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Abstract
A novel concept of treating oil reservoirs by nanofluids is being developed to improve oil recovery and reduce the trapped 
oil in hydrocarbon reservoirs. Nanoparticles show great potential in enhancing oil recovery under ambient conditions. In this 
paper, the approaches of wettability alteration by using nanofluid, stability of nanofluids, and the most reliable wettability 
alteration mechanisms associated with variant types of nanoparticles have been reviewed. Moreover, the parameters that have 
a significant influence on nanofluid flooding have been discussed. Finally, the recent studies of the effect of nanoparticles 
on wettability alteration have been summarised and analysed. Furthermore, this paper presents possible opportunities and 
challenges regarding wettability alteration using nanofluids.
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1 Introduction

Enhanced oil recovery (EOR) methods applied in hydrocar-
bon reservoirs typically cover different mechanisms, includ-
ing IFT reduction, wettability alteration, mobility control, 
and gravity drainage. Due to the increased demands in the 
global energy market, oil companies are required to invent 
novel solutions to improving oil recovery. Nanoparticles 
(NPs) are considered as one of the promising chemical meth-
ods in EOR applications (Kazemzadeh et al. 2019).

Nanoparticles are defined in most references as the 
group of molecules bonded together to form particles with 
the smallest sizes ranging from 1 to 100  nm (Ehtesabi 
et al. 2017; Mahmoud et al. 2016; Torsater et al. 2012). 

Nanoparticles have beneficial characteristics in EOR appli-
cation compared with other injection fluids used in con-
ventional EOR methods such as gas, polymer, surfactant, 
alkali, steam, and other chemicals (Almahfood and Bai 
2018; Druetta and Picchioni 2019). In addition to the ultra-
small sizes that allow nanoparticles to move through porous 
media without critical permeability reduction, the high ratio 
of its surface area to volume leads to enhancing other criti-
cal properties of nanofluids (Rahmani et al. 2015). Those 
distinguishing features of nanoparticles allow additional oil 
recovery by changing the interfacial tension between oil and 
water and altering reservoir rock wettability towards more 
water wet (Nazari Moghaddam et al. 2015).

In the oil and gas industry, various applications of nano-
particles and nanofluids are under investigation, focusing on 
how they influence drilling operations, production develop-
ment, reduction of formation damage, enhanced/improved 
oil recovery, heat transfer, and treatment of wastewater 
(Franco et al. 2017). In EOR/IOR applications, the most 
frequently used nanoparticles are  SiO2,  Al2O3, MgO,  ZrO2, 
 CeO2,  TiO2, ZnO, and  Fe2O3.

Recently, nanoparticles have been investigated to solve 
various challenges in oil production, such as trapping and 
controlling fines migration (Ogolo et al. 2013; Yuan et al. 
2018), viscosity reduction for heavy oil by performing as 
a catalyst agent (Prasher et al. 2006; Taheri-Shakib et al. 
2018), increasing the viscosity of injection fluids to improve 
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the displacement efficiency (Tarek 2015; Zaid et al. 2014), 
improving the efficiency of polymers and surfactants (Cher-
aghian 2015, 2017a, b; Singh and Mahto 2017), and reduc-
tion of the polymer degradation caused by temperature and 
shear rate effects (Giraldo et al. 2017).

Over the last several years, many types of research have 
been conducted on reservoir wettability alteration, whereby 
wettability is described as one of the main parameters that 
control the performance of EOR methods (Lim et al. 2015). 
Many researchers proved that reservoir wettability could be 
altered from strongly oil wet to strongly water wet by inject-
ing nanofluids (Al-Anssari et al. 2016; Alhammadi et al. 
2017; Tola et al. 2017), which was confirmed by measuring 
contact angles on smooth sample surfaces in the presence 
of nanofluids.

Among the nanotechnologies that had been investigated 
and applied in trial fields, the nanofluid trial has been imple-
mented in the Cupiagua Field in Colombia (Franco et al. 
2017); the study was carried out to improve the heavy and 
extra-heavy oil mobility based on laboratory experiments. 
This is consistent with by Zabala et al. (2016), where imple-
mented nanofluid injection in trial fields was tested in regard 
to their ability to improve oil mobility and remove forma-
tion damage due to asphaltenes precipitate in two Colom-
bian heavy oil fields, namely Castilla and Chichimene. The 
results showed that nanoparticles could alter rock wettability 
from oil wet to water wet, with concomitant increases in oil 
recovery (Zabala et al. 2016).

This paper discusses the effects of nanoparticles on wet-
tability alteration, taking into account what has been accom-
plished. A thorough review of the uses, characterisations, 
preparations, and different mechanisms of nanofluid prepara-
tion with a focus on wettability alterations has been carried 
out utilising updated citations from the latest review articles. 
The recent developments in single and composite nanofluids 
are summarised in this paper. This review provides new data 
on existing nanoparticle applications and the possibility of 
wide-scale implementation in fields and can also catalyse 
additional investigation of nanotechnology applications in 
EOR.

2  Stability of nanofluids

Preparation of nanofluids is the first key step in experimen-
tal studies of nanofluids. Generally, nanofluids are prepared 
by two methods: two-step method and one-step method. In 
the two-step method, a nanofluid is formed by dispersing 
nanoparticles (NPs) into base liquids such as water, ethylene, 
ethanol, or oils to form a single nanofluid or by dispers-
ing a mixture of nanoparticles (NPs) to form a nanofluid 
mixture (Lee et al. 2008; Mahbubul 2019a). In the one-step 
method, NPs are formed and dispersed in the same fluid 

simultaneously. Therefore, preparation of a stable nanofluid 
is considered a significant challenge in most recent studies 
and the stability of nanofluids depends on several factors 
such as nanofluid preparation method, NP concentration, 
types of additives, and base fluid nature.

