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Abstract
Purpose of Review In recent years, machine learning techniques have been increasingly utilized across medicine, impacting the
practice and delivery of healthcare. The data-driven nature of orthopaedic surgery presentsmany targets for improvement through
the use of artificial intelligence, which is reflected in the increasing number of publications in the medical literature. However, the
unique methodologies utilized in AI studies can present a barrier to its widespread acceptance and use in orthopaedics. The
purpose of our review is to provide a tool that can be used by practitioners to better understand and ultimately leverage AI studies.
Recent Findings The increasing interest in machine learning across medicine is reflected in a greater utilization of AI in recent
medical literature. The process of designing machine learning studies includes study design, model choice, data collection/
handling, model development, training, testing, and interpretation. Recent studies leveraging ML in orthopaedics provide useful
examples for future research endeavors.
Summary This manuscript intends to create a guide discussing the use of machine learning and artificial intelligence in ortho-
paedic surgery research. Our review outlines the process of creating a machine learning algorithm and discusses the different
model types, utilizing examples from recent orthopaedic literature to illustrate the techniques involved.

Keywords Artificial intelligence .Machine learning . Orthopaedics

Introduction

Artificial intelligence (AI) is a broad term referring to any
human-like intelligence exhibited by a machine including
the ability to make decisions, solve problems, and learn from
experience. Through the rapid processing of large amounts of
information, AI has already transformed industries such as
entertainment and transportation, among others [1]. Given its
increasing available and promising applications, AI is also

expected to impact the practice of medicine and the delivery
of healthcare.

A growing interest in AI is reflected in the increasing
number of publications in the medical literature, many of
which utilize AI to answer orthopaedic-specific questions
[2–4]. Interpreting radiographs and predicting postopera-
tive outcomes are areas where early AI research in ortho-
paedics has focused. The data-driven nature of the special-
ty combined with its need for high-quality and cost-
effective treatment offers many targets for further improve-
ment by Al. While technological constraints of applying AI
are rapidly diminishing, a more fundamental problem may
ultimately limit its impact on orthopaedic surgery: trust.
The unique methodologies of AI research studies may be
a significant barrier to widespread acceptance of AI into
orthopaedic surgery. Without a robust understanding of AI
methodology, equivalent or superior to insights in tradi-
tional statistical methods, a consistent and critical analysis
of the AI literature will be hampered, and the editorial
process may fail to produce robust high-quality publica-
tions. This will lead to a large number of publications with
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varying validity, eroding the community’s trust in the peer-
review process and in the findings of the AI literature.

An understanding of fundamental methodological concepts
will thus be essential moving forward so that studies can be
critically evaluated as more are published. Despite its limita-
tions, AI has the potential to meaningfully change the delivery
of orthopaedic care. Until surgeons are more familiar with the
methodology though, AI in the orthopaedic literature will like-
ly be met with continued skepticism. The purpose of this
guide is to facilitate understanding and development of studies
within orthopaedics utilizing AI methodology.

Machine Learning

Though sometimes used interchangeably with AI, machine
learning (ML) is an important subset of AI with arguably
the most promising applications for medical research [5].
Much like traditional statistics, the purpose of ML is to
describe the relationship between variables. To simplify,
one can distinguish the methodologies by their respective
goals. With traditional statistical models, the goal is to infer
the relationship between variables, while with ML models,
the goal is to predict these relationships. Inference involves
testing a null hypothesis for an effect size and confidence
measurement to calculate the probability that the observed
relationship happened by chance. This is the standard way
in which traditional clinical research is conducted, by ret-
rospectively or prospectively analyzing the outcome of in-
terest and inferring the probability of this result in the con-
text of other given variables.

