consumption will continue 
to grow from 2020 to 2040 although the new energy gains 
increasing attention in recent years. With the development 
of computer technology and the progress of calculation 

methods, numerical simulation has become one of the 
important auxiliary tools for petroleum exploration and 
production. For example, the reservoir simulation can quan-
titatively provide the flow state and variation of reservoir 
parameters during oil and gas production.

With the increase in reservoir scale and the increasing 
demand for simulation accuracy in engineering practice, 
the requirement for computational efficiency in reservoir 
simulation is getting higher and higher. Therefore, efficient 
numerical simulation methods have attracted much attention 
in past 30 years. Commonly, the simulation of a typical sin-
gle-phase compressible fluid flow in reservoir porous media 
mainly includes the solution of flow equation and equation 
of state. A large number of scholars were devoted to improv-
ing the calculation speed of these two kinds of equations 
and several numerical methods have been developed. In 
general, there are two kinds of popular acceleration meth-
ods for solving the flow equation, one is full-order model, 
and the other is reduced-order model. The full-order model 
mainly includes parallel computing (Schrefler et al. 1999; 
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Akhmetzyanov et al. 2012; Fung et al. 2016; Jambunathan 
and Levin 2017; Tanaka et al. 2018; Ho et al. 2019), domain 
decomposition method (Popov and Power 1999; Stavroula-
kis and Papadrakakis 2009; Skogestad et al. 2013; Birgle 
et al. 2018), multigrid method (Gries et al. 2014; Lovett 
et al. 2015; Alzahabi et al. 2016; la Cour et al. 2016; Wang 
et al. 2017a, b), etc. These methods use CPU/GPU paral-
lel processing, regional partitioning technique and multi-
level recursive calculation, respectively, to solve the flow 
equation efficiently in original full-order space to achieve 
the acceleration. However, it is worth pointing out that full-
order model methods also suffer from inevitable shortcom-
ings. For example, the full-order model has a large memory 
requirement for the computer, and the parallel computing 
has specific requirements for the used computer.

Different from full-order models, many scholars have 
carried out researches on reduced-order models in recent 
years. The core idea of this type of model is to build a 
reduced-order surrogate model by projecting the origi-
nal full-order problem onto a low-dimensional subspace 
spanned by selected basis function, and only the new estab-
lished reduced-order model instead of the original full-order 
model is solved. Then, the acceleration can be achieved 
because the dimension of unknown variables is reduced 
in the reduced-order subspace. At present, the commonly 
used reduced-order model in reservoir simulation includes 
multi-scale modeling method (Cao et al. 2016; Akkutlu 
et al. 2017, 2018; Wang et al. 2020; Yu et al. 2020; Li et al. 
2020b), proper orthogonal decomposition (Yang et al. 2016, 
2017; Wang et al. 2017a, b, 2018; Li et al. 2020a), discrete 
empirical interpolation method (Akkutlu et al. 2016, 2017; 
Ghasemi et al. 2016; Tan et al. 2019), deep learning method 
(Kani and Elsheikh, 2019; Amini and Mohaghegh 2019; 
Cheung et al. 2020), etc. It is worth noting that the predic-
tion accuracy of reduced-order model depends heavily on the 
selected basis function. In the construction of reduced-order 
model, only the first several basis functions describing the 
main features of original full-order problem are considered, 
and the subsequent unimportant basis functions are ignored. 
Therefore, the reduced-order model cannot recover all infor-
mation of the original full-order problem, and there exists 
a certain loss of accuracy. In addition, the basis function 
is extracted from the snapshot of interested results under 
certain calculation conditions, which cannot include all cal-
culation conditions; thus, the applicability of reduced-order 
model is not good as that of full-order model.

In general, the widely used equation of state can be 
expressed in the form of cubic polynomial, the cube root 
finding algorithms including algebraic method and iterative 
method can be used to calculate the roots of the equation of 
state. However, the computational efficiency of cube root 
finding algorithms is relatively low, especially the most com-
monly used algebraic method. Because the type of equation 

of state is different from the flow equation, currently only a 
very few researchers focusing on the acceleration of equation 
of state, recent works are presented as follows. In the cal-
culation of phase splitting of hydrocarbon system, Li et al. 
(2019b) attempted to use a deep learning method to solve 
the Rachford–Rice equation and Peng–Robinson equation of 
state. Simulation results prove that the deep learning method 
can accelerate the solution of Peng–Robinson equation of 
state substantially, and the acceleration is up to three orders 
of magnitude compared with the successive substitution 
method. However, due to a large number of parameters need-
ing to be tuned in deep learning model, it is difficult to get 
the optimal model parameter settings. The prediction results 
under different calculation conditions have different numeri-
cal accuracy, with the maximum relative error up to 20%. In 
addition, the applicability of the used deep learning method 
still needs further investigation. Recently, the authors (Li 
et al. 2020a) developed a POD–DEIM global reduced-order 
model for fast simulation of compressible gas flow in porous 
media, in which POD was used to solve the flow equation 
and DEIM was applied to solve the Peng–Robinson equation 
of state, and a good acceleration was achieved in numerical 
validations. However, because both the flow equation and 
the equation of state are solved by the reduced-order model, 
the prediction accuracy depends heavily on the selection of 
projection basis function and DEIM interpolation points. 
In addition, due to the difficulty in selecting representative 
projection basis function, the applicability of POD–DEIM 
reduced-order model to high temperature and high pressure 
conditions is unsatisfactory, and the prediction accuracy 
under high temperature and high pressure conditions is not 
good as that of full-order model.