Preparing a stable nanofluid requires a high quality of 
NPs with non-agglomeration of particles in the base liquid. 
More stable nanofluids enable higher oil recoveries during 
the flooding process. Some authors assumed that the nano-
fluid concentration affects the oil reservoir permeability, 
wherein an increase in NP concentration may lead to block-
ing in the porous media (Bayat and Junin 2015).

Since the stability of nanofluids plays a significant role in 
their performance, several researchers used various methods, 
techniques, and instruments to improve the stability of nano-
fluids. In this regard, ultra-sonication and magnetic stirring 
are the well-known mechanical mixing methods for dispers-
ing NPs to form a stable nanofluid (Cheraghian 2017a, b). 
Ultrasonic processors are a conventional technique which 
is extensively used by many researchers (Asadi 2019; Shen 
2019). Chung et al. (2009) prepared a suspension of ZnO 
NPs in water using an ultrasonic processor within in 60 min 
(Chung et al. 2009). Graves et al. (2019) used 30-min soni-
cation time in ultrasonic step to break down the agglomera-
tion of copper nanopowders in methanol. They concluded 
that using the ultrasonic processor in nanofluid preparation 
would break down the agglomeration of NPs and improve 
the stability of nanofluids (Graves et al. 2019). Further, Lee 
et al. (2008) reported that using ultrasonic vibration for five 
hours led to a stable  Al2O3 nanofluid with little aggregation 
(Lee et al. 2008), while Mahbubul et al. (2015) concluded 
that the better dispersion of  Al2O3 nanoparticle in water has 
been absorbed with the increases in sonication time, and 2 
hours of ultra-sonication showed better performance (Mah-
bubul et al. 2015).

The addition of chemical additives is considered as a 
conventional method to improve the stability of nanofluids 
and to minimise particle aggregation. The commonly used 
additives include surfactants and pH control agents. Sur-
factants are added to decrease the surface tension of liquids 
and improve the suspension time of particles (Schramm 
2000). Diverse types of surfactants including polyethylene 
oxide (PEO) (Hogeweg et al. 2018), polyvinylpyrrolidone 
(PVP) (Hendraningrat and Torsæter 2014a), sodium dodecyl 
sulphate (SDS) (Choi et al. 2018), CTAB (Choudhary et al. 
2019), and sodium oleate surfactant (Llanos et al. 2018) have 
been employed to increase the stability of nanofluids.

Choudhary et al. (2017) experimentally investigated 
the stability of nanofluids. They reported that the highest 
values of zeta potential are on the higher sides of acidic 
and basic areas (Choudhary et al. 2017). Further, Ghad-
imi and Metselaar (2013) proved experimentally that the 
addition of 0.1 wt% of surfactant resulted in stabilised 
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nanofluid for 30 days after preparation (Ghadimi and 
Metselaar 2013). Likewise, Adil et al. (2016) investigated 
the effect of three types of surfactants SDS, SDBS, and 
oleic acid on the stability of zinc oxide (ZnO) nanofluid, 
and they reported that the most stable ZnO nanofluid was 
achieved at 0.025 wt% of surfactant (SDBS) and pH = 2 
(Adil et al. 2016).

The stability of nanofluid is related to its electrokinetic 
characteristics. The pH value of the dispersed fluid may 
affect the stability of nanofluid due to extreme repulsive 
forces. Samal et al. (2010) proved experimentally the 
direct impact of pH on the nanofluid stability, and they 
reported that the stability of  Al2O3–base water nanofluid 
was better at pH of 10.30 and 4.96, corresponding to the 
zeta potential values of − 27.70 and 49 mV (Samal et al. 
2010). The pH modification and adjustment is one of the 
effective methods to improve the zeta potential value 
of the nanofluids. The interaction of charged particles 
depends on the pH value of the system, whether a solution 
is acidic, basic, or neutral. For instance, if the particles 
are negatively charged (e.g.  SiO2 particles), reducing the 
pH value of the solution leads to a stable nanofluid. This 
is due to the electrostatic adsorption of  SiO2 particles by 
the hydronium ions, which repulses those particles (Jafari 
Daghlian Sofla et al. 2018).

The aggregation rate is more strongly influenced 
by different parameters such as type of base fluid and 
fluid/particle interfacial effects. NPs aggregate in bigger 
particles after dispersing in the base fluid, due to their 
tendency to reduce the surface energy and nature of the 
interactions (hydrophilic, hydrophobic, and amphiphilic) 
of particles–liquid during the collisions in the nanofluid. 
Moreover, dissolved ions in the base fluids have more 
effect on the stability of nanofluids, e.g. the multivalent 
ions in the brine  (Ca2+ and  Mg2+) give an electric double 
layer on the surface of NPs (Jafari Daghlian Sofla et al. 
2018).

