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Abstract Polymer injectivity is an important factor for

evaluating the project economics of chemical flood, which

is highly related to the polymer viscosity. Because the flow

rate varies rapidly near injectors and significantly changes

the polymer viscosity due to the non-Newtonian rheologi-

cal behavior, the polymer viscosity near the wellbore is

difficult to estimate accurately with the practical gridblock

size in reservoir simulation. To reduce the impact of

polymer rheology upon chemical EOR simulations, we

used an efficient multilevel local grid refinement (LGR)

method that provides a higher resolution of the flows in the

near-wellbore region. An efficient numerical scheme was

proposed to accurately solve the pressure equation and

concentration equations on the multilevel grid for both

homogeneous and heterogeneous reservoir cases. The

block list and connections of the multilevel grid are gen-

erated via an efficient and extensible algorithm. Field case

simulation results indicate that the proposed LGR is con-

sistent with the analytical injectivity model and achieves

the closest results to the full grid refinement, which con-

siderably improves the accuracy of solutions compared

with the original grid. In addition, the method was vali-

dated by comparing it with the LGR module of

CMG_STARS. Besides polymer injectivity calculations,

the LGR method is applicable for other problems in need of

near-wellbore treatment, such as fractures near wells.

Keywords Polymer rheology � Polymer injectivity �
Chemical EOR � Local grid refinement � Non-Newtonian
flow

1 Introduction

Polymer flooding has become one of the most widely used

enhanced oil recovery (EOR) methods because of its

adaptability to a wide range of oil viscosity (Wassmuth

et al. 2007), relative simplicity for operations (Mohammadi

and Jerauld 2012), and offshore applicability (Morel et al.

2012). For polymer flooding as well as most other chemical

flooding processes such as surfactant-polymer flood, alka-

line-surfactant-polymer flood, and alkaline-cosolvent-

polymer flood, the polymer injectivity is a key index for

reservoir management, e.g., deciding the upper limit of the

polymer injection rate to optimize the project economics

(Seright et al. 2009). Factors affecting polymer injectivity

include polymer degradation (Seright et al. 2009; Zaitoun

et al. 2012), induced fractures near the injector (Seright

et al. 2009; van den Hoek et al. 2012), polymer

crosslinking to form gel (Bekbauov et al. 2013; Goudarzi

et al. 2013b), and especially polymer rheology (Delshad

et al. 2008; Sharma et al. 2011; Kulawardana et al. 2012).

A polymer solution is a non-Newtonian fluid whose vis-

cosity is non-linearly related to the flow rate or the in situ

shear rate. For example, hydrolyzed polyacrylamide

(HPAM) solutions exhibit pseudoplastic behavior at low

shear rates and dilatant behavior at high shear rates when

flowing through porous media as shown in Fig. 1 (Delshad

et al. 2008). In addition, polymer rheology exhibits New-

tonian behavior when the flow is at very low or high rates

(Stahl and Schulz 1988; Sorbie 1991). This behavior leads

to a complex relationship between the pressure drop and
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the local velocity. Consequently, the polymer injectivity is

often erroneously calculated from numerical simulations

using a gridblock size practical for full field simulations

where the flow rate decreases drastically from the wellbore

(Sharma et al. 2011; Li and Delshad 2014). It is crucial for

a numerical simulator to capture near-wellbore polymer

rheology more accurately to improve the estimation of

injection rate, shorten the project life, enhance the eco-

nomics, and prevent or carefully design the injection

induced fractures depending on the operators’ decisions

(Gadde and Sharma 2001; Lee et al. 2011).

The inaccuracy in calculated polymer injectivity mainly

results as the flow rate is smeared within a coarse well

gridblock. This is especially severe for common reservoir

simulations in which the gridblock size is used up to sev-

eral dozens of feet while the wellbore radius is only about

0.5 ft. In situ shear rates reach as high as 104 s-1 near the

wellbore and decrease sharply to about 1–10 s-1 within a

well gridblock. To eliminate the grid effects, several

empirical or analytical models were proposed based on

effective properties of the well blocks. For instance,

Sharma et al. (2011) proposed to use an effective well

radius to calculate the shear rate and match the polymer

injectivity from very fine-grid simulation results; Li and

Delshad (2014) proposed an effective viscosity using

mathematical integration of in situ viscosity by assuming a

radial velocity distribution within the well block. However,

these approaches are not rigorous for other near-well

effects apart from polymer rheology, e.g., non-zero skin

factor, polymer permeability reduction, and injection

induced fractures near the wellbore, which are often

encountered during injection of polymer solutions. There-

fore, in order to have a more accurate polymer injectivity

adaptive to most reservoir conditions, it is necessary to

refine simulation grids. However, grid refinement for the

whole reservoir model leads to excessive computational

costs. It is thus important to develop a local grid refinement

(LGR) technique (or similar unstructured gridding

approaches), such as shown in Fig. 2, so that the grid

refinement is only applied to the regions where it is needed.

LGR and similar unstructured gridding approaches have

continuously played an important role in reservoir simu-

lations. Successful applications can be found in water flood

(Oliveira and Reynolds 2014), miscible gas flood (Suicmez

et al. 2011), steam flood (Christensen et al. 2004; Nilsson

et al. 2005), etc. LGR methods are classified into cell-based

and patch-based approaches (Berger and Oliger 1984),

while the former is more frequently used in simulations of

flow in porous media. Therefore, in the scope of this paper,

we only discuss the cell-based LGR approach. Forsyth and

Sammon (1986) developed an LGR algorithm with a rig-

orous analysis of discretization of flow equations upon the

composite grid geometry. However, the accuracy of their

numerical scheme is reported to be low because a direct

subtraction of pressures of two adjacent blocks is used to

calculate the Darcy velocity across the block interface

(Rasaei and Sahimi 2009). Nacul et al. (1990) proposed an

LGR technique using a domain decomposition method, in

which overlapping boundaries are used for the subdomains.