Based on the above analysis and inspired by our previous 
work (Li et al. 2020a), a semi-reduced-order model combin-
ing both the full-order model and the reduced-order model to 
accelerate the solution of unsteady single-phase compress-
ible flow through porous media is proposed in this paper. 
The multigrid method is used to solve the flow equation in 
original full-order space, which eliminates the dependence 
of prediction accuracy on the selection of basis function in 
reduced-order model such as POD. The DEIM reduced-
order model is still applied to solve the equation of state; 
however, different from the previous work (Li et al. 2020a), 
the compressibility factor in the equation of state is directly 
selected as the snapshot for constructing the projection basis 
function, resulting in the selected interpolation points more 
representative.

This paper is organized as follows. In Sect. 2, the model 
problem of single-phase compressible flow in porous media 
is briefly introduced. In Sect. 3, the establishment of pro-
posed multigrid-DEIM semi-reduced-order model is pre-
sented in detail step by step. In Sect. 4, the selection of 
DEIM interpolation points is discussed and the prediction 
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accuracy and acceleration of the proposed model are evalu-
ated and discussed by comparing with standard semi-
implicit method. Concluding remarks and future work are 
discussed in Sect. 5.

2 � Model problem

For the purpose of easy simulation, in this study, the com-
plex compressible flow in reservoir is simplified as a multi-
component single-phase compressible flow in porous media. 
Governing equations of the above compressible flow system 
include the Darcy’s law, the multi-species transport equa-
tion, the mass conservation law and the equation of state. 
The pressure equation can be derived from the Darcy’s law 
and mass conservation to compute the pressure. In order 
to demonstrate the core idea of proposed multigrid-DIEM 
semi-reduced-order model more clearly and concisely, only 
the single component is considered in the following study.

The Darcy’s law for single-phase flow in porous media 
reads,

where the permeability k is a property of porous media only; 
the viscosity μ is assumed to be constant in this study due to 
the weak relation with pressure; k

�
 is also called the hydraulic 

conductivity K.
The general mass conservation law for single-component 

fluid in porous media is described by,

where the source term qm is mass injection or projection rate; 
� stands for the porosity of porous media.

For compressible fluid flow, the density ρ is a given func-
tion of pressure and temperature, known as the equation of 
state (EOS),

Several EOSs have been proposed for describing the relation 
of state parameters, such as van der Waals EOS (van der 
Waals 1910), Soave–Redlich–Kwong EOS (Soave 1972), 
Predictive Soave–Redlich–Kwong EOS (Holderbaum and 
Gmehling 1991), Peng–Robinson EOS (Peng and Robinson 
1976) and cubic-plus-association EOS (Kontogeorgis et al. 
1996). Among these EOSs, the Peng–Robinson EOS (PR-
EOS) and its family member have become the most popular 
EOS for hydrocarbon/condensate systems in reservoir condi-
tions, which is now incorporated into major reservoir simu-
lators including the Eclipse and CMG commercial software. 
Recall the PR-EOS,

(1)u = −
k

�
(∇p − �g),

(2)
�(��)

�t
+ ∇ ⋅ (�u) = qm,

(3)� = �(p,T).

where the attraction parameter a(T) depends on the type of 
species and temperature, and b depends on the type of spe-
cies only.

For mixture, the mixing rules of PR-EOS are defined as 
follows,

where kij is the binary interaction coefficient between com-
ponents i and j, kij = kji , kii = 0 ; yi and yj denote mole frac-
tion, N is the component number.

In calculation, the PR-EOS is always written in a cubic 
polynomial form as shown below,

where A =
a(T)p

R2T2
 , B =

bp

RT
 ; parameters in A and B can be 

related to critical properties of species, in particular to criti-
cal  pressure pc  and cr i t ical  temperature Tc  , 
a
(

Tc
)

=
0.45724R2T2

c

pc
 , b = b

(

TC
)

=
0.0778RTc

pc
 ; The attraction 

parameter is modeled by a(T) = a
(

Tc
)(

1 + �
(

1 − T0.5
r

))2 , 
w h e r e  � = 0.37464 + 1.54226� − 0.26992�2  f o r 
0 < 𝜔 < 0.5 , � = 0.3796 + 1.485� − 0.1644�2 + 0.01667�3 for 
0.1 < 𝜔 < 2 ; � is the acentric factor defined as 
� =

3

7

(

log10 (pc∕ patm)
Tc∕ Tb−1

)

− 1 , indicating the non-sphericity of 

molecules, Tr and pr represent the reduced temperature and 
reduced pressure, respectively.