Some researchers described several techniques to evalu-
ate the stability of nanofluids such as zeta potential analy-
sis, UV–Vis spectrophotometry, sedimentation method, 
transmission electron microscopy (TEM), scanning elec-
tron microscopy (SEM), and dynamic light scattering 
method. The zeta potential is known as the difference in 
potential between the nanofluid and the stationary layer 
of fluid in contact with the NPs. The high zeta potential 
(+/−) describes the electric stability of the fluid, while 
the nanofluids with lower zeta potentials lead to a quicker 
deposition of NPs (Mahbubul 2019a). Whereas the sedi-
mentation method is usually used to evaluate the stability 
of nanofluids over time, the non-appearance of any pre-
cipitates over time means the nanofluid is stable. UV–Vis 
spectroscopy is used to estimate the concentration of NPs 

in the nanofluid; TEM and SEM are used to measure the 
size, shape, and distribution of NPs.

3  The mechanisms of wettability alteration 
by nanofluid flooding

Nanoparticles have a different trend in a variety of EOR 
processes that can make significant contributions to oil 
recovery. Based on previous investigations, NP applica-
tions are summarised into three major approaches: (1) 
nanofluids which are made by adding various NPs to base 
liquids such as water, oil, and gas and applied to enhance 
water flooding recovery; (2) nano-emulsions in which NPs 
are used to stabilise the emulsion with droplet size in the 
nanometric scale; and (3) nano-catalysts which can use 
the NPs as catalysts for improving the efficiency of oil 
recovery by a continuous steam injection process in heavy 
oil reservoirs (Cardona et al. 2018; El-Diasty and Ragab 
2013).

Overall, this discussion focuses on the nanofluid approach 
mentioned above, which are considered as crucial for the 
optimisation of EOR. The movement behaviour of nanopar-
ticles in porous media has been investigated widely, focusing 
on the flow, rheological behaviour and adsorption of the nan-
oparticles on rocks. Oil displacement mechanisms by new 
nanoparticles are still not explained enough and need more 
investigation (Agi et al. 2018); however, the EOR mecha-
nisms of nanofluids are summarised as follows: disjoining 
pressure, pore channel plugging, increasing the viscosity of 
injection fluids, IFT reduction, wettability alteration, and 
preventing asphaltene precipitation (Jiang et al. 2017; Ortega 
et al. 2016; Tarek 2015). Figure 1 presents a schematic of the 
most common nanofluid EOR mechanisms.

3.1  Disjoining pressure

Disjoining pressure is defined as the pressure required for 
removing fluids which are in contact with the reservoir 
rocks due to the adhesion force of fluids/solid surface 
(Jiang et al. 2017). Theoretical and experimental investi-
gations show that the nanofluids reduce oil adsorption on a 
rock surface by entering a structural disjoining force (film) 
between the oil and the rock surface and then creating a 
wedge film structure on the rock surface. In other words, 
higher repulsion forces exist with smaller nanoparticles 
(Kopanichuk et al. 2017; Lim and Wasan 2017). In this 
process, nanoparticles tend to rearrange in the nanofluid, 
which leads to an increase in the entropy of the nanofluids; 
this trend is due to the considerable freedom of the NPs in 
the nanofluids. The result of this process exerts an addi-
tional disjoining pressure at that interface more so than in 
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the bulk liquid (Fig. 2). From the literature and previous 
works, the most famous nano-oxides used this mechanism 
are  SiO2 and  TiO2 (El-Diasty and Ragab 2013).

3.2  Wettability alteration method

Generally, wettability is a significant factor influencing fluid 
displacement efficiency in porous media and consequently 
increases oil recovery. Modifying rock wettability from 
strongly oil wet to water wet is the most efficient method 

for EOR applications. Wettability can be expressed as the 
tendency of a fluid to spread on or adhere to a solid surface 
in the availability of other immiscible liquids (Bera et al. 
2015). The contact angle (CA) refers to wettability altera-
tion in the three-phase system, which can be described as the 
force balance between the spreading coefficient of water on 
a solid surface in contact with both oil and water (Aminian 
and ZareNezhad 2019). In laboratory experiments, differ-
ent techniques are used to determine wettability, including 
CA measurement, Amott test, and core displacement (Agi 
et al. 2018).

Further, nanoparticles modify the wettability of the rock 
by replacing the carboxylic particles in the rock surface, cre-
ating a wedge film that displaces the oil droplets out of the 
rock surface by disjoining pressure (Fig. 3). In this regard, 
many researchers have pointed out that nanofluid can mod-
ify the wettability of rock surface (Dehghan Monfared et al. 
2016). Nanoparticles are adsorbed on the rock surface and 
form nanotextured surfaces, which changes the rock mor-
phology and makes it semi-homogeneous (Al-Anssari et al. 
2017). Hence, a layer of nanofluids is formed on the rock 
surface, acting to separate and release the oil drops from the 
rocks and then resulting in more oil production (Kopanichuk 
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Fig. 1  EOR mechanisms of nanofluids in porous media
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Fig. 2  Mechanisms of disjoining pressure in porous media
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et al. 2017). On the other hand, the nanofluid layer could 
be influenced by such factors as nanoparticle concentration, 
size, salinity, temperature, and rock characteristics (Binks 
and Tyowua 2016). Also, the nanoparticles could change 
the monovalent and divalent  (Na+,  K+,  Ca2+, and  Mg2+) in 
their interactions with the rock surface and result in altering 
the surface wettability towards stronger water wet (Jafari 
Daghlian Sofla et al. 2018), as shown in Fig. 4. The most 
widely used nanoparticles in this mechanism are silicon 
oxide  (SiO2) nanoparticles and titanium oxide  (TiO2) nano-
particles with most researchers concluding that the disjoin-
ing pressure is an essential mechanism in wettability altera-
tion studies for enhanced oil recovery (Ehtesabi et al. 2017; 
Hendraningrat et al. 2013; Lim and Wasan 2017).