On the contrary, prediction involves assigning a known
output of interest with several associated inputs, without
understanding the relationship between the two or why it
exists. It is important to note that neither method alone is
superior to the other; each one should be considered with
the research question in mind. Statistical models may be
more appropriate for studies with a research question in-
terested in assessing the effect of any one input on an
output, whereas ML models may be preferred for studies
with a research question interested in correctly identifying
an output given a set of inputs. The relationship between
individual inputs and the output is of little relevance in a
ML model so long as the prediction is accurate. However,
the emphasis on predictive accuracy is also what contrib-
utes to the so-called black box phenomenon, a frequently
mentioned criticism of ML, in which the predictive model
is undecipherable to human intuition [6•]. Without an un-
derstanding of the mechanisms and limitations within the
model, the predictive outputs carry less meaning and may
be dismissed by surgeons making clinical decisions.

Two areas particularly suited for application of ML tech-
niques in medicine are diagnosis and prognosis as both

involve a degree of uncertainty and forecasting. In orthopae-
dics, ML has been used both diagnostically for the identifica-
tion of pathology like osteoarthritis and fracture on radio-
graphs and prognostically through the estimation of postoper-
ative outcomes and healthcare costs [7–9]. The aim of this
review is to delineate key MLmethodological terms, concepts
in study design, model choice, data collection/handling, and
model development, training, testing, and interpretation.
Table 1 delineates the key terminology discussed throughout
this review. The process of designing, evaluating, and inter-
preting a machine learning algorithm is outlined in Figure 1.

Study Design

When critically evaluating or developing a study that utilizes
ML methodology, the research question must first be identi-
fied. As mentioned previously, if the purpose of the research
question is to make a prediction, then ML may offer advan-
tages over traditional statistics. Because of the complexity of
the model that makes interpretability one of the main chal-
lenges to its acceptance and implementation into clinical prac-
tice, it is important for authors to provide a clear justification
for the use of ML and state the advantages it affords for an-
swering the research question.

Research questions can be categorized as diagnostic or
prognostic based on the goal of the prediction [10]. An exam-
ple of a diagnostic question in orthopaedic research might
involve developing aMLmodel to identify osteoarthritis from
radiographic images, while a prognostic question could in-
volve developing one to estimate healthcare costs after total
knee arthroplasty (TKA) based on patient and clinical factors.

Research questions can be further categorized as a
classification or regression question based on the type
of output generated by the prediction. To simplify, with
classification questions, the output of the model is a
class, while with regression problems, the output of the
model is a number [11]. Utilizing the above examples,
detecting osteoarthritis on radiographs would be a classi-
fication question since the output of this prediction mod-
el is a class, i.e., either “yes” or “no” osteoarthritis.
Estimating healthcare costs after total knee arthroplasty
would then be an example of a regression question since
the output of this prediction model is a number (i.e.,
healthcare dollars). Diagnostic questions are often classi-
fication questions and prognostic questions are often re-
gression questions, but this is not always the case. Model
choice is based upon the research question, which can be
described further by the goal of the prediction and the
type output generated by it, as well as the characteristics
of the available data. Once identified, the appropriate
ML model can be determined.
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Model Choice

ML algorithms can be classified as either supervised or
unsupervised. In supervised learning, the researchers provide
the model with inputs and the desired output and the goal is to
predict the relationship between these variables [12]. In unsu-
pervised learning, there is no labeled output; therefore, the aim
of this type of algorithm is to evaluate patterns within the
dataset. For the purposes of this review, we will focus on
supervised learning since this is the most common type of
ML model used in medical research.

The next step is choosing an algorithm for the model. A
number of factors impact algorithm selection—interpret-
ability, accuracy, speed, and size of dataset. Common al-
gorithms for classification problems include logistic re-
gression, support vector machines (SVM), decision trees
(DTs), random forest, and k-nearest neighbors (kNN).
Models for regression problems include simple linear re-
gression, multiple linear regression, support vector ma-
chine (SVM), decision trees, random forests, LASSO (least
absolute shrinkage and selection operator) regression, and
ridge regression. Deep learning techniques are inspired by
the human brain, using artificial neural networks to learn
from large datasets. These networks can be conceptualized
as multiple layered algorithms working together. It is typ-
ically useful to create multiple algorithms for a problem
and determine the most effective choice after evaluating
the models. Table 2 outlines the different models discussed
in our article, with examples of potential applications.