Substitution of Darcy’s law (1) into the mass conserva-
tion law (2) yields below Poisson-type pressure equation 
for compressible fluid flow in possibly compressible media 
(gravity is ignored here),

The above pressure equation can also be reformulated as,

where M stands for the relative molecular mass per mole; 
ct = cR + cf  is the total compressibility contributed from the 
porous media (rock) and compressible fluid. The rock com-
pressibility cR =

1

�

��

�p
 is ignored in this study due to its small 

value compared with that of fluid. The isothermal compress-
ibi l i ty  for  compressible  f luid is  def ined by 

(4)
(

p +
a(T)

�(� + b) + b(� − b)

)

(� − b) = RT ,

(5)a(T) =

N
∑

i=1

N
∑

j=1

yiyj
(

1 − kij
)(

aiaj
)0.5

(6)b =

N
∑

i=1

yibi,

(7)
Z3 − (1 − B)Z2 +

(

A − 2B − 3B2
)

Z −
(

AB − B2 − B3
)

= 0,

(8)
�(��)

�t
− ∇ ⋅ (�K∇p) = qm.

(9)�ctp
�p

�t
− ∇ ⋅ (�K∇p) =

ZRTqm

M
,
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cf = −
1

Vf

�Vf

�p
=

1

�

(

��

�p

)

T
 , and cf  holds below expression for 

PR-EOS,

3 � Multigrid‑DEIM semi‑reduced‑order 
model

3.1 � Conventional numerical methods

Through a series of reformulation and rearrangement, the 
model problem in Sect. 2 can be described by Eqs. (1), (7), 
(9) and (10). The standard semi-implicit method is com-
monly used to solve this nonlinear system, in which the 
pressure equation (9) is solved by implicit iteration and the 
PR-EOS (7) is solved by cube root finding algorithm; then, 
the Darcy velocity (1) and the fluid compressibility (10) are 
calculated explicitly. Readers of interest can refer to (Li et al. 
2020a) for more details. Although the above semi-implicit 
algorithm has been widely applied in reservoir simulations, 
it cannot be ignored a fact that both the implicit iteration of 
pressure equation and the algebraic root calculation of PR-
EOS suffer from high computational cost. In particular, the 
root calculation of PR-EOS always occupies a large portion 
of total CPU time, in some cases the portion is up to 90% of 
total calculation time (Li et al. 2020a).

To speed up the simulation of studied model problem, a 
multigrid-DIEM semi-reduced-order model is developed for 
acceleration in the current study. In this proposed model, the 
pressure equation is solved by using the multigrid method in 
original full-order space, and the PR-EOS is solved by the 
discrete empirical interpolation method (DEIM) (Chaturant-
abut and Sorensen 2010) in reduced-order subspace spanned 
by selected projection basis. Thus, in this work, the proposed 
multigrid-DEIM is a semi-reduced-order model that com-
bines computations both in full-order space and in reduced-
order subspace. In the following text, the establishment of 
multigrid-DEIM semi-reduced-order model is introduced in 
detail.

3.2 � Multigrid method for pressure equation

The pressure equation (9) is discretized by the finite differ-
ence method on uniform grids in two-dimensional domain, 
among which the unsteady term is discretized by one-order 
difference scheme and the pressure term is discretized by 
second-order central difference scheme. The discrete form 
can be written as follows,

(10)

cf =
1

p
+

1

pZ

BZ2 +
(

A − 2B − 6B2
)

Z −
(

2AB − 2B2 − 3B3
)

3Z2 − 2(1 − B)Z +
(

A − 2B − 3B2
) .

w h e r e  ai+1,j =
(pK)l

i+
1

2
,j

(Δx)2
, ai−1,j =

(pK)l
i−

1

2
,j

(Δx)2
ai,j+1 =

(pK)l
i,j+

1

2

(Δy)2
, ai,j−1 =

(pK)l
i,j−

1

2

(Δy)2
 , 

ai,j = ai+1,j + ai−1,j + ai,j+1 + ai,j−1 , bi,j =
�cf

(

pl
i,j

)2

Δt
+

RTqmZ
l
i,j

M
 , 

the superscript stands for time level and the subscript denotes 
grid index, Δt is the time step and Δx , Δy are the spatial step.

Equation (11) can also be expressed as below algebraic 
form,

where An×n is the matrix of discrete coefficients; bn is the 
vector of source term; n is the dimension of unknown pres-
sure in the computational domain.

In this work, the full approximate storage (FAS) mul-
tigrid method (Briggs et  al. 2000) is adopted to solve 
Eq. (12) due to the nonlinearity of discrete coefficients and 
source term, which are the function of fluid compressibility 
and pressure that needs to be updated on all mesh levels. 
The fundamental V-cycle is used in FAS multigrid method. 
In Fig. 1, the general implementation procedures of FAS 
multigrid method on three different mesh levels to solve 
Eq. (12) are demonstrated in detail. Here, the superscript 
stands for the mesh level, and the subscript denoting the 
dimension of unknown pressure is omitted for brevity. It 
is worth to mention that in Fig. 1 the finest mesh level is 
marked as the first level, and the larger mesh level index 
corresponds to the coarser grid. From Fig. 1, we can see 
that the V-cycle is composed of three basic operations, 
namely the restriction operation, the prolongation opera-
tion and the (pre-/post-) smooth operation. Parameter set-
tings in these three operations can exert significant influ-
ences on the acceleration of FAS multigrid method for 
solving Eq. (12).