3.3  Capillary force mechanism

The capillary force has a significant impact on oil recovery 
efficiency based on the nature of the reservoirs (fractured or 
non-fractured). In the case of a non-fractured reservoir, the 
strong capillary forces cause a high percentage of trapped 
oil in the reservoir rock during the water flooding, while in 
a fractured reservoir, spontaneous imbibition of water is the 

critical mechanism for high oil displacement efficiency due 
to strong capillary forces. Hence, nanoparticles can play a 
vital role in recovering more trapped oil by a decrease in 
the capillary force (Cheraghian and Hendraningrat 2016a, 
b). Capillary forces are overcome by either viscous or gravi-
tational forces; the capillary number (Nc) and bond number 
(Nb) are used to compare these forces. The capillary number 
(Nc) is determined by the ratio of viscous to capillary forces 
and is defined as:

where v is the brine velocity; μw is the brine viscosity; σow 
is the oil/water IFT; and θ is the contact angle between the 
rock and the wetting phase.

Nanoparticles obtained respectful consideration in the 
oil and gas industry due to their ability to improve physical 
properties for the reservoir fluids and injected fluids. Diverse 
research methodologies have shown the ability of nanoparti-
cles to reduce the interfacial tension between crude oil and 
nanofluids through applying different nanoparticles with the 
size of 5 nm. They concluded that the interfacial tension 
had been reduced by using nanoparticles (such as  Fe2O3), 
which gave about a 40% reduction in the interfacial tension 
and resulted in a high capillary number (Gomaa et al. 2018; 
Rezk and Allam 2019).

4  Factors influencing the process 
of flooding with nanoparticles

Various parameters have demonstrated significant effects on 
the performance of single and combined nanoparticles in 
nanofluid flooding.

4.1  Nanoparticle concentration

Nanofluid concentration is one of the crucial factors in 
applications of nanofluid flooding, where nanoparticles 
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Capillary forces
=

v�w

�ow cos �

NP

Trapped oil

Rock surface

Oil

Fig. 3  Schematic of wettability alteration mechanisms of nanofluids
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become more efficient with increased concentration. In 
some investigations, the researchers focused on deter-
mining the nanoparticle concentration ranges in addi-
tion to their effect on wettability alteration. The impact 
of nanoparticles on wettability alteration has been stud-
ied in a wide range of concentrations; the outcome of the 
most studies was that the rock wettability enhancement 
increases with an increase in nanoparticle concentration 
due to the impact of repulsion forces (Bhuiyan et al. 2015).

Huminic et al. (2015) explained the effect of nanoparti-
cle concentration on thermal conductivity, and they stated 
that the interaction between molecules increases with an 
increase in particle concentration, resulting in enhanced 
thermal conductivity (Huminic et  al. 2015). Besides, 
higher concentrations of nanoparticles lead to the appear-
ance of some suspensions, which minimised the stabil-
ity of the nanofluids, and lower concentrations make it 
unappealing as an EOR agent (Sezer et al. 2019). Further, 
Masoud Hosseini et al. (2016) investigated the effect of 
nanoparticle concentration on the rheological behaviour 
of liquid paraffin, and their results demonstrated that the 
viscosity of the nanofluids increased with an increase in 
nanoparticle concentration (Masoud Hosseini et al. 2016). 
This is consistent with the observation of Hojjat et al. 
(2011) that the relative viscosity of  Al2O3 and  TiO2 nano-
fluids increases with increasing nanoparticle concentration 
(Hojjat et al. 2011).

Higher concentration of nanoparticles is expected to be 
more active in altering wettability, trending towards greater 
water wet by reducing the contact angles faster. Further-
more, adding small quantities of chemical additives is ben-
eficial and economically visible in the oil industry; however, 
higher concentration of nanoparticles (more than 3 wt%) 
may lead to a reduction in reservoir permeability (Bhuiyan 
et al. 2015; Sun et al. 2017). Likewise, increased concen-
tration of nanoparticles has a strong effect on wettability 
alteration on the oil wet carbonate samples (Al-Anssari et al. 
2016). The contact angle values were 120°, 60°, and 45°, 
when the nanoparticle concentrations were 0%, 1%, and 2%, 
respectively, and above a nanoparticle concentration of 2%, 
there was no change in contact angle. This suggests that 

any increase in nanoparticle concentration leads to an altera-
tion of the wetting surface from oil wet to strong water wet 
(above 2% no change observed). Hence, Hendraningrat and 
Torsæter (2014a) reported that the contact angle decreased 
as the nanoparticle concentration increased from 0 to 0.1 
wt% (Hendraningrat and Torsæter 2014a).

Further, the nanofluid density is proportional to the vol-
ume ratio of nanoparticles to the base fluid in the nanofluid. 
The nanofluid density is higher than that of the water or 
the base fluid, and its value increases as the nanoparticle 
concentration increases in the base fluid (Devendiran and 
Amirtham 2016). Also, there is a linear correlation between 
the nanofluid density and the concentration of nanoparti-
cles, mainly at ambient temperature (Sommers and Yerkes 
2010), although the potential of nanoparticles to control 
fines migration in the sand sample  (Al2O3,  SiO2, and MgO) 
increases with nanofluid concentration (Mansouri et al. 
2019).