Logistic Regression

Logistic regression is one of the simplest modeling techniques
to predict the probability of a binary outcome variable [19].
Logistic regression is commonly used in orthopaedics re-
search and has a broad range of applications. An example of
an appropriate application would be a study determining sta-
tistically significant predictors of survival of osteosarcoma.
Predictor variables might include age, tumor size, tumor site,
metastasis, and chemotherapy. We can use logistic regression
to determine the statistical significance of the predictors by
analyzing the z-statistic and associated p-values.

Linear Regression

Linear regressions intend to model relationships between ex-
planatory variables and a scalar response, predicting the value
of the outcome [20]. Simple linear regressions include one
explanatory variable; in the case that there are multiple, the
process is referred to as multiple linear regression. Linear re-
gression analyses are relatively simple to conduct and inter-
pret, and are often used to assess quantitative variables. Linear
regression is also a commonly used statistical technique in
orthopaedic research as it can easily infer the relationship be-
tween several demographic and clinical variables with a scalar
outcome of interest. An example application of linear regres-
sion would be to a study analyzing the significance of predic-
tors for postoperative length of stay following hip replacement

Table 1 Key terminology
Term Definition

Black box Models are created directly from data by an algorithm, making it difficult for humans to
understand how predictions are made

Classification Characterizes relationships between input variables and categorical outcomes

Diagnostic Identification of a disease state or condition

Inference The process of using a given dataset to determine how an observed output is produced as a
function of input variables

Machine
learning

A subset of artificial intelligence focused on using existing datasets to develop algorithms
capable of prediction

Overfitting An error that results when a model fits the training data too closely, making it difficult to
generalize and apply to future data

Prediction Using existing data to train models that can accurately utilize newmeasurements to select from
a set of outcomes

Prognostic Information relevant to clinical outcomes

Regression Problems that map input variables to continuous outcome variables

Supervised Process of training models to predict relationships between variables using datasets that
include inputs and outputs

Test Data Data used to evaluate the accuracy and efficiency of a trained model

Training Data Data used by the model to learn to make predictions for unknown outcomes

Unsupervised Training algorithms without labeled outputs; using the model to evaluate patterns in a dataset

Underfitting A modeling error where the algorithm cannot fit both the training data and future datasets
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surgery. Predictor variables could include age, medication,
blood clots, infection, and physical therapy. Similar to logistic
regression analyses, the researcher can use linear regression to
calculate t-test values and analyze the associated p-values.
Linear regression differs from logistic regression in that it is
used to predict continuous dependent variables, while logistic
regression is utilized for categorical outcome variables. In
linear regression, there may be correlation between predictor
variables, while logistic regressions should not have correla-
tion within predictors.

Polynomial regression is a form of analysis that models the
relationship between independent and dependent variables as
an nth-degree polynomial. Polynomial regressions are used to
study nonlinear relationships. However, they are considered to

be a type of multiple linear regression due to the estimate
being linear in nature.

Support Vector Machines

SVM is typically employed in classification problems but can be
utilized in regression as well [21]. The objective of SVM is to
find a decision boundary based on the number of input features
that classifies data points. Advantages of the SVM algorithm
include high accuracy and low computational power. The objec-
tive of SVM is to use data points, referred to as support vectors, to
find a hyperplane that classifies the data points. In a binary clas-
sification problem, data points are separated by one hyperplane

Fig. 1 Outlining the process of
designing a machine learning
model
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and the number of hyperplanes increases with the number of
features. The location and orientation of the hyperplane are cho-
sen based on the maximum distance between the data points in
different classes. Figure 2 visualizes the support vector data
points in relation to the hyperplane via a coordinates transforma-
tion. Mehta and Sebro utilized an SVM algorithm to study ancil-
lary data collected from posterior-anterior dual-energy X-ray ab-

sorptiometry (DEXA) studies, creating a tool to identify lumbar
spine (L1–L4) vertebral fractures from futureDEXA studies [13].
The SVM determined training vectors that differentiated patients
with fractures from control patients, andwas found to be accurate
when tested. The SVM with the linear kernel had the best AUC
in the training (AUC= 0.9258) and test (AUC= 0.8963) datasets,
with an accuracy of 91.8% when evaluated in the test dataset.