(1)	 Restriction operation
	   In multigrid method, the equations on coarse mesh 

level are solved to obtain the correction of unknowns. 
Therefore, the establishment of coarse grid equation is 
a key issue in multigrid method, which is dependent on 
the restriction operation. To establish the coarse grid 
equation, the discrete coefficients, the source term, and 
the initial and boundary values of unknown pressure 
are needed; thus, the information of discrete pressure 
equation ( Ap = b ) on fine mesh level should be trans-
ferred to its neighboring coarse mesh level in restriction 
operation. Commonly, the discrete coefficients Ak+1 
on coarse mesh level k + 1 can be easily obtained by 
straightforwardly discretizing the pressure equation (9) 
on the current coarse mesh level. The corresponding 
hydraulic conductivity Kk+1 , porosity �k+1 , and com-

(11)
ai,jp

l+1
i,j

= ai+1,jp
l+1
i+1,j

+ ai−1,jp
l+1
i−1,j

+ ai,j+1p
l+1
i,j+1

+ ai,j−1p
l+1
i,j−1

+ bi,j,

(12)An×npn = bn,
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pressibility factor Zk+1 in discrete coefficients Ak+1 are 
obtained by restricting Kk , �k and Zk from fine mesh 
level k to coarse mesh level k + 1. For the initial guess 
of unknown pressure pk+1 on coarse mesh level k + 1, 
it is obtained by restricting the final numerical result 
of pressure p̃k from fine mesh level k to coarse mesh 
level k + 1. Different from bk on fine mesh level k, the 
source term bk+1 on coarse mesh level k + 1 consists of 
two parts, the first part is obtained by restricting the 
final residual rk from fine mesh level k to coarse mesh 
level k + 1, the second part is computed by the obtained 
discrete coefficients Ak+1 and initial guess of unknown 
pressure pk+1 on same coarse mesh level.

	   From the above restriction operations, it can be obvi-
ously seen that the restriction operator Ik+1

k
 (the prin-

ciple to transfer information from fine mesh to coarse 
mesh) is a critical parameter affecting the computa-
tional efficiency substantially. However, the determina-
tion of an optimal restriction operator is not straightfor-
ward. In particular, the restriction operator for residual 
is influenced by the numerical methods applied in 
discretization. For instance, the optimal restriction 
operator for finite difference method and finite volume 
method is possibly different. In order to set an opti-
mal restriction operator for residual, in this work, the 
restriction operator for residual is determined based on 
the energy conservation principle proposed by Li et al. 
(2014). In this study, suppose the two-dimensional 
domain is discretized by using a four-point stencil finite 
difference method; thus, the four-point scheme restric-
tion operator is employed for the restriction of inner 
grid points, as shown in Fig. 2. For the restriction of 
boundary and corner grid points, the two-point scheme 

and one-point scheme restriction operators are applied, 
respectively.

(2)	 Prolongation operation
	   In the left half part of V-cycle (see Fig. 1), the cor-

rection of unknown pressure ek can be obtained on 
coarse mesh levels. Correspondingly, in the prolonga-
tion operation of the right half part of V-cycle, the cor-
rection ek is transferred form coarse mesh level k + 1 
to fine mesh level k to obtain a better initial guess for 

p1

r1 =b1 -A1p~1
A1p~1 =b1

p2 = I2
1p

~1
b2 = I2

1r
1

Pre-smooth

Restriction

Restriction

Pre-smooth Post-smooth

Post-smooth

Smooth

Prolongation

Prolongation

b2 =A2p2 +b2

b3 =A3p3 +b3

r2 =b2 -A2p~2
A2p~2 =b2

p3 = I32p
~2

b3 = I32r
2

A3p~3 =b3

e2 = I2
3(p

~3 -p3)

p2 =p~2 +e2

A2p~2 =b2

e1 = I12(p
~2 -p2)

A1p~1 =b1

p1 =p~1 +e1

Fig. 1   V-cycle of FAS multigrid method on three mesh levels

Fig. 2   Restriction operation: four-point scheme for inner gird points, 
two-point scheme for boundary gird points and one-point scheme for 
corner gird points, pink points stand for fine grids, red points denote 
coarse grids and blue arrows represent the restriction operation
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unknown pressure. Similar to the restriction operator, 
the prolongation operator is dependent on the discrete 
scheme of pressure equation. In this study, the four-
point scheme, two-point scheme and one-point scheme 
prolongation operators are, respectively, adopted for the 
prolongation of inner, boundary and corner grid points, 
as shown in Fig. 3. Commonly, the prolongation opera-
tor can be set as the transpose of restriction operator. It 
should be pointed out that the discrete coefficients and 
source term on coarse mesh levels have been calculated 
in the left half part of V-cycle; thus, there is no neces-
sary to prolongate the discrete coefficients and source 
term from coarse mesh levels to fine mesh levels.

(3)	 Smooth operation
	   In smooth operations, the algebraic pressure equa-

tion (12) can be solved by using different solvers, such 
as Jacobi iteration, Gauss–Seidel iteration, successive 
over-relaxation and conjugate gradient. Commonly, 
the smooth in the left half part of V-cycle is called 
pre-smooth and that in the right half part of V-cycle 
is called post-smooth. In this work, the Gauss–Seidel 
iteration is applied to both the pre-smooth and post-
smooth operations. It should be noted that to save com-
putational cost, the PR-EOS is not solved on coarse 
mesh levels in our FAS multigrid method. The com-
pressibility factor Z on coarse mesh level is obtained 
by restricting Z from its neighboring fine mesh level. 