Karimi-Fard and Durlofsky (2012) presented an unstruc-

tured LGR method, and the well block is fully refined and

solved at a fine scale to determine the effective properties

that can be used for coarse-grid simulations over the

reservoir domain.

In this paper, we propose an LGR method applied to

chemical EOR simulations, especially more accurate cal-

culation of polymer rheological viscosity (polymer injec-

tivity) under different reservoir conditions. Meanwhile, for

a necessary complement to the scope of LGR approaches,

this paper presents details on the numerical schemes to

couple the mass conservation equations on the multilevel

grid, as well as the indexing to the gridblocks and inter-

faces. In short, the proposed method includes the following

features:

(a) An efficient numerical scheme developed to calcu-

late the velocity and the mass flux across the block

interface between different grid levels of the com-

posite grid, which is also applied in the heteroge-

neous cases.

(b) An algorithm on how to index the gridblock list and

gridblock connections under the LGR composite grid

presented in detail. The numerical computations

under the LGR grid structure can benefit from this

data management, which may also be extended to

the classical unstructured grid and provide a good

basis for the successive simulator development.

This paper is organized as follows: In the next two sec-

tions, we will give the mass balance equations and the

chemical flood simulation models. The subsequent section

presents the details of the proposed efficient LGR algo-

rithm. We will then test several examples simulated with

different levels of refinement to demonstrate the

Shear thickening

Newtonian flow

Shear thinning

Pseudo-plastic

Shear rate (Injection rate)

Viscosity

Fig. 1 Rheological relation between viscosity and shear rate for

polymer solutions
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improvement in numerical results. The LGR simulations are

also compared to those using the analytical injectivity

model proposed by Li and Delshad (2014).

2 Mathematical model

In this section, we briefly present the mathematical

framework of the University of Texas Chemical Flooding

Simulator, UTCHEM (Delshad et al. 1996) and formula-

tions for modeling polymer rheology and injectivity.

UTCHEM is a three-dimensional multi-phase multi-com-

ponent compositional simulator with the capability of

modeling geochemical reactions, complex phase behavior,

etc. The governing balance equations include (1) the mass

conservation equation for each species; (2) the pressure

equation obtained by summing up all mass conservation

equations for all volume-occupying species; and (3) the

energy conservation equation which will not be discussed

here.

2.1 Mass conservation equations

We write the mass conservation equation for each com-

ponent j,

o

ot
ð/ ~CjqjÞ þ r �

Xnp

l¼1

qjðCjlul � ~DjlÞ
" #

¼ Rj; ð1Þ

where / is the porosity, qj is the density of component j,
Cjl is the concentration of component j in phase l, np is the

phase number, and ul is the Darcy flux of phase l which is

calculated using Darcy’s law:

ul ¼ � krlk

ll
� ðrPl � clrhÞ; ð2Þ

where k is the intrinsic permeability tensor, krl is the rel-

ative permeability, ll is the viscosity, cl is the specific

weight of phase l, and h represents the vertical depth.

~Cj is the overall concentration of component j in the

mobile and stationary phases expressed as

~Cj ¼ 1�
Xncv

j¼1

Ĉj

 !
Xnp

l¼1

SlCjl þ Ĉj for j ¼ 1; . . .; nc;

ð3Þ

where Sl is the saturation of phase l, ncv is the total number

of volume-occupying components, and Ĉj is the adsorbed

concentration of component j. In UTCHEM, the liquid

phase l includes aqueous (l = 1), oleic (l = 2), and

microemulsion (l = 3).
~Djl is the dispersive flux which is assumed to have a

Fickian form:

~Djl ¼ /SlKjl � rCjl; ð4Þ

where the dispersion tensor Kjl is calculated as

Kjlij ¼
Djl

s
dij þ

aTl
/Sl

ulj jdij þ
aLl � aTlð Þ

/Sl

uliulj

ulj j ; ð5Þ

where Djl is the molecular diffusion, s is the tortuosity

factor of the porous media, aLl and aTl are phase l longi-

tudinal and transverse dispersivities, and dij is the Kro-

necker delta function.

Rj is the source term which is a combination of all rate

terms for a particular component j. It may be expressed as

Rj ¼ /
Xnp

l¼1

Slrjl þ ð1� /Þrjs þ Qj; ð6Þ

where rjl and rjs are the reaction rates for component j in

phase l and solid phase s, respectively, and Qj is the

injection/production rate for component j per bulk volume.

2.2 Pressure equation

Summing the mass balance equations from Eq. (1) over all

the volume-occupying components, substituting Eq. (2)

Well LGR

Level 1

Level 2

Level 3

Level 4

Fig. 2 Schematic of multilevel local grid refinement
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and using aqueous phase pressure as a reference pressure,

we obtain the pressure equation:

where Pcl1 is the capillary pressure between phase l and

phase 1 (the aqueous phase), and krlc is the relative

mobility expressed as

krlc ¼
krl

ll

Xncv

l¼1

qjCjl; ð8Þ

and Ct represents the total compressibility which is the

volume-weighted sum of the rock matrix (Cr) and com-

ponent compressibilities (Cj
0):

Ct ¼ Cr þ
Xncv

l¼1

C0
j
~Cj; ð9Þ

where / ¼ /R 1þ Cr PR � PR0ð Þ½ �; PR and PR0 are rock

and reference rock pressures.