4.2  Nanoparticle size

The size of nanoparticles has a direct effect on wettability 
alteration and is considered one of the several essential fac-
tors in the application of nanoparticles in EOR. This impor-
tance stems from the adoption of a wettability alteration 
mechanism such as disjoining pressure or log-jamming as 
a function of the application of various sized nanoparticles 
in the nanofluids.

In very small throats of rock pores, nanoparticles are 
stacked at the entrance of those throats owing to their large 
particle size compared with a pore channel entrance, leading 
to channel plugging. This process is defined as mechanical 
trapping (Fig. 5a). The log-jamming mechanism illustrated 
in Fig. 5b has been interpreted as a result of the differences 
between particle and solvent densities. Due to the smaller 
size of pore throats and the continuous differential pressure, 
the flow velocity increases in pore throats compared to that 
in pore bodies. At the inlet of the pore throat, water parti-
cles flow more quickly than nanoparticles, which leads to 
an aggregation of particles at the pore throat entrance and 
creates a barrier. This accumulation of nanoparticles causes 

Flow direction Flow direction

Pore body
Pore body

Throat Throat Throat

log-jamming
Mechanical entrapment

(a) (b)

NP

Fig. 5  The mechanisms causing pore channel plugging: a mechanical trapping and b log-jamming mechanism
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an eventual blockage in the throat of the pores. Finally, this 
will divert the water and nanofluid flooding to flow through 
a channel filled with trapped oil, altering the wettability 
through disjoining pressure mechanism and then enhancing 
oil recovery (Fig. 6) (Bolandtaba and Skauge 2011; Manzari 
Tavakoli et al. 2018).

The contact angle (CA) is considered as an indicator of 
wettability alteration. Contact angle values are measured 
before and after the samples are modified with nanofluids 
to indicate that the change is due to nanoparticles rather than 
the base fluid. Al-Anssari et al. (2017) studied the impact of 
particle size on the wettability alteration of calcite samples 
by using  SiO2 nanoparticles in various sizes (5 and 25 nm) 
at the same concentration (Al-Anssari et al. 2017). Their 
results show that  SiO2 nanoparticles could effectively alter 
the calcite wettability, but the particles size (5 and 25 nm) 
did not influence the wettability alteration efficiency in oil 
wet calcite samples. These results are consistent with the 
outcomes obtained by other researchers (Costa et al. 2006; 
Kulak et al. 2004).

Jang et al. observed that the rock wettability of limestone 
and dolomite was efficiently altered towards neutral wet and 
water wet from strongly oil wet, respectively, by surfactant-
modified  SiO2 nanofluids with small particle sizes (20 nm) 
(Jang et al. 2018).

Furthermore, Kwek et al. (2010) found that using smaller-
sized  Al2O3 nanoparticles leads to an increase in the viscos-
ity of nanofluids but a decrease (from 30% to 10%) in the 
thermal conductivity enhancement when the particle size 
increases from 10 to 35 nm, and then the thermal conductiv-
ity enhancement increases when the particle size is larger 
than 35 nm (Kwek et al. 2010).

Likewise, the impact of  Al2O3 particle sizes on the vis-
cosity of nanofluids has also investigated elsewhere (He 
et al. 2007; Nguyen et al. 2007). The  Al2O3 nanofluids had 
approximately the same viscosity at the nanoparticle con-
centration level of 4% and particle sizes of 36 and 47 nm. 
He et al. (2007) and Nguyen et al. (2007) concluded that the 

nanofluids with bigger size of nanoparticles show higher 
viscosity than that with the smaller ones when the nanofluid 
concentration increases (He et al. 2007; Nguyen et al. 2007). 
Also, Betancur et al. (2016) assessed the influence of the 
size of synthesised silica gel nanoparticles on the inhibition 
of formation damage induced by asphaltene deposition, and 
the results showed that the smallest nanoparticles (11 nm) 
had the highest adsorptive ability for n-C7 asphaltenes 
among the nanoparticles investigated (Betancur et al. 2016).

4.3  Temperature

Working at high temperatures is considered a challenge in 
most chemical methods, including nanofluids. This cross-
study review found that all nanofluid researchers recognise 
temperature as the most significant and substantial parameter 
and have found a consistent, prevalent downward trend in 
the viscosity of nanofluids as a function of an increase in 
temperature (Belhaj et al. 2019). In other words, the stability 
of nanoparticles decreases with an increase in temperature; 
therefore, the performance of nanofluids in high temperature 
reservoirs needs to be improved, especially on wettability 
alteration.

Hamouda and Rezaei Gomari (2006) explained that the 
reduction of calcite surface positive charges was due to the 
increase in temperature, and this reduction may improve the 
repulsive forces between naphthenic acids and calcite rock. 
Therefore, the adsorption of naphthenic acids on the rock 
surface becomes less efficient at high temperatures due to 
the rock surface changing; and then the wettability of the 
calcite surface tends to be water wet (Hamouda and Rezaei 
Gomari 2006).

Extensive research shows that temperature has a direct 
effect on nanofluid proprieties such as viscosity, sur-
face interaction among nanoparticles, and the stability of 
the nanofluid itself (Baratpour et al. 2016; Li et al. 2019; 
Wang et al. 2018). The behaviour of nanofluids (Newto-
nian/shear-thinning) depends on the properties of the base 
fluids, and their behaviour is correlated with temperature, 
where dispersing nanoparticles in a Newtonian base fluid 
would yield a nanofluid with the Newtonian behaviour, and 
non-Newtonian behaviour if the base fluid is non-Newtonian 
(Mahbubul 2019b). Some researchers thought that in the 
case of shear-thinning behaviour of nanofluids, nanoparti-
cle agglomeration clusters broke down when the shear rate 
increased, which leads to a decrease in nanofluid viscosity 
(Prasher et al. 2006; Yu et al. 2017; Zawrah et al. 2016). 
With an increase in temperature, the nanoparticles agglom-
erated, which leads to a decrease in viscosity and in the zeta 
potential value (Li et al. 2009; Schmidt et al. 2008; Turgut 
et al. 2009).