Although the numerical accuracy of unknown pressure 
on coarse mesh levels may be reduced slightly, it does 
not exert effects on the prediction accuracy of pressure 
on the finest mesh level.

	   To show the FAS multigrid method for solving the 
compressible flow equation more clearly, the pseudo-
code (Briggs et al. 2000) is presented in Table 1. It 
can be clearly seen that compared with the POD–
Galerkin model which is established in reduced-order 
subspace to accelerate the simulation of compress-
ible flow (Wang et al. 2017a, b, Wang et al. 2018; Li 
et al. 2020a), the multigrid method solves Eq. (12) in 
the full-order space (the finest mesh level) with fixed 
dimension n. The purpose of computations on coarse 
mesh levels is just to obtain the correction of unknown 
pressures.

3.3 � DEIM reduced‑order model for Peng–Robinson 
equation of state

In traditional solution of EOS, the algebraic method for find-
ing the roots of cubic equation is usually applied to solve the 
PR-EOS (7), which is extremely computational cost. Actu-
ally, it is not difficult to understand the heavy computational 
burden for solving PR-EOS; here, we explain this issue in 
detail. In algebra, the cubic polynomial PR-EOS (7) is a 
function of compressibility factor,

(13)f (Z) = aZ3 + bZ2 + cZ + d,

Fig. 3   Prolongation operation: four-point scheme for inner gird 
points, two-point scheme for boundary gird points and one-point 
scheme for corner gird points, pink points stand for fine grids, red 
points denote coarse grids and blue arrows represent the prolongation 
operation

Table 1   FAS multigrid algorithm for solving the compressible flow 
equation

A p b

A

A

p

p

b

br

r I r p I p

rpAb

A p b

p pe I

p p e

bpA
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where a is nonzero.
Setting f (Z) = 0 produces a cubic equation of the form,

It is known that if all of the coefficients a, b, c and d of the 
cubic equation are real numbers, then Eq. (14) has at least 
one real root due to the fundamental theorem of algebra. 
And all of the roots of Eq. (14) can be found algebraically 
according to the Abel–Ruffini theorem, but this process is 
always time-consuming. Furthermore, the cubic equation 
should be solved on all grid points in the computational 
domain with dimension n, which will lead to heavy compu-
tational burden in the simulation.

To accelerate the solution of PR-EOS (7), in this study, 
a reduced-order model called discrete empirical interpola-
tion method (DEIM) (Chaturantabut and Sorensen 2010) is 
used to determine few significant spatial grid points in the 
computational domain; then, the PR-EOS (7) is solved by 
cube root finding algorithm only on the selected grid points 
instead of on all grids points. To select appropriate interpo-
lation points, here the compressibility factor is supposed as 
the function of interest,

The DEIM approximates f (Z) by projecting it onto a sub-
space that spanned by a projection basis of dimension m ≪ n 
obtained through eigenvalue decomposition or singular 
value decomposition of f (Z) snapshots. The approximation 
from projecting f (Z) =

[

f1(Z), ⋅ ⋅ ⋅, fn(Z)
]

 onto the subspace 
spanned by the basis 

{

w1, ⋅ ⋅ ⋅,wm

}

⊂ ℝ
n is of the form,

where the projection basis W =
[

w1, ⋅ ⋅ ⋅,wm

]

⊂ ℝ
n×m 

and c(Z) is the corresponding vector of reduced-order 
coefficients.

To determine c(Z) , m distinguished rows are selected 
from the overdetermined system f (Z) = Wc(Z) in DEIM,

where e𝜉i = [0, ⋅ ⋅ ⋅, 0, 1, 0, ⋅ ⋅ ⋅, 0]T ⊂ ℝ
n is the �i th column 

of the identity matrix In ⊂ ℝ
n×m for i = 1, ⋅ ⋅ ⋅,m.

Suppose STW is nonsingular, then the coefficient vector 
c(Z) can be computed uniquely from,

Then, the final approximation of f (Z) can be expressed as,

It can be clearly seen from Eq. (19) that the approximation 
of f (Z) can be computed only on the selected m grid points 

(14)aZ3 + bZ2 + cZ + d = 0.

(15)f (Z) = Z.

(16)f (Z) ≈ Wc(Z),

(17)S =
[

e𝜉1 ,… , e𝜉m

]

⊂ ℝ
n×m,

(18)STf (Z) =
(

STW
)

c(Z).

(19)f (Z) ≈ Wc(Z) = W
(

STW
)−1

STf (Z).