2.3 Rheological viscosity of the polymer solution

Non-Newtonian polymer rheology (shear-thinning behav-

ior) is modeled using Meter’s equation (Meter and Bird

1964):

lapp ¼ l1 þ
l0p � l1

1þ _ceff
_c1=2

� �Pa�1
; ð10Þ

where lapp is the apparent viscosity of the polymer solution;

l1 is the polymer solution viscosity at infinite shear rate

which is assumed to be brine viscosity; _c1=2 is the shear rate at

which the apparent viscosity is the average of l1 and l0p; Pa

is a fitting parameter. For the synthetic polymer, e.g., HPAM,

polymer solutions show shear-thinning behavior at inter-

mediate shear rates and shear-thickening (dilatant) behavior

at high rates. To remediate the deficiency of Meter’s equa-

tion, Delshad et al. (2008) developed a comprehensive

polymer viscosity model which covers the whole shear-rate

regime. The apparent viscosity consists of two parts:

lapp ¼ lsh þ lel; ð11Þ

where the shear-thinning model uses the Carreau model

(Carreau 1968):

lsh ¼ l1 þ l0p � l1
� �

1þ k1 _ceffð Þ2
h i n1�1ð Þ=2

; ð12Þ

and the shear-thickening model is

lel ¼ lmax 1� exp � k2s _ceffð Þn2�1
h in o

; ð13Þ

where a1, a2, and s are all fitting model parameters

obtained by matching experimental data; lmax is given as

lmax ¼ lb AP11 þ AP22lnCp

� �
C
Sp
SEP; ð14Þ

where C
Sp
SEP is the polymer viscosity dependence on salinity

and hardness; AP11 and AP22 are fitting parameters. When

AP11 and AP22 are zero, the comprehensive polymer vis-

cosity model reduces to the Carreau model.

The effective shear rate ( _ceff) correlates viscosity mea-

sured in a viscometer to an apparent in situ viscosity in

porous media and is defined using a capillary bundle model

(Cannella et al. 1998) as

_ceff ¼ C
3nþ 1

4n

� � n
n�1 4 uwj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8�kkrw/Sw
p ; ð15Þ

where n is the slope of the linear portion of bulk polymer

viscosity vs. shear rate plotted on a log–log scale (bulk

power-law index); uw is the Darcy flux of the aqueous

polymer solution; �k is the average permeability; krw is the

aqueous phase relative permeability; Sw is the aqueous

phase saturation; / is the porosity; C is a shear correction

factor used to explain the deviation of the porous medium

from an ideal capillary bundle model (Wreath et al. 1990;

Sorbie 1991) and should be a function of permeability,

porosity, and polymer molecule properties.

2.4 Analytical polymer injectivity model

According to Peaceman’s well model (Peaceman 1983),

the relationship between the injection rate Qinj and the

pressure difference between injector and well block

(Pinj - Pwb) can be expressed by

Qinj ¼ I Pinj � Pwb

� �
; ð16Þ

where I is the well injectivity:

I ¼
2ph

ffiffiffiffiffiffiffiffi
kxky

p

ln ro
rw

� �
þ s

Xnp

l¼1

krl;wb

ll;wb
; ð17Þ

where h represents the thickness of the well block; ro
represents the Peaceman equivalent radius; rw is the well

radius; s is the skin factor; and krl,wb and lrl,wb are the

relative permeability and viscosity of phase l of well block,

respectively.

ð7Þ
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In traditional simulation models, the polymer solution

viscosity (lw,wb) of the well block is directly calculated

from Eqs. (10) or (11), using the averaged shear rate of the

block. Thus, the shear rate is smeared and consequently

gives significant error in well injectivity depending on the

flow rate and the size of the gridblocks.

To overcome this limitation, Li and Delshad (2014) pro-

posed a rigorous analytical injectivity model to calculate the

equivalent apparent viscosity of polymer solution based on the

assumption that after conversion of coordinates to account for

the effects of non-square grids and anisotropic permeability,

radial flow dominates the near-wellbore region, i.e.,

u �rð Þ ¼ Qinj

2ph�r
; ð18Þ

where �r is the distance from the wellbore after conversion

of coordinates.

It can then be derived that the equivalent apparent vis-

cosity of the polymer solution has the following expression:

�lw;wb ¼
R �ro
rw
lapp rð Þ dr

r

ln �ro
rw

� � ; ð19Þ

in which lapp(r) adopts the form of Eqs. (10) or (11) using

the shear rate calculated from the local velocity expressed

by Eq. (18). For the detailed derivation, one can refer to Li

and Delshad (2014).

3 UTCHEM flowchart

UTCHEM uses the finite volume method (FVM) and the

implicit pressure explicit concentration (IMPEC) approach.

The flowchart of the simulator is shown in Fig. 3.

In each time step, the simulator first solves the pressure

equation (Eq. 7) implicitly and then solves concentration

equations for each component (Eq. 1) explicitly using a third-

order scheme with a flux limiter. After that, phase behavior

calculationswill be performed if a surfactant is present. In the

last step, properties are updated by taking into account water

reactions and polymer adsorption, as well as other chemical

and physical changes. All the newly updated variables and

properties will be provided for the initial values of the next

time step. This continues until it reaches the final time.