The impact of temperature on nanofluid viscosity has 
been extensively studied (Choon Pak and Cho 1998; Hojjat 

NPs create a barrier

Water flow

Fig. 6  Nanoparticles create a barrier, diverting water and second NPs 
slug to flow through a channel filled with trapped oil
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et al. 2011); the results found that the nanofluid viscosity is 
a function of temperature and the viscosity decreases with an 
increase in temperature. Gupta and Mohanty (2010) reported 
that temperature has a significant effect on wettability modi-
fication of solid surfaces. Specifically, they examined the 
effects of temperature on the contact angle measurement 
using nanofluid flooding. Their results demonstrated that the 
contact angles were reduced from 145° to 38° at 50 °C and 
changed from 145° to 56° when the temperature increased 
from 23 to 60 °C. Al-Anssari et al. (2016, 2017) concluded 
that nanofluids are highly efficient on wettability altera-
tion, particularly at higher temperatures (Al-Anssari et al. 
2016, 2017). Consistent with Buonomo et al. (2015), they 
found that nanofluid composites can be used to best advan-
tage at low concentrations (> 0.2%) and high temperatures 
(> 50 °C) (Buonomo et al. 2015).

4.4  Salinity

Among different EOR methods, low-salinity water (LSW) 
flooding has attracted considerable attention due to the avail-
ability of natural water resources and also being environ-
mentally friendly (Sheng 2014). Currently, researchers have 
observed that injecting low-salinity water (LSW) produced 
a persistent wettability alteration of the rock (towards water 
wet), facilitating additional oil recovery (Rivet et al. 2010). 
Nanofluids have an inverse relationship with salinity, where 
the nanofluids become less stable when salinity increases 
accordingly, which in turn is an indicator of the occurrence 
of the agglomeration of particles in the fluid.

Mansouri et al. (2019) reported the effect of nanofluid 
on fines migration in low-salinity water. The results showed 
that the  SiO2 nanofluid could reduce the production of fines 
when mixed with low-salinity water. In other literature, 
experiments on wettability alteration and incremental oil 
recovery were conducted to understand the performance of 
nanoparticles mixed with low-salinity water. Different con-
centrations of nanofluids were prepared (0.1, 0.25, 0.5, and 
0.75 wt%) by dispersing  SiO2 nanoparticles in low-salinity 
water obtained from Persian Gulf seawater (Dehaghani and 
Daneshfar 2019). A conclusion was drawn that nanoparti-
cles could enhance the ability of low-salinity water to alter 
wettability and improve sweep efficiency. However, the wet-
tability alteration occurs when the temperature reaches only 
up to 80 °C and ascribes to higher activities of dissolved ions 
at a high temperature. Many authors summarised that saline 
water could improve rock wetting and enhance the effective-
ness of nanoparticles to improve incremental oil extraction 
(Mohammad Salehi et al. 2017; Zekri et al. 2015).

The effect of salinity on wettability alteration of the rock 
ascribes to an interaction between the potential ions such as 
 Ca2+,  Mg2+, and SO4

2‒ and the adsorbed carboxylic mate-
rial on the rock surface (Gandomkar and Rahimpour 2017), 

whereby an ionic interaction among oppositely charged 
(positive/negative) sites at rock/water interface (attrac-
tive, repulsive, or both) could lead to wettability alteration 
(Alshakhs and Kovscek 2016). Some researchers observed 
that the use of saline water (seawater) caused a reduction 
in the contact angle, and they pointed out that a change in 
the contact angle was tangible notably after switching from 
formation water to high-salinity water (Mahani et al. 2015).

Regarding salinity impacts on wettability alteration, sev-
eral researchers observed that the positive ions interact with 
negative ions on the rock surface that modify rock wettabil-
ity to water wet. The nature of the rock surface is an essential 
factor in the wettability alteration mechanism. As identified 
by Al-Hashim et al. (2018) the positively charged ions on the 
dolomite surfaces act as an attraction for negative charge end 
components in polar crude oil; they observed strong inter-
action between ions in the presence of high-salinity water. 
Whereas calcite surfaces showed a relatively fixed trend with 
the application of different salt concentrations (Lashkar-
bolooki et al. 2016), higher oil recovery rates were attributed 
to the concentration of those ions in the rocks layers (Pun-
tervold 2008), and this, in turn, resulted in improved rock 
wettability alteration in low-salinity water towards strongly 
water wet and enhanced oil recovery (Nicolini et al. 2017), 
whereas Jafari Daghlian Sofla et al. (2018) confirmed that 
the presence of multivalent ions in the base fluid destabilises 
nanoparticles  (SiO2) and affects their efficiency to change 
the rock wettability towards water wet (Jafari Daghlian Sofla 
et al. 2018).

4.5  Reservoir permeability

Generally, reservoir permeability reduction is considered as 
one of the essential limitations of EOR applications in reser-
voir engineering, especially in chemical methods (polymer 
flooding). The reservoir permeability could be affected by 
formation damages (Aksu et al. 2015).