{

�1,… , �m
}

 in the subspace with the dimension is reduced 
from n to m. It means that the PR-EOS (7) can be solved 
efficiently only on selected interpolation points instead of 
on all gird points in the domain, which can improve the 
computational efficiency dramatically. It is worth noting 
that to obtain the final approximation of f (Z) , the projection 
basis 

{

w1,… ,wm

}

 and interpolation grid points 
{

�1,… , �m
}

 
must be precomputed and specified: (1) for the determina-
tion of projection basis, it is constructed by applying the 
singular value decomposition or eigenvalue decomposition 
on snapshots of f (Z) obtained from the original full-order 
space under various calculation conditions. The quality of 
snapshots f (Z) can affect the prediction accuracy of DEIM 
obviously. Then, the DEIM approximation can be uniquely 
determined by the projection basis. Note that this projection 
basis not only specifies the projection subspace used in the 
approximation, but also determines the interpolation points 
used for computing the discrete coefficients of the approxi-
mation; (2) for the determination of interpolation points, 
they are selected inductively from the projection basis 
{

w1,… ,wm

}

 according to the DEIM algorithm, readers of 
interest can refer to (Chaturantabut and Sorensen 2010) for 
more technique details.

In summary, it can be seen that the DEIM approach 
approximates the function f (Z) by combining projection 
with interpolation. It constructs specially selected interpo-
lation points that specify an interpolation-based projection to 
provide a nearly L2 optimal subspace approximation to f (Z) 
with low computational cost. Equation (19) indicates that 
a certain coefficient matrix (projection basis W and inter-
polation points S) can be precomputed, and as a result, the 
complexity in evaluating f (Z) becomes proportional to the 
number of selected interpolation points.

4 � Results and discussion

In this section, numerical performances (accuracy and accel-
eration) of multigrid-DEIM semi-reduced-order model are 
evaluated by a single-phase compressible flow (described 
by the model problem in Sect. 2) in two-dimensional porous 
media. The numerical simulation is performed using an in-
house code on an Intel Xeon E5-2640, CPU2.60 GHz PC 
with 64.00 GB of RAM.

4.1 � Case description

Figure 4 shows a 100 m × 100 m porous media domain. The 
west and east boundaries of this domain are set as pressure 
boundaries pw and pe, and both the north and south bounda-
ries are set as Newman boundaries with zero velocity. The 
porosity of this domain is set as 0.2, the red region stands for 
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a large permeability value 100 mD and the five blue regions 
represent a small permeability value 1 mD, respectively. In 
this study, 100 × 100 uniform grids are utilized to discretize 
the domain, and the grid index in x–y Cartesian coordinate 
is (i, j) with 0 ≤ i, j ≤ 101 (including boundary girds). Other 
calculation parameters used in the simulation are shown in 
Table 2. Note that the influence of temperature variation is 
ignored thus the compressible flow is an isothermal flow, 
and only methane is considered and a projection well is 
located at the right-top of the domain (grid index is (100, 
100)) with a production rate qm = 0.01 kg/(m3·s).

In multigrid-DEIM semi-reduced-order model, first the 
projection basis should be precomputed, this step is called 
offline computation that is carried out only one time in simu-
lation (the computational cost can be ignored). To validate 
the correctness of multigrid-DEIM semi-reduced-order 
model and evaluate its online prediction ability, four groups 
of pressure boundary values are applied to obtain the pro-
jection basis at offline computation stage and one group of 
pressure boundary values is used to evaluate the prediction 
ability and numerical performance at online prediction stage, 

as shown in Table 2. At offline computation stage, 500 snap-
shots of the function f (Z) [Eq. (15)] are considered in each 
group; thus, a total of 2000 snapshots are used to extract the 
projection basis. Commonly, the eigenvalue decomposition 
or singular value decomposition can be applied to compute 
the projection basis, readers of interest can refer to (Li et al. 
2019a) for more details. Note that the quality of projection 
basis has significant effects on the prediction accuracy of 
DEIM, a good projection basis is capable to recover the 
information of original full-order problem as much as possi-
ble. Therefore, snapshots of function f (Z) should be chosen 
carefully in order to obtain a good projection basis.

4.2 � Selection of DEIM interpolation points

In multigrid-DEIM semi-reduced-order model, the adopted 
FAS multigrid method is a full-order model solver; the 
parameter settings of FAS multigrid method only affect 
the acceleration but not the computational accuracy. In 
this study, three mesh levels are applied in FAS multigrid 
method, both the pre-smooth and post-smooth numbers 
are set as 3, and the Gauss–Seidel iteration is used as the 
smoother. Different from FAS multigrid method, the DEIM 
for the solution of PR-EOS is a reduced-order model, the 
projection basis and interpolation points can influence both 
the acceleration and prediction accuracy substantially. When 
projection basis is determined, the prediction accuracy of 
DEIM is dependent on interpolation points. To guarantee 
good prediction accuracy, the interpolation points should be 
selected carefully in order to achieve a balance between the 
acceleration and accuracy.

For convenience, in this study, 5, 10, 15 and 20 DEIM 
interpolation points are, respectively, tested to determine an 
optimal number of interpolation points. According to DEIM 
algorithm (Chaturantabut and Sorensen 2010), the four sets 
of selected interpolation points are determined and shown 
in Fig. 5, and the corresponding grid index of these points 
is presented in Table 3. It can be found that most of selected 
interpolation points are located at where the permeability 
changes sharply, indicating that the interpolation points are 
selected to capture the variation of function f (Z) (quantity 
of interest).