4 Local grid refinement algorithm

The current form of the UTCHEM simulator is developed

based on a structured grid, and the use of LGR will

transform the grid from structured to unstructured as the

connections between blocks are no longer regular. This

makes it necessary to change the original data structure and

computational model for solving the pressure equation and

concentration equations.

To adapt the original computational structure to LGR and

to maintain a good memory management, we designed a

new flowchart for UTCHEM in Fig. 4. Compared to the

original flowchart shown in Fig. 3, this new algorithm

automatically generates the block list and connections

according to the well location and refinement levels after the

initialization step. An LGR module is also used to replace

the original modules for solving the pressure equation and

concentration equations. The other parts remain unchanged

because those calculations are block based and not relevant

to the grid structure. Features of the LGR algorithm will be

presented in the following two subsections.

4.1 Block list and connections

Computations with an unstructured grid and LGR are

normally based on a block list which gives the indices of

Initialization

Solve pres. Eq.

Solve conc. Eqs.

Phase behavior

Update properties

Output

tn+1=tn+∆t

Transmissibility

Well

Boundary

Matrix and RHS

Linear sys. solver

Velocity
Convection

Diffusion

Dispersion

Numer. scheme

Reaction

Adsorption

Chemical
Physical

Fig. 3 Flowchart of UTCHEM

Initialization

Generate LGR block
list and connections

Local grid refinement
(LGR) module

Solve pres. Eq.

Solve conc.
 Eqs.

tn+1=tn+∆t

Phase behavior

Update properties

Output

Reaction
Adsorption
Chemical
Physical

Convection

Diffusion
Dispersion

Numer. scheme

Transmissibility
Well

Boundary

Matrix and RHS
Linear sys. solver
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Fig. 4 Flowchart of UTCHEM using the LGR module
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gridblocks or cell numbering and connections which give

the indices of block interfaces linking to a pair of adjacent

blocks. Considering LGR has a special grid topology

composed of rectangular blocks at different levels, we

developed a fast algorithm to generate the block list and

connections as illustrated in Fig. 5 with a 2D example case.

The domain is originally covered by two coarse blocks, and

then it is refined to 8 blocks. The numbering of the block

list is advanced by each coarse block. For each coarse

block, the numbering starts first along the x-direction and

then the y-direction.

Different from the common unstructured grid, the con-

nections in our LGR algorithm are divided into two types:

x-direction connections (marked in red in Fig. 5) and y-

direction connections (marked in blue in Fig. 5). A sum-

mary of the block list and connections is given in Table 1.

The indexing of a block list and connections facilitates

the search for neighboring blocks and the assignment of

properties evaluated at the block interfaces, such as trans-

missibility, velocity, and mass flux using the list of

connections.

4.2 Coupling of governing equations

As the IMPEC scheme is used, the pressure equation and

concentration equations are solved separately during

computations.

4.2.1 Coupling of the pressure equation

The pressure equation needs to be solved implicitly and the

calculation of velocities across the block interfaces of the

composite grid is a common issue. Let us take the block

connection in Fig. 6 as an example. The lengths of the

coarse block are Dx and Dy and the lengths of the fine

blocks are half. For the sake of simplicity to describe our

approach, we assume in Fig. 6 isotropic permeabilities

without a gravity effect and define k as the total fluid

mobility, i.e., k ¼ kabs
Pnp

l¼1

k
ups

rl

ll
; where k

ups
rl is the relative

permeability of phase l defined on the block interface with

an upstream scheme. The upstream scheme to obtain k
ups
rl is

the same as that to obtain the upstream concentration, Cups
j ;

which we will explain in the next subsection.

To calculate the fluxes across the block interfaces, such

as uðmÞ and uðnÞ, an early approach (Forsyth and Sammon

1986) used the pressures at the block centers to obtain the

pressure difference in Darcy’s law. However, it was

pointed out that it generated high truncations (Rasaei and

Sahimi 2009). Gerritsen and Lambers (2008) proposed in

their anisotropic grid adaptivity method to use bilinear

interpolation to obtain pressures of the auxiliary points

(such as P i1ð Þ and P i2ð Þ in Fig. 6) for calculating the inter-

facial velocity using Darcy’s law. This method proves to be

second-order accurate when solving the pressure equation

for homogeneous cases. However, the accuracy of bilinear

interpolation is insufficient for heterogeneous cases

because the discontinuity of the pressure gradient across

the block interface is not taken into account. Actually,

handling heterogeneity is an important factor to weigh up

the reliability of the numerical scheme. As far as we know,

there has not been a rigorous numerical scheme in the

scope of the cell-centered finite volume method for accu-

rately coupling the pressure equations with the LGR

composite grid.