Table 2 Model types and
example applications Model Example application

Logistic regression Logistic regression is useful for predicting categorical outcomes. In a study evaluating
osteosarcoma survival, predictor variables could include age, tumor size, tumor site,
metastasis, and chemotherapy.

Linear regression Linear regression is appropriate for predicting continuous outcomes, such as the
postoperative length of stay following hip replacement surgery. Predictor variables
could include age, medication, blood clots, infection, and physical therapy.

Support vector
machines

The SVM is commonly used in classification problems, though it can be used for
regression. Mehta and Sebro developed a SVM model to identify lumbar spine
(L1–L4) vertebral fractures using future DEXA studies [13].

Lasso regression Venäläinen et al. created lasso regression models assessing the risk associated with
various factors responsible for treatment failure in total hip arthroplasties [14•].

Ridge regression Ridge regression can be used to study data with high multicollinearity. Zhao et al. used
the ridge regression to predict the durations of various robot-assisted elective surgeries
[15•].

Elastic net
regression

The elastic net regression weights both ridge and lasso regression, and was utilized by
Baca et al. to build predictive algorithms for acute postoperative pain [16].

Decision trees Decision trees can be used for both classification and regression, with an example
application being the prediction of postoperative pain scores.

Random forests Applications of random forests include quantifying risk factors for disease, building
diagnostic tools, and predicting outcomes. Zhong et al. developed a random forest to
predict the length of stay in hip arthroplasty patients [17].

k-nearest neighbors The kNNmodel is used to determine similarities between cases. Dolatabadi et al. used the
kNN to classify gait patterns as healthy or pathological, after using kinetic skeletal
tracking to observe different gait sequences [18].

Neural networks Neural networks can make complicated decisions, with a prominent application being in
the interpretation of radiographs.

Fig. 2 Support vector machines
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Lasso Regression, Ridge Regression, and Elastic
Net

Linear regression is performed using ordinary least squares
(OLS), through which the parameters in a model are estimated
byminimizing the sum of squared residuals [22]. Byminimiz-
ing this cost function, OLS regression produces a linear func-
tion with the least total squared error. Lasso, ridge, and elastic
net regressions are derivatives of simple linear regressions that
attempt to improve the cost function.

Lasso regression operates through shrinkage, which is a tech-
nique that shrinks data towards a central value [23]. Lasso is
performed through L1 regularization, which adds a penalty using
the absolute value of coefficients. Consequently, coefficients can
be eliminated from the model, often resulting in sparse models
that contain few predictive variables. Regularization is an ap-
proach that minimizes high variance, preferring some error in
predictions instead. The technique is appropriate in datasets that
containmulticollinearity, and can be useful in automating aspects
of model design such as eliminating variables of interest. Lasso
regression is suitable for constructing simple and interpretable
models, and is resistant to outliers.

Venäläinen et al. developed lasso regression models using
data for 25,919 total hip arthroplasties (THA) reported to the
Finnish Arthroplasty Registry (FAR), assessing the risk of
common factors responsible for treatment failure [14•]. In do-
ing so, clinical decision-making could be optimized for im-
proved surgical outcomes. The most frequently observed ad-
verse outcomes within 6 months post-operation were revision
procedures due to infection (1.1%), dislocation (0.7%), death
(0.7%), and periprosthetic fracture (0.5%). Lasso regression
was used to identify subsets of predictor variables through the
training dataset, determining risk factors for treatment failure.
The highest performing model predicted death (AUC = 0.84),
with the algorithms for revisions (0.68), fractures (0.65), and
dislocations (0.64) following.

Similarly to lasso, ridge regression is a form of linear re-
gression with reduced complexity that can minimize the risk
of poor generalizability [24]. Ridge regression performs L2
regularization, which incurs a penalty equal to the square of
the coefficients’ magnitudes. As a result, ridge regression
shrinks the coefficients, reducing the complexity of the model
and making it appropriate for datasets with high multicollin-
earity. Unlike lasso models, ridge regression cannot eliminate
variables since it is unable to set coefficient values to absolute
zero. In Figure 3, it can be seen how ordinary regression com-
pares to the lasso and ridge regressions.