0 20 40 60 80 100
0

20

40

60

80

100

Fig. 4   Permeability distribution in the porous media domain

Table 2   Parameter settings in the simulation

Simulation pe, MPa pw, MPa Other parameters

Offline computation 4.5 2.5 Tc= 190.58 K, pc= 4.604 × 106 Pa, Tb= 111.63 K, T = 323.15 K,
M = 1.6 × 10−2 kg/mol,
μ = 1.239 × 10−5 Pa·s,
R = 8.314 J/(mol·K), △t = 10 s

4.5 3.5
5.0 2.5
5.0 3.5

Online prediction 4.0 3.0
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To select an appropriate number of interpolation points, 
the online simulation is performed in which the above four 
sets of interpolations points are, respectively, tested. The 
average relative errors between the results predicted by 
multigrid-DEIM semi-reduced-order model and that cal-
culated by standard semi-implicit method are displayed in 
Fig. 6. Note that the studied model problem is an unsteady 
flow; thus, average relative errors of pressure, Darcy veloc-
ity and compressibility factor at four different simula-
tion times (t1 = 5000△t, t2 = 50,000△t, t3 = 100,000△t, 

t4 = 150,000△t) are presented. From Fig. 6, it can be clearly 
seen that the average relative errors of the above four vari-
ables decline with the increase in interpolation point num-
ber, indicating that more interpolation points can recover 
more information of the original full-order problem and 
then the numerical results with high numerical accuracy can 
be obtained. However, it can also be found that the aver-
age relative errors of these four variables almost have no 
change when more than 10 interpolation points are selected. 
It indicates that 10 interpolation points are already enough 
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(a) 5 interpolation points (b) 10 interpolation points

(c) 15 interpolation points (d) 20 interpolation points

Fig. 5   Distribution of selected DEIM interpolation points
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for online prediction with satisfactory accuracy in this study, 
extra interpolation points contribute a little to the prediction 
accuracy.

Figure 7 shows the acceleration of multigrid-DEIM semi-
reduced-order model compared with the standard semi-
implicit method under same calculation conditions. It can 
be clearly observed that with the increase in interpolation 
points, the speedup of multigrid-DEIM semi-reduced-order 
model declines almost linearly at the four different simula-
tion times, and the speedup is approximately a monotonic 
linear function of the number of interpolation points. Based 
on the above analysis of Figs. 6 and 7, it is reasonable to 
select 10 interpolation points to achieve acceleration and 
preserve good prediction accuracy at the same time in this 
work.

4.3 � Discussion of prediction results

In this part, the numerical accuracy and acceleration of 
multigrid-DEIM semi-reduced-order model are compared 
with that of standard semi-implicit method at the online 
prediction stage. It should be mentioned that from Fig. 6 it 
can be seen the average relative errors change slightly at the 
simulation times t2, t3 and t4; thus, in the following text, only 
the results at the simulation times t1 and t3 are illustrated. 
Figures 8, 9, 10 and 11, respectively, show the pressure, 
Darcy velocity and compressibility factor obtained by using 
the multigrid-DEIM semi-reduced-order model at t1 and t3. 

To evaluate the prediction accuracy, simulation results of 
standard semi-implicit method are also presented in the same 
figure for qualitative comparison.

From the comparison presented in Figs. 8, 9, 10 and 11, it 
can be clearly seen that the red dashed line representing the 
results of multigrid-DEIM semi-reduced-order model agree 
well with the blue line denoting the results of standard semi-
implicit method at simulation times t1 and t3. In specific, 
the pressure, Darcy velocity and compressibility factors 
predicted by our proposed multigrid-DEIM semi-reduced-
order model have almost the same numerical accuracy with 
the standard semi-implicit method. Only the u and v Darcy 
velocities show slight distinctions between these two meth-
ods at simulation time t1. It is not difficult to understand 
the relative large error of Darcy velocity compared with 
pressure. According to the Darcy’s law, the Darcy velocity 
depends on the pressure gradient and hydraulic conductiv-
ity, the error of pressure may be enlarged in the computa-
tion of Darcy velocity. Overall, Figs. 8, 9, 10 and 11 can 
qualitatively demonstrate that the proposed multigrid-DEIM 
semi-reduced-order model possesses good prediction accu-
racy with a slight accuracy loss.

To quantitatively evaluate the numerical accuracy of mul-
tigrid-DEIM semi-reduced-order model, the average relative 
errors of pressure, Darcy velocity and compressibility factor 
obtained at simulation times t1–t4 are presented in Table 4. 
It can be seen that except for the error of v Darcy velocity at 
simulation time t1, the average relative errors of remaining 
variables are small enough to neglect. For example, at the 
simulation times t2–t4 the average relative error of pressure 
has the order of magnitude 10−7%, and that of Darcy veloc-
ity and compressibility factor have the order of magnitude 
10−6% and 10−4%, respectively. One main reason for the 
large error of Darcy velocity at simulation time t1 is that the 
flow at t1 is still not fully developed and in unsteady state, 
the variation of Darcy velocity is relatively large. When the 
flow is well developed and in steady state, the Darcy veloc-
ity will change slightly and the average relative error will 
be reduced. Overall, it can be referred from Table 4 that the 
results calculated by multigrid-DEIM semi-reduced-order 
model match well with the simulation results of standard 
semi-implicit method, the average relative errors between 
these two methods are negligible for engineering applica-
tions. Thus, it can be proved that the multigrid-DEIM semi-
reduced-order model is capable to predict the numerical 
results with tiny accuracy loss.