In Appendix 1, we derive a simple but efficient

numerical scheme to couple pressure equations for the

blocks with different grid levels. The expression of the

velocities across the interface is as follows:

Fig. 5 An example of a block list and connections

uðmÞ ¼ �TðmÞ
PðjÞ þ PðkÞ

2
� PðiÞ

� �
u0mnð Þ

u0
mnð Þ þ u0

jkð Þ
þ

k jð ÞP jð Þ þ k kð ÞP kð Þ
ðk jð Þ þ k kð ÞÞ

� PðiÞ

� �
u0jkð Þ

u0
mnð Þ þ u0

jkð Þ

" #

uðnÞ ¼ �TðnÞ
PðjÞ þ PðkÞ

2
� PðiÞ

� �
u0

mnð Þ

u0
mnð Þ þ u0

jkð Þ
þ

k jð ÞP jð Þ þ k kð ÞP kð Þ
ðk jð Þ þ k kð ÞÞ

� PðiÞ

� �
u0

jkð Þ

u0
mnð Þ þ u0

jkð Þ

" #
;

;

8
>>>>><

>>>>>:

ð20Þ
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where the meanings of T mð Þ, TðnÞ, u
0
mnð Þ, and u0

jkð Þ are given

in Appendix 1.

This numerical scheme has the following advantages:

• It has a simple form as it does not require any

additional information from other blocks except for the

current three connected blocks.

• It is easy to use as it does not need any interpolation/

extrapolation.

• It is based on the continuity of mass flux across the

interfaces and it is rigorously self-consistent under the

homogeneous condition or the condition that fine-block

permeabilities are identical. The latter condition is

often met for most LGR applications when the perme-

abilities of the refined blocks are directly from the

coarse block permeability.

4.2.2 Coupling of mass conservation equations

To guarantee the numerical stability, upstream schemes are

mainly used to solve mass conservation equations. In the

UTCHEM simulator, there are several options for the

upstream schemes. These are first-order upstream scheme,

second-order upstream scheme, and a third-order upstream

scheme named Leonard’s scheme (Saad 1989; Liu et al.

1994). Because higher order upstream schemes are more

accurate to integrate concentration equations, we only

discuss about how to couple concentration equations using

the Leonard scheme in this paper. Under the structured grid

in Fig. 7, the Leonard scheme to calculate the mass flux

∆x

∆y

λ(i) P(i1)

P(i)

P(i2)

u(m)

u(jk)

u(n)

P(j)

λ(j)

λ(k)

P(k)

Fig. 6 Schematic block connection and the position of pressure and

velocity

i–1 i

f(i+1/2)

i+1 i+2

∆x(i–1) ∆x(i) ∆x(i+1) ∆x(i+2)

Fig. 7 Schematic of a third-order upstream scheme (Leonard’s

scheme) for a structured grid

Table 1 Mutual indexing of block list and connections

Block No. Connections

(x-direction)

Connections

(y-direction)

Connection No.

(x-direction)

Block pair Connection No.

(y-direction)

Block pair

1 1 1 1 1, 2 1 1, 4

2 1, 2 2 2 2, 3 2 2, 5

3 2, 5, 3 3 3 3, 8 3 3, 7

4 4 1, 4 4 4, 5 4 4, 6

5 4, 5 2, 5 5 5, 3 5 5, 6

6 6 4, 5 6 6, 7

7 6, 7 3 7 7, 8

8 3, 7 –

X

X

C(i1–)

C(i2–)

C’(i1)

C(i)

C’(i2)

f(m)

f(n)

C(j)

C(k) C(k+)

C(i+)

Fig. 8 Schematic of Leonard’s scheme for an LGR case
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across the interface at iþ 1
2
is expressed by

where C represents the component concentration.

For the LGR grid, we take the block combination in

Fig. 8 as one example. In this case, because the block

center points are not in the same line, we utilize bilinear

interpolation to obtain the concentration values C0 at the
auxiliary points, e.g., i1 and i2. After that, we extend

Leonard’s scheme to this case:

where f mð Þ and f nð Þ are mass fluxes across the interfaces

m and n.

5 Case study

To validate the LGR method proposed in this paper, we

tested four simulation examples. These examples show

comparisons of simulation results using the LGR method

with those using the analytical polymer well model, and

full grid refinement (FGR) where the whole model has the

smallest grid size of the LGR.

5.1 Case 1: Polymer flooding in a 2D homogeneous

reservoir

We start with a base case for polymer flooding. The

polymer solution is assumed to be shear thinning.

Adsorption and permeability reduction are also considered.

The reservoir and well descriptions are given in Table 2.

The basic grid used for simulation is 15 9 15 9 1, and the

grid with a 4-level refinement is shown in Fig. 9. It shows

that the well block is refined to 8 9 8 finest blocks and

several transitional blocks connect the original coarse

blocks and finest blocks.

In this case, the injection rate is constant, so the injec-

tion pressure varies with different polymer viscosities and

thus well injectivities. Figure 10 shows a comparison of

injection pressures using different grids or well models. For

water flooding periods, there are no obvious differences in

injection pressures among different simulations. However,

when shifted to polymer flooding, it is observed that the

injection pressures are remarkably differentiated using

different grids or well models because of polymer rheol-

ogy. It also shows that using the original grid leads to the

highest injection pressure. The reason is that the averaged

viscosity within the well block area is artificially amplified

due to a lower smeared flux rate caused by the coarse block

size, which leads to an over-prediction of injection pressure

that triggers the pressure limit, for example, in the case that

the facility’s injection pressure limit is 6000 psi. By con-

trast with grid refinement around the well block, the

injection pressure gradually decreases which results in a

much ‘‘safer’’ injection pressure. Also, the variation of the

f
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injection pressure shrinks with an increase in the level of

grid refinement, showing a convergent trend. Because

simulation results using 3-level LGR and 4-level LGR are

relatively close and further refinement may lead to exces-

sive computational times, we regard the simulation result

of 4-level LGR as the reference result to evaluate other

simulations. Of course, it should be more precise to use the

fully refined grid as the reference. Nevertheless, Fig. 10

shows that 4-level FGR gives a very similar injection

pressure to the 4-level LGR. We also use the analytical

injectivity model (Li and Delshad 2014) and we observe

that the simulated injection pressure is between the results

of 3-level LGR and 4-level LGR. This result is more

accurate than the case without grid refinement and shows

consistency with LGR results.