A study by Zhao et al. presents an example application of
ridge regression in surgery research, using the technique to
predict durations of robot-assisted surgeries [15•]. A ridge
regression was used to evaluate a sample of 500 randomly
selected elective robotic surgeries in conjunction with several
other ML models: (1) multivariable linear regression, 2) lasso

regression, (3) random forest, (4) boosted regression tree
(BRT), and (5) neural networks. In their study, the boosted
regression tree performed the best, with a root mean square
error (RMSE) of 80.2 (95% CI: 74.0–86.4). The RMSE mea-
sures the standard deviations of residuals, with lower values
indicating greater accuracy. In the study, the ridge regression
model yielded a RMSE of 82.4 (95% CI: 73.3–91.5), with the
baseline model having a value of 100.4 (CI: 90.5–110.3).
Boosted regression trees are advantageous in managing miss-
ing data, are resistant to outliers, and can analyze complex
nonlinear relationships. These factors may have contributed
to the greater performance observed in the BRT compared
with other models. The study performed is instructional in
outlining the process of testing many different models for
the highest accuracy in particular problems.

Due to the similarities between the two techniques, prob-
lems can be approached using an elastic net (EN) regression,
which is a weighted combination of ridge and lasso regression
[25]. All three regression models can identify variables with
high predictive power and determine directional contributions
through the magnitude and signs of coefficients. A study per-
formed by Baca et al. developing predictive algorithms for
acute pain after surgery is instructive [16]. In their project,
authors collected data from a multinational registry containing
detailed pharmacological information. The predictive model
included 1008 patients that underwent lumbar surgery, with
EN being selected due to its ability to manage multicollinear-
ity. Procedures were characterized as (1) decompressions of
the spinal canal, (2) disk surgery, (3) spinal fusion, and (4)
other surgeries. Once validated, the model was significant (P
= 8.9 E−15) and suggested relevant parameters for studying
postoperative pain, including biological and psychological
factors. However, the model only accounted for a small por-
tion of the variance observed, indicating the presence of pre-
dictors not included in the study.

Decision Trees and Random Forests

Decision trees are a non-parametric learning method utilized
in both classification and regression [26]. The objective of
DTs is to predict the value of a target outcome variable using
decision rules derived from features. Decision trees are advan-
tageous because they require minimal data manipulation, can
utilize categorical and quantitative data, can be validated using
statistical tests, and are explainable, and results can be simply
understood. Disadvantages include the potential for poorly
generalizing data, instability of the model if data is slightly
altered, and an inability to extrapolate from existing trends.
Decision trees are best utilized in datasets with many features
because we can then analyze the relative importance of each
feature after generating the model.
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Random forest models are used for both classification and
regression problems [27]. A random forest utilizes ensemble
learning, which combines classifiers to solve complicated prob-
lems. Random forest algorithms contain many decision trees,
being generated using bootstrap aggregating. Bootstrapping is
an ensemble aggregation tool that increases the accuracy of the
model. The random forest algorithm takes the average of many
decision trees’ outputs and can be made more precise by increas-
ing the number of trees. As a consequence of utilizing many
DTs, a random forest algorithm reduces the likelihood for poor
generalizability. Random forest models can effectively manage
missing data, providing a practical benefit for analyses. Due to
their complexity, random forests typically require greater re-
sources and time to create than many other modeling techniques.
Since they are composed of decision trees, random forests are
unable to effectively extrapolate from trends. The random forest
model can be visualized in Figure 4 as an aggregate measure of
many decision trees.