To evaluate the acceleration of multigrid-DEIM semi-
reduced-order model, the CPU time consumption and cor-
responding speedup of the above cases are presented in 
Table 5. It can be clearly seen that the computation of pro-
posed multigrid-DEIM semi-reduced-order model is faster 
than the standard semi-implicit methods at the four simula-
tion times t1–t4. For example, at simulation times t1 and t2, 

Table 3   Gird index of selected DEIM interpolation points

No. 5 DEIM points 10 DEIM 
points

15 DEIM 
points

20 DEIM 
points

1 (100, 25) (100, 25) (100, 25) (100, 25)
2 (1, 72) (1, 72) (1, 72) (1, 72)
3 (26, 72) (26, 72) (26, 72) (26, 72)
4 (52, 50) (52, 50) (52, 50) (52, 50)
5 (28, 100) (28, 100) (28, 100) (28, 100)
6 – (77, 100) (77, 100) (77, 100)
7 – (11, 15) (11, 15) (11, 15)
8 – (21, 23) (21, 23) (21, 23)
9 – (45, 49) (45, 49) (45, 49)
10 – (83, 25) (83, 25) (83, 25)
11 – – (48, 50) (48, 50)
12 – – (29, 73) (29, 73)
13 – – (55, 51) (55, 51)
14 – – (4, 49) (4, 49)
15 – – (26, 21) (26, 21)
16 – – – (23, 23)
17 – – – (22, 73)
18 – – – (21, 18)
19 – – – (81, 21)
20 – – – (53, 100)
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the multigrid-DEIM semi-reduced-order model can achieve 

65.33 and 64.21 times of acceleration compared with the 
standard semi-implicit method. Overall, the speedup of 
multigrid-DEIM semi-reduced-order model is approxi-
mately two orders of magnitude, which is very attractive for 
engineering applications. In summary, Figs. 8, 9, 10 and 11 
and Tables 4 and 5 demonstrate that the proposed multigrid-
DEIM semi-reduced-order model enjoys a very attractive 
computational efficiency (two orders of magnitude faster) 
while preserving the similar accuracy of the standard semi-
implicit method.

5 � Conclusions

An efficient multigrid-DEIM semi-reduced-order model 
is proposed in this study for fast simulation of unsteady 
single-phase compressible flow through porous media. In 
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Fig. 6   Average relative errors between the results of multigrid-DEIM and that of standard semi-implicit method with different numbers of inter-
polation points
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Fig. 7   Acceleration of multigrid-DEIM semi-reduced-order model
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the framework of multigrid-DEIM semi-reduced-order 
model, the FAS multigrid method is applied to accelerate 
the solution of flow equation in original full-order space, 
and at the same time, the DEIM is used to speed up the 
solution of PR-EOS in a reduced-order subspace with only 

few selected interpolation points. The studied model prob-
lem is introduced briefly and the establishment of multi-
grid-DEIM semi-reduced-order model is illustrated step by 
step. To evaluate the numerical performances of multigrid-
DEIM semi-reduced-order model, an unsteady single-phase 
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Fig. 8   Comparison of pressure obtained by multigrid-DEIM semi-reduced-order model (red dashed line) and that calculated by standard semi-
implicit method (blue line)
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Fig. 10   Comparison of v-velocity obtained by multigrid-DEIM semi-reduced-order model (red dashed line) and that calculated by standard 
semi-implicit method (blue line)
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compressible flow in two-dimensional porous media is sim-
ulated carefully and following concluding remarks can be 
summarized:

(1)	 The interpolation points have significant effect on the 
prediction accuracy of compressibility factor and the 
whole computational acceleration. The selection of 
interpolation points should be carried out carefully to 
obtain appreciable acceleration at the same time pre-
serve good prediction accuracy. In this study, 10 spatial 
grid points are selected based on the elaborate evalua-
tion of four sets of interpolation points, with the dimen-
sion reduced from 10,000 to order 10 in the solution of 
PR-EOS.

(2)	 Compared with the traditional semi-implicit method, 
the multigrid-DEIM semi-reduced-order model is capa-
ble to predict the numerical results accurately, and the 
average relative errors of pressure, Darcy velocity and 
compressibility factor only have the order of magni-
tude 10−7%, 10−6%, 10−4%, which are negligible in real 
engineering applications. At the same time, the accel-
eration of multigrid-DEIM semi-reduced-order model 
at different simulation times can up to approximate two 
orders of magnitude for two-dimensional simulations.

In addition, it should be noted that the proposed multi-
grid-DEIM semi-reduced-order model is a general frame-
work, it is straightforward to extend this model to different 
problem conditions (for instance, three-dimensional domain 
and different production rates), and further computational 
gains can be achieved if other techniques are coupled, such 
as the parallel computing. In the future work, the possible 
research directions can focus on the application of presented 

model to the multiphase flow and multi-component flow in 
porous media.
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