To further demonstrate the accuracy and computa-

tional efficiency of the LGR method, we compare sim-

ulation results with CMG_STARS (2012). In the above

case, rheology parameters, Pa and c1/2, used in the

polymer rheology equation (Eq. 10), are set as 1.8 and

10 s-1, respectively. These parameters lead to a rela-

tively sharp shear-thinning curve. CMG_STARS uses a

different polymer rheology equation, which is a power-

law equation:

lapp ¼

l0p if uw\ulower

l0p
uw

ulower

	 
nthin�1

if ulower\uw\uupper

l1 if uw [ uupper;

8
>><

>>:
ð24Þ

where nthin is the power-law exponent, and ulower is defined

by the point on the power-law curve when lapp is equal to

l0p: To be close to the UTCHEM polymer equation (Eq. 10)

for Case 1 using the CMG_STARS equation, we found out

that nthin must be small and it causes numerical stability

issues which are also indicated in the manual of

CMG_STARS (2012). Therefore, to achieve a relatively

similar polymer rheology curves for both simulators, we

use Pa = 1.5 and c1/2 = 3.8 s-1 for UTCHEM and

nthin = 0.5 and ulower = 0.02 ft/day for CMG_STARS.

Figure 11 shows a comparison of the results between

UTCHEM and CMG_STARS using the original grid,

4-level LGR, and 4-level FGR, respectively. It is found that

the injection pressure curves for the original grid match

very well between UTCHEM and CMG_STARS. In

Fig. 9 The mesh of the 4-level local grid refinement for Case 1

Table 2 Reservoir and well

descriptions (Case 1)
Model description Values

Reservoir size 450 ft 9 450 ft 9 10 ft

No. of gridblocks 15 9 15 9 1

Simulation time, day 365

Number of components 3

Permeability in the x or y directions, mD 300

Initial water saturation 0.35

Polymer rheology exponent Pa 1.8

Shear rate at half zero-rate viscosity chf, s
-1 10

Wells 1 injector; 1 producer

Injection rate, ft3/day 500

Producer bottomhole pressure (BHP), psi 1000

Water injection 0–150 and 270–365 days

Polymer injection 150–270 days (0.3 wt%)
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addition, the 4-level LGR simulation results of UTCHEM

and CMG_STARS are also close, with only a minor dif-

ference. This is acceptable because CMG_STARS and

UTCHEM use different polymer concentration-dependent

viscosity models and shear-thinning models as mentioned

in Goudarzi et al. (2013a). Again, for FGR results, we

observe both UTCHEM and CMG_STARS match well

with LGR results.

In Table 3, we compare the CPU times taken by

UTCHEM and CMG_STARS using different grids. For

both simulators, we use the same maximum time step

(0.01 day) and the same numerical scheme (IMPES) on the

same computer for the sake of consistency. We can see that

CMG_STARS takes about 3 times that of UTCHEM for

the original coarse grid, 2.5 times for the 4-level LGR, and

2.2 times for the 4-level FGR. An increase in CPU times is

also in the same order of the increase in gridblock numbers.

LGR shows very good computational efficiency compared

to FGR. Actually, CMG_STARS can take larger time steps

because it can use an adaptive implicit scheme. Therefore,

the purpose of the comparison is not to tell which simulator

is better in performance but to obtain a sense of the scaling

of the CPU times using LGR and FGR. In fact, the

advantage of using UTCHEM for modeling polymer flood

is that it has more comprehensive polymer models than

CMG_STARS, such as more options of rheology models

and stricter concentration-dependent and salinity-depen-

dent polymer, and near-well-corrected viscosity models.

5.2 Case 2: Polymer flooding in a 2D reservoir

with a fracture near the injector

This case is aimed to analyze the behavior of the LGR in

the presence of a planar fracture near the injector, which

may often be encountered during polymer injection pro-

jects (Manichand et al. 2013; Clemens et al. 2013). We

assume that the reservoir has the same condition as case 1

except that there is a fracture initiated from the well block

of the injector. We show in Fig. 12 a 4-level LGR grid with

Fig. 12 Permeability field of a fractured reservoir using an LGR grid

Table 3 CPU times for UTCHEM and CMG_STARS using different

grids for Case 1

Grid Original grid

(225

gridblocks)

4-level LGR

(471

gridblocks)

4-level FGR

(14,400

gridblocks)

CPU time

UTCHEM 1 min 26 s 3 min 40 s 141 min 39 s

CMG_STARS 4 min 14 s 9 min 12 s 318 min 45 s

Original grid
2-level LGR
3-level LGR
4-level LGR
4-level FGR
Analytical moel
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Fig. 10 Comparison of injection pressure using different grids or

well models for Case 1
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Fig. 11 Comparison of injection pressure between UTCHEM and

CMG_STARS using different grids for Case 1
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permeability field (the fracture permeability is assumed to

be 10 Darcy). In this case, it is obviously not proper to use

the coarse grid as well as the analytical injectivity model,

which could not describe the flow in fractures. Therefore, it

is obligatory to refine the gridblocks.