Clay swelling is considered as one of the factors that 
could reduce reservoir permeability, and thus, the effects 
of nanoparticles on clay swelling and migration have been 
examined. The experiments gave a clear indication that 
nanoparticles had no significant influence on the inhibition 
of clay swelling or formation damage caused by clay swell-
ing; instead, the injection of high-concentration nanofluids 
leads to a reduction in the permeability of the porous media 
(Sameni et al. 2015). Hence, avoiding the agglomeration 
of the nanoparticles in low- and medium-permeability res-
ervoirs (> 50 mD) is considered as one of the nanoparticle 
application challenges.

Nanofluids have the potential to work in both low- and 
high-permeability environments (Hogeweg et  al. 2018; 
Kazemzadeh et al. 2018). Yuan et al. (2017) investigated the 
effects of nanofluids on permeability reduction by injecting 
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nanofluids into oil wet Berea sandstones, and they monitored 
the changes in pressure over the experimental period. The 
results suggested that the permeability reduction increased 
as a function of elevated nanoparticle concentration (Yuan 
et al. 2017), notably MgO and ZnO nanoparticles (Ogolo 
et al. 2012).

4.6  Injection rate of the nanofluid

Nanofluid is commonly prepared by dispersing nanoparti-
cles into the base fluid; deionised water is one of the most 
common base fluids used in the nanofluid preparation. In 
the porous media, the water molecules move faster than the 
nanoparticles because of the smaller size of water molecules 
compared with nanoparticles. During nanofluid injection, 
the use of a high injection rate leads to a conglomerate of 
nanoparticles in the form of large particles that cause block-
age of pores and decrease the incremental oil recovery. Li 
et al. (2017) used a micromodel to investigate the effect of 
silica nanofluids on wettability alteration; they reported 
that the oil recovery decreased from 50% to 43% when the 
injection rate of deionised water, and residual oil satura-
tion decreases from 24% to 20% in the case of the nanofluid 
injection, as the flow rate varies in the same range from 0.5 
to 5.0 μL/min (Li et al. 2017).

5  Review on using nanoparticles and its 
effect on wettability alteration

Wettability alteration is an essential mechanism in oil recov-
ery applications. Therefore, recently nanoparticles have 
played a vital role in increasing oil production by changing 
the wetting system from oil wet to a strongly water wet. It 
is well known that there are some active agents and tech-
niques which can be applied to alter the wettability of rock 
surface (Cheraghian 2016; Moncayo-Riascos et al. 2017; 
RezaeiDoust et al. 2009), but the economic and environmen-
tal factors should be considered. Recently, many research-
ers recognised that nanoparticles had a clear impact on the 
wettability alteration and would increase the rate of oil 
production. It is crucial to take into account the concept of 
disjoining pressure during nanofluid flooding to understand 
the mechanism of wettability alteration of the reservoir from 
oil wet to water wet.

As the application of nanoparticles is growing in the oil 
industry, various experimental studies have proved that the 
application of nanoparticles is capable of modifying the res-
ervoir wetting characteristic towards a water wet, and this 
prompted researchers to continue experimentally inves-
tigate the effects of different nanoparticles on wettability 
alteration. Practically, wettability conditions are evaluated 
before and after surface alteration with different additives 

by measuring the contact angle in the presence of displacing 
fluid. The effect of nanofluids on reducing the surface forces 
has been extensively studied recently (Almahfood and Bai 
2018; Jiang et al. 2017; Manoudis and Karapanagiotis 2014).

Recently, many authors investigated the application and 
mechanism of nanoparticles in wettability alteration for 
enhanced oil recovery, as mentioned in Sect. 3. Some of 
them assume that nanoparticles interact with other additives 
such as a surfactant or polymer, resulting in an improvement 
in their capability to alter the wettability of rock to stronger 
water wet and enhance oil recovery (Lim et al. 2015; Wang 
et al. 2019; Yin et al. 2019).

Furthermore, Tola et al. (2017) studied empirically in 
their research the effect of adding zinc oxide (ZnO) NPs 
on the wettability alteration in the sandstone rock. They 
concluded that the nanofluid (ZnO) is useful in wettability 
alteration of sandstone rocks from strongly oil wet to water 
wet resulting from the adsorption of NPs on the sandstone 
rock surface (Tola et al. 2017). Also, injecting the alumina 
 (Al2O3) nanofluid into the sandstone reservoir leads to wet-
tability alteration towards water wet by enhancing the per-
formance of the surfactants with the low concentration of 
100 ppm NP (Giraldo et al. 2013).

Moreover, the ability of nanoparticles to enhance oil 
recovery with different wettability conditions has been 
investigated. For instance,  ZrO2 nanofluid has stable per-
formance in altering the wettability on the quartz surface to 
strongly water wet and improved the oil recovery better than 
conventional chemical methods (Jha et al. 2019).

On the other hand, the application of nanoparticles on 
gas wetting has been investigated. Franco-Aguirre (2018) 
conducted contact angle measurements and imbibition 
experiments to investigate the influence of nanoparticles on 
removing condensate blockage in gas condensate reservoirs. 
An anionic-functionalized  SiO2 nanofluid altered the sys-
tem wettability from strongly liquid wet to gas wet (Franco-
Aguirre et al. 2018). But, Ahmadi et al. (2019) evaluated 
the performance of natural  CaCO3 (Bio-Ca) nanoparticles 
containing chitin for wettability alteration and contact angle 
of condensate droplet raised from 0° to 105° after the rock 
surface was treated by 0.05 wt% Bio-Ca.