Applications of random forests in orthopaedics include
quantifying risk factors for disorders, creating diagnostic
tools, and predicting outcomes. Merali et al. utilized ML tech-
niques to predict postoperative outcomes in patients with de-
generative cervical myelopathy, with a random forest algo-
rithm being most accurate [28••]. When evaluated, the model
had a classification accuracy of 77%, sensitivity of 78%, and
AUC of 0.70. Zhong et al. similarly used ML modeling,
predicting length of stay (LOS) in hip arthroplasty patients
by creating a logistic regression, artificial neural networks,
and random forest [17]. Predictive factors included anesthesia
type, age, ethnicity, body mass index, sodium levels, white
blood cells, and alkaline phosphatase. The random forest
model was most accurate in their study, with an AUC of
0.804 and accuracy at 81%. The logistic regression had an
AUC of 0.715 and accuracy of 65%, and the neural networks
yielded an AUC of 0.762 and accuracy at 73%. All models

had acceptable quality, being able to effectively predict LOS
based on the included clinical characteristics.

k-Nearest Neighbors

Nearest neighbor analyses are used to determine similarities
between cases [29]. The kNN algorithm assumes that similar
data points exist near each other. There are a few ways to
calculate distance between data points, but Euclidean distance
is the most common option. The first objective of developing
a kNN model is to choose the optimal k-value that reduces the
error rate while maintaining the algorithm’s ability to accu-
rately make predictions. Generally, a k-value closer to 1 is less
accurate because it does not suppress noise, while a larger k-
value makes classification boundaries less distinct. An exam-
ple use of kNN can be found in a project conducted by
Dolatabadi et al. to classify gait patterns as healthy or patho-
logical [18]. The study used kinetic skeletal tracking to ob-
serve different gait sequences. Each unique sequence was
assigned a class label. The kNN model was then trained to
identify whether each gait sequence showed a healthy pattern.

Neural Networks

Neural networks are inspired by human intelligence, intending
to mimic the signaling patterns of biological neurons with
their numerous interconnections [30]. They form the basis
for deep learning, a sub-discipline within ML. The goal of
deep learning is to ultimately create a computer simulation
capable of recognizing patterns, learning objects and ideas,
and making complicated decisions replicating human intelli-
gence. The main advantage of a neural network is that they do
not need to be programmed explicitly and they are able to

Fig. 3 Ordinary vs. ridge and
lasso regressions
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accurately identify an output of interest by adjusting relation-
ships between their interconnected neurons.

The computational units of neural networks are referred to
as nodes. Each node contains an individual weight and thresh-
old. When the threshold barrier for a node is passed, the node
is activated, sending a signal to the next layer in the network.
Any neural network contains an input layer, one or multiple
hidden layers, and an output layer. The input layer is com-
posed of the initial data introduced to the model for analysis,
and the output is where results are produced. Predictions are
made in the hidden layers, where input data is passed through
a series of calculations. The number of hidden layers can
depend on the type of network and complexity of the problem.
Figure 5 details the neural network model, outlining the input,
hidden, and output layers by depicting the interactions be-
tween individual nodes.

The most common neural networks are feedforward, being
unidirectional towards the output. However, models can be
trained to move backwards from output to input, which is a tech-
nique known as backpropagation. In doing so, the error in indi-
vidual neurons can be identified for adjustment. Convolutional
neural networks (CNNs) are a type of feedforward neural network
that can be leveraged for computer vision, being able to classify
images through pattern recognition [31]. Feedforward networks

are appropriate for modeling relationships between predictor and
outcomes variables. Advantages of neural networks include the
ability to model nonlinear relationships and identify patterns in
complicated data. Disadvantages include the need for large
datasets and inability to provide explanations for calculations.

There are many applications of neural networks in or-
thopaedics, with the most prominent being in the interpre-
tation of radiographs. Lindsey et al. developed a deep neu-
ral network to assist clinicians in detecting fractures in
radiographs, providing an instructive example [32••]. The
model was trained using 135,409 radiographs annotated by
18 senior orthopaedic surgeons. Radiographs were most
commonly posterior-anterior or lateral wrist views (n =
34,990), with the remaining 100,855 images being taken
of the shoulder, elbow, foot, ankle, knee, femur, tibia, pel-
vis, hip, humerus, and spine. Two test datasets were creat-
ed for model development containing only randomly sam-
pled wrist radiographs, with the first consisting of 3,500
and the second 1,400 images. The remaining images were
used for model development, with the 100,855 images not
taken from the wrist being used for bootstrapping in the
training process. The 31,490 remaining wrist radiographs
were used as a training dataset. Once the model was devel-
oped, a controlled experiment was performed with