Figure 13 shows simulation results under three condi-

tions: LGR without fractures, LGR with fractures, and FGR

with fractures. The LGR with fractures leads to a signifi-

cantly smaller injection pressure compared to the LGR

without fractures, which shows the importance of

accounting for fractures near the injector. We also show

that the pressure curve of FGR is close to that of LGR,

which proves the agreement of the results between using

the two types of grids.

5.3 Case 3: Polymer flooding in a 3D heterogeneous

reservoir

We study a polymer flooding field case. The polymer

solution is assumed to be shear thinning. Adsorption and

permeability reduction are also considered. The reservoir

and well descriptions are given in Table 4. The perme-

ability field and well locations are shown in Fig. 14. The

relevant grid with 4-level LGR is in Fig. 15. Some wells

are deviated so that the LGR is expanded in the x–y plane.

In this case, the injection pressure is fixed so that the

injection rate varies with well injectivity. Figure 16 shows

the simulated overall injection rate using the original grid,

4-level LGR, and the analytical injectivity model. It is

observed that we achieve a higher injection rate with grid

refinement compared to the original grid, which is con-

sistent with the polymer rheology. This is significant since

we need to accurately calculate how high a polymer vis-

cosity can be injected and the predicted bottomhole pres-

sure (BHP) for cases that the operators do not plan to inject

polymer above the fracture gradient. In this case, we lack

the results of FGR because of the excessive simulation

time. It is observed that the analytical model slightly

overestimates the overall injection rate compared to 4-level

LGR. The analytical model is not accurate for this case

because the well is inclined.

5.4 Case 4: A pilot of alkaline co-solvent polymer

(ACP) flood

The reservoir is a sandstone reservoir at a depth of

approximately 1000 ft which has undergone water flooding

for several years. The average oil saturation before ACP

flood is approximately 44.3 %. The pilot area includes 6

inverted 7-spot well patterns. The polymer solution is

assumed to be shear thinning. The reservoir and well

descriptions are given in Table 5. The permeability field

and well locations are shown in Fig. 17. The relevant grid

Fig. 14 Permeability distribution and well locations for Case 3

Table 4 Reservoir and well descriptions (Case 3)

Model description Values

No. of gridblocks 17 9 21 9 25

No. of components 6

Total injection volume for simulation,

PV

0.32

Polymer injection volume, PV 0–0.16 (0.2 wt%)

Water injection volume, PV 0.16–0.32

BHP, psi Injectors 4500; Producers

700

4-level LGR without fractures

4-level LGR with fractures

4-level FGR with fractures
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Fig. 13 Comparison of injector bottomhole pressure (BHP) using

different grids or well models for Case 2
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with a 3-level LGR is shown in Fig. 18. Injectors are

operated at constant injection rates.

Figure 19 shows the BHP of Injector ECN-105i using

different grids and well models (we note that other injec-

tors have similar pressure profiles). For the original

42 9 37 9 5 coarse grid, the BHP is highest. When the

grid is locally refined near the injector, the BHP decreases

significantly, and the pressure change is more gradual,

showing a significant improvement for estimating the BHP

of the injector using the LGR. The 3-level LGR gives a

much smaller BHP compared to the 2-level LGR. The

results from the 2-level LGR and 3-level LGR are in very

good agreement with the relevant FGR results, respec-

tively, while taking much less CPU time (Table 6). Even

though more CPU time is needed using the LGR as

indicated by Table 6, one needs to consider the significant

improvement in accuracy to balance the cost of computa-

tional time. The analytical injectivity model gives a similar

trend but a different profile of the pressure compared to

using the original grid and the LGR grids, because there is

a non-zero skin factor for the well while the analytical

injectivity model originates assuming that skin is equal to

0. This indicates that the analytical polymer injectivity

model is not always useful for field cases.

6 Summary and conclusions

We have used an efficient LGR algorithm to improve the

accuracy of numerically estimating the near-wellbore

solutions when dealing with complex rheology of polymer

or emulsion solutions. We present an algorithm to generate

the block list and connections and propose an efficient

numerical scheme to couple the pressure and mass con-

servation equations using the LGR composite grid and with

consideration of heterogeneous reservoir properties.

Table 5 Reservoir and well descriptions (Case 4)

Model description Values

Reservoir dimension 5512 ft 9 4856 ft 9 98 ft

No. of gridblocks 42 9 37 9 5

No. of components 12

Total simulation time, day 7300

Optimum salinity, meq/mL 0.26

Wells 6 injectors; 22 producers

ACP injection 0–3650 days

1.5 wt% co-solvent

0.275 wt% polymer

Polymer injection 3650–7300 days

0.225 wt% polymer

Fig. 15 Well locations and 4-level local grid refinement
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Fig. 16 Comparison of overall injection rate using different grids or

well models for Case 3

Fig. 17 Permeability distributions and well locations for Case 4
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Several numerical examples are carried out, focusing on

polymer flooding, reservoir with fractures near injection

wells, and ACP flooding. Simulation results reveal that the

LGR is able to obtain more accurate polymer injectivity

compared to using the coarse grid and the analytical

injectivity model. The LGR can deal with more complex

and realistic reservoir conditions such as fractures and skin.