Moreover, Moncayo-Riascos et al. (2019) studied the 
behaviour of wettability alteration from liquid wet to gas 
wet by  SiO2 nanoparticles functionalized with fluorocar-
bon surfactant Silnyl FSJ (SY). They proved that the SY-
functionalized  SiO2 nanofluid can alter the wettability of the 
sandstone rock from oil wet to gas wet (Moncayo-Riascos 
et al. 2019).

Furthermore, using nanoparticles combined with polymer 
or surfactant is a promising method in EOR, Yousefvand 
and Jafari (2018) studied the effect of polymeric silica nano-
fluid on the oil recovery in a strongly oil wet system and 
reported that the oil recovery was considerably enhanced 
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by changing the rock wettability towards water wet (Yousef-
vand and Jafari 2018), which is consistent with the experi-
mental results obtained by Gbadamosi et al. (Gbadamosi 
et al. 2019). Recently, using smart nanosheet materials in the 
field of EOR caught more attention due to their efficiency 
in reducing IFT and wettability alteration. Raj et al. (2019) 
used 2D smart nanosheet with a concentration of 0.005% 
in brine salinity of 98,171 mg/L for EOR and proved the 
promising of 2D nanosheet in wettability alteration, which 
changed the wetting system from oil wet to strongly water 
wet and increased the oil recovery to 21.18% and 18.25% 
during tertiary flooding in 25 mD (Raj et al. 2019). Also, 
Luo et al. (2016) used graphene as nanosheet with a con-
centration of 0.005%–0.01%, and the recovery oil was about 
15.2% through altering the wettability of the rock surface 
(Luo et al. 2016). The wettability alteration towards water 
wet condition is favoured for enhancing oil production. 
Table 1 summarises the experimental investigations that 
discuss the wettability alteration of nanoparticle floodings.

6  Challenges and opportunities for future 
research

Engineers and scientists have to discuss and overcome sev-
eral issues and challenges in terms of nanofluid stability and 
wettability alteration by NPs for more efficient implementa-
tion in the oil and gas industry.

Preparation and stability of nanofluids face various chal-
lenges, technically and economically. The main methodo-
logical difficulty is in preparing a homogeneous fluid of 
nanoparticles and stable for a long time, because the parti-
cles regularly tend to aggregate due to the strong interactions 
between particles. Likewise, the stability of nanofluids is 
crucial for their EOR applications. The stability of nano-
fluid is strongly influenced by the nature and properties of 
the disperse particle and the base fluid variables, including 
particle morphology, particles chemical structure and type of 
the base fluid. Accordingly, the main challenges of nanofluid 
stability are aggregation and sedimentation, which are not 
desirable to be present during the nanofluid flooding.

Many experiments utilising in situ contact angle meas-
urements have been carried out based on laboratory experi-
ment results (Grayling et al. 2018; Khishvand et al. 2016; 
Scanziani et al. 2017; Tudek et al. 2017) which demonstrated 
that in situ contact angle measurements are considered valid 
and accurate methodologies in terms of wettability alteration 
study and are significant in EOR applications (Klise et al. 
2016). Therefore, obtaining high-resolution images with 
natural interpretation in a short time remains a challenge 
in the application of in situ contact angle measurements for 
nanofluid injection, while simultaneously developing ever 

more sophisticated techniques and logarithms used in meas-
urement is profoundly challenging.

Among the EOR techniques currently employed, the 
nanofluids application is an advanced study and promising 
in the field of EOR optimisation methods. Though there 
are many research opportunities, there are relatively few 
available data on NP applications (compared with other 
techniques), and existing methodologies need to be devel-
oped and improved. Below are reviewed some of the most 
critical research opportunity areas related to the field of 
wettability alteration by using nanofluids.

• The effects of composite nanofluids (hybrids) on wet-
tability alteration.

• The stability of nanofluids under different conditions 
(temperature, pressure, salinity, surface roughness).

• The effect of different types of NPs on wettability alter-
ation using different rock systems.

• Improving the quality and resolution of in situ contact 
angle measurements, and developing algorithms used 
in automated methods of calculating contact angles.

• The effects of surface roughness on in  situ contact 
angle measurements as a result of nanofluid flooding.

7  Conclusion and summary

This work provides a comprehensive review and analysis 
on the approach of wettability alteration by using nano-
fluid in porous media. This work provides a summary of 
theoretical and experimental works to extend the usage of 
nanofluid, focusing on wettability alteration of reservoir 
rocks and improving the oil recovery. The major conclu-
sions are listed as follows:

• Nanoparticles can enhance oil recovery by improving 
fluids–rock interaction properties such as wettability 
alteration.

• The increase in nanoparticle concentration leads to 
incremental oil recovery associated with permeability 
reduction. Therefore, the optimum and stable concen-
tration of the nanoparticles must be optimised before 
injection to obtain the maximum oil recovery.

• The stability of nanofluids is one of the crucial chal-
lenges in nanoflooding methodologies. It is concluded 
that the stability of nanofluids depends on the pH, NP 
sizes, NP type (hydrophilic, hydrophobic, and amphi-
philic), dispersion fluid, and sonication time.

• The nanoparticles are active on wettability alteration 
due to their ability to adsorption on or interact with the 
surface of the rock and altering the wettability from oil 
wet towards water wet.
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• Mixing nanoparticles with other chemical additives 
such as surfactant and polymer results in increasing 
their performance in wettability alteration of the wet-
ting system.
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