Fig. 4 Random forest models
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emergency medicine clinicians to determine the effective-
ness of the diagnostic tool. When unaided by the model,
the average sensitivity of a clinician was 80.8% (95% CI:
76.7–84.1%). When aided, the sensitivity increased to
91.5% (CI: 89.3–92.9%). Specificity without the model
was 87.5% (CI: 85.3–89.5%), rising to 93.9% (CI: 92.9–
94.9%) when aided. On average, the misinterpretation rate
for clinicians was reduced by 47% (CI: 37.4–53.9%).
Diagnostic accuracy was significantly improved when
aided by the model, a finding that is reflective of the ability
for deep learning to meaningfully transform patient care.

Data Collection and Handling

After identifying the appropriate model to be used for the
clinical question that is proposed, the next step is data han-
dling. Here, it is necessary to establish inclusion and exclusion
criteria and subsequently select patients who qualify for the
study. These criteria can include patients based on type of
diagnosis, type of procedure, or follow-up time after surgery.
Examples of exclusion criteria might include age, gender,
treatment history, or stage of disease. Defining criteria in
ML studies ensures more reliable and reproducible results.

Once the data is obtained, the next important step is to
create a workable dataset. Data cleaning is the process of
fixing or removing incorrectly formatted, duplicate, or miss-
ing data within a dataset. This step may include standardizing
quantitative variables and numerically encoding categorical
variables. In addition, handling missing data is necessary be-
cause several ML algorithms are unable to process datasets
with missing data. One common practice to solve this issue is
to impute missing data, or replace missing data with substitut-
ed values. Alternatively, observations containing any missing
data can be entirely removed from the dataset.

Model Development

After choosing the model, the next step in producing an ML
algorithm is to select variables. ML models consist of a pri-
mary outcome variable and multiple predictive variables. The
outcome variable is selected based on the hypothesis. One
way to approach predictive variable selection is through sta-
tistical tests and analyses. For instance, a linear or logistic
regression can be performed to evaluate statistical significance
of t-values for continuous variables. Categorical variables can
be analyzed using a chi-square test. Typically, statistical sig-
nificance is defined as p < 0.05.

Alternatively, feature selection can be determined using
Shapley additive explanation (SHAP) values, which quantify
variable importance and variable interaction effects [33].
SHAP values are calculated by connecting distributions of
the total outcome to individual features. By quantifying and
ranking individual features by importance, users can select
highly ranked variables to include in the model. In subsequent
iterations of the model, features can be added or removed to
improve model accuracy on the test dataset. Analyses related
to model development can be executed using software such as
R, Python, or MatLab.

Model Training and Testing

Developing an ML model generally involves dividing a
dataset into both training and test/validation subsets [34].
Using the training data, the learning algorithm will search
for patterns, mapping the data to create a ML model that
predicts the outcome of interest when it is unknown. Test data
provides a subset that allows the trained model to be evalu-
ated. Models are tested using only independent variables from
“testing sets,”with predictions made being compared with the
known outcomes. Parameters of the model can then be tuned

Fig. 5 Neural networks
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to improve model accuracy. Test data should be large enough
to yield meaningful results, and be representative of the over-
all dataset. Typically, test data includes 20–30% of the overall
dataset, with the remainder being used as training data.
Importantly, there should never be any overlap within the
training and test data, since this will result in an inflated accu-
racy when testing the ML model.