CPU time is significantly reduced using LGR compared to

FGR. This offers a reliable and efficient solution to handle

the general concern of reservoir simulations for the shear-

dependent polymer rheology in chemical flooding projects.
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Appendix 1: A novel numerical scheme to solve
the pressure equation on a multilevel grid

To simplify the complex flow in the composite blocks as

shown in Fig. 6, we decompose the flow pattern into two

flow patterns (for two-dimensional case) with main flow

directions along x- and y-directions, which are shown in

Fig. 20a, b. For each pattern, a pressure drop is assumed

along the main flow direction while making the lateral

sides impermeable. Then, we split the flow domain into

two parallel parts, such as part A and part B in the x-

direction main flow pattern and part C and part D in the y-

direction main flow pattern. According to the continuity of

mass flux across the interfaces m and n, we draw the

pressure curves through the two parts of each pattern

shown in Fig. 20c, d by neglecting the cross flows between

the two parts. Then, we investigate the expressions of uðmÞ
and uðnÞ for each pattern based on the pressure curves.

Let us see the curves of Fig. 20c, d. For the flow pattern

with a flow direction along x, according to the geometric

knowledge, the length of line i1 - i2 is equal to the length

of line j–k because they are both half the length of line m–

n. It is easy to infer that line i1–j is equal to and parallel to

line i2–k. As a result, the line connecting point i and the

point at the center of line j–k is equal to and parallel to the

previous two lines. Therefore, we can obtain the following

relationship:

P i1ð Þ � P jð Þ ¼ P i2ð Þ � P kð Þ ¼ P ið Þ �
P jð Þ þ P kð Þ

2
: ð25Þ

Using Darcy’s law, we have the expressions of uðmÞ and
uðnÞ according to the continuity of mass flux across the

interfaces m and n:

uðmÞ ¼ �TðmÞ
P jð Þ þ P kð Þ

2
� P ið Þ

� �

uðnÞ ¼ �TðnÞ
P jð Þ þ P kð Þ

2
� P ið Þ

� �
;

ð26Þ

Table 6 CPU times for Case 4

using original grid, LGR, and

FGR

Grid Original grid

(7770 gridblocks)

3-level LGR

(13,185 gridblocks)

3-level FGR

(124,320 gridblocks)

CPU time, h 0.2 1.9 23

Fig. 18 Schematic of the 3-level local grid refinement for Case 4
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Fig. 19 Comparison of BHP for injector ECN-105i using different

grids and well models for Case 4
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where TðmÞ and TðnÞ are transmissibilities on the interfaces

m and n defined by

T mð Þ ¼
4k ið Þk jð Þ

k ið Þ þ 2k jð Þ
� �

Dx

T nð Þ ¼
4k ið Þk kð Þ

k ið Þ þ 2k kð Þ
� �

Dx
:

ð27Þ

For the flow pattern with a flow direction along y,

according to the geometric relation, the length of line i1–j

is equal to the length of line i2–k because they are both half

the length of line i–l. Consequently, the following rela-

tionship can be obtained:

P i1ð Þ � P jð Þ ¼ P i2ð Þ � P kð Þ ¼ P ið Þ �
k kð ÞP jð Þ þ k jð ÞP kð Þ

k jð Þ þ k kð Þ
� � :

ð28Þ

Using Darcy’s law, we have the expressions of uðmÞ and
uðnÞ according to the continuity of mass flux across the

interfaces m and n:

uðmÞ ¼ �TðmÞ
k jð ÞP jð Þ þ k kð ÞP kð Þ

ðk jð Þ þ k kð ÞÞ
� P ið Þ

� �

uðnÞ ¼ �TðnÞ
k jð ÞP jð Þ þ k kð ÞP kð Þ

ðk jð Þ þ k kð ÞÞ
� P ið Þ

� �
:

ð29Þ

A comparison between Eqs. (26) and (29) shows that the

expressions of uðmÞ and uðnÞ are different under the two flow

patterns. Nevertheless, they can achieve agreement under

the homogeneous condition or the condition that the total

mobilities of the fine blocks are identical, i.e., k jð Þ ¼ k kð Þ,

which indicates that the expressions are rigorously self-

consistent under these conditions.

For the heterogeneous condition, we need to choose the

appropriate expressions of uðmÞ and uðnÞ from Eqs. (26) and

(29) by considering the direction of the main flow. The

proper velocity across the interface can be a weighting of

the x-direction velocity and the y-direction velocity

weighted by the magnitude of the local velocities along x

and y directions, i.e., u0ðmnÞ and u0ðjkÞ,

where

u0ðmnÞ ¼
u0ðmÞ

���
���þ u0ðnÞ

���
���

� �

2
; ð30Þ

and u0ðjkÞ is the flux across the interface of blocks j and k as

shown in Fig. 6 which is expressed by

u0ðjkÞ ¼ �
4k jð Þk kð Þ

k jð Þ þ k kð Þ
� �

Dy
P kð Þ � P jð Þ
� �

; ð31Þ

Decompose the flow pattern
in the x and y directions
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Fig. 20 Decomposition of the flow pattern into two with main flow directions along x- and y-directions; and the approximate pressure curves

through the two separated parts (A and B for x-direction pattern, C and D for y-direction pattern) of each pattern
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where the superscript 0 for the velocities represents the last

time step.

Therefore, we design the following numerical scheme to

calculate uðmÞ and uðnÞ:

We are aware that this numerical scheme is achieved

based on the assumption that the cross flows between the

separated parts for each flow pattern can be neglected.

Actually, the piece-wise pressure curves shown in Fig. 20

may be bent when there is cross flow vertical to the main

flow direction. Nevertheless, this numerical scheme has a

lot of advantages that will be discussed in the text.
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