The effectiveness of models is often measured using accu-
racy, precision, and recall. Accuracy is a measurement for
how much of the data was labeled correctly, and can be deter-
mined via the ratio of correctly assigned outcomes over total
outcomes evaluated. Precision is used to quantify how often
outcomes marked as positive are truly positive. It is calculated
by dividing the number of correctly predicted positives by all
outcomes predicted to be positive. High precision reflects a
low false positive rate. The difference between precision and
recall is subtle, with the latter measuring the percentage of true
positives that were identified by the model. Recall is derived
from the ratio of positives correctly predicted by the model
over the total number of true positives in the sample. High
recall values represent a low false negative rate. The F1 score
can weigh both precision and recall, allowing for a score that
considers both false positives and false negatives. It is most
appropriate to evaluate a model using accuracy when false
positives and false negatives have similar effects. If either
has a more dominant effect, precision and recall should be
utilized. The equations for calculating accuracy, precision,
and recall are outlined in Figure 6. The ROC curve (receiver
operating characteristic curve) measures the performance of a
classification algorithm by plotting the true and false positive
rates at all decision thresholds. By measuring the area under
the curve (AUC), one can determine an aggregate measure of
model performance at varying thresholds. AUC values range
from 0 to 1. A model that scores at 0 would produce only
incorrect predictions, while a model measuring at 1 would
only produce correct predictions. An AUC value of 0.7 is
commonly used as a clinically discriminative threshold.

The process of training and evaluatingmodels is referred to as
cross-validation, with common errors including “overfitting” and

“underfitting” [35]. Overfitting occurs when a model is too com-
plex, making it poorly generalizable to new data. When a model
is too simple, underfitting is a potential concern, as there may be
poor goodness-of-fit and precision through high model bias.
Through the process of cross-validation after training models,
the presence of these errors can be evaluated.

Model Interpretation

Though machine learning can be a powerful tool to make
predictions, it is often difficult to understand the explanations
behind the forecast. ML calculations can be incredibly com-
plex, and understanding why an algorithm arrives at its results,
known as explainability, can be impossible [36]. However,
interpretability, which is slightly distinct from explainability,
is a method of analyzing models that can be achieved.
Interpretability refers to the process of determining how a
ML model reached its conclusions. It is important for
debugging algorithms for bias, ensuring reliability, directing
the collection of future data, understanding future applications
of the model, informing decision-making, and establishing
trust in the model.

The simplest way of maintaining interpretability is only
utilizing algorithms that create interpretable models, such
as linear regression, logistic regression, and decision trees.
Interpretable models have different properties, which are
important in determining which to utilize. Linear models
create linear associations between the target and predictors.
Models with monotonicity have unidirectional relation-
ships between predictors and outcomes (i.e., increases in
individual features result in only increases or decreases in
the outcome). Monotonicity can make understanding rela-
tionships between predictors and outcomes simple. Certain
models are able to account for interactions between predic-
tors when determining outcomes; however, if these inter-
actions are too complex, interpretability may be more dif-
ficult to achieve.

Fig. 6 Accuracy, precision, and
recall equations
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Other types of ML algorithms are much more complicated,
such as in deep learning using neural networks. Individual
predictions can involve millions of operations in complex
neural networks, making it impossible to track the mapping
utilized by the model. Consequently, more complex interpre-
tation methods must be utilized to understand the behavior of
neural networks.

Natural Language Processing

Natural language processing (NLP) is a discipline con-
cerned with developing AI algorithms capable of under-
standing text and spoken words [37]. Building AI models
able to interpret human language is essential for the large-
scale analysis of the electronic medical record (EMR).
NLP is capable of recognizing both syntax and semantics
by separating human language into segments, allowing
the interactions between words to be understood. Using
NLP, the process of acquiring structured data from the
EMR can be automated, being conducted at a far greater
rate than conventional manual chart reviews. If NLP al-
gorithms can be appropriately leveraged to acquire data,
they may eliminate the need for manual extraction, mak-
ing research and surveillance endeavors more efficient.
NLP may also be utilized to create medical records more
efficiently, based on factors including speech and prior
clinical notes.

Conclusion

Machine learning presents the future of medicine, having a
powerful predictive capability unmatched by conventional re-
search methods. In orthopaedics, ML modeling can be lever-
aged to develop diagnostic and prognostic tools, predict clin-
ical outcomes, and create clinical decision support systems.
Moving forwards, it will be increasingly important to create a
consistent and critical understanding of the design of AI stud-
ies. This will lead to familiarity with AI studies and trust in the
interpretation of their findings.
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