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Abstract
Purpose of Review The emergence of cell-based therapies has brought much excitement to the field of orthopedic sports
medicine. However, the significant inconsistency of reporting has led to the poor understanding, misinformation, and false
expectations for patients and clinicians alike. In this paper, we aim to clarify the available cell-therapy treatments and summarize
some of the latest research.
Recent Findings Although this technology is in early development, our understanding of cell biology has grown significantly
over the last decade. Furthermore, it is becoming evident that tissue specificity may play a significant role in determining the
effectiveness and overall clinical benefit attributed to cell therapy.
Summary Cell therapy is an emerging field with tremendous potential for clinically significant benefit. However, in its current
state, clinical application of these treatments is limited by federal regulations, variability in formulation, and limited understand-
ing of the biologic activity of various cell formulations.
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Introduction

Injuries to musculoskeletal connective tissues, including ten-
don, ligament, meniscus, articular cartilage, and muscle, are
increasingly common in active individuals and are becoming
more frequent due to the combination of an aging population
and the desire of older individuals to remain highly active [1].
These tissues have intrinsically poor healing potential follow-
ing injury. Furthermore, they undergo age-related degenera-
tive changes that compromises their function and capacity for
healing and regeneration [2, 3].When coupled with the lack of
currently available effective therapies, it is clear that there is
tremendous unmet need in the management of many sports
medicine conditions. All together, the growing number of

people suffering from musculoskeletal disease and the chal-
lenges in treating these patients serves as a powerful driving
force for clinicians to pursue new therapies and management
strategies.

Over the last several decades, regenerative medicine has
emerged as a promising field with the potential to provide
clinically relevant solutions for debilitating musculoskeletal
disease. Regenerative medicine aims to harness the capacity
to restore native tissue function and structure, potentially fa-
cilitating superior outcomes and decreased patient morbidity.
The field of “regenerative medicine” encompasses several ap-
proaches including cell therapy, biologically active small mol-
ecules and cytokines, gene therapy applications, scaffold ma-
terials, and blood-derived products. However, the cell sits at
the center of any of these approaches, since no healing or
tissue regeneration can occur without cells. Advancements
in diverse fields including developmental biology, molecular
genetics, physiology, and computational biology have greatly
improved our understanding of the complex cellular systems
and their potential application in clinical medicine.

In addition to the need for improved understanding of stem
cell biology, there is a critical need to further define the un-
derlying cellular and molecular mechanisms of diverse tissue
pathology in the patients we are treating. For example, the
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tissue changes present in the setting of chronic, age-related
degeneration will differ from that following acute, traumatic
injury. The effects of age, gender, co-existing medical co-
morbidities such as diabetes, and smoking need to be defined.
The critically important role of genetic and epigenetic factors
needs to be determined. Finally, recent studies are making
clear that various immune cell subtypes play an important role
in the regulation and biologic activity of stem/progenitor cells.

Regulatory Environment

The United States Food and Drug Administration (FDA) re-
tains regulatory control over medical, pharmaceutical, and bi-
ological products. This encompasses all human cell- and
tissue-based products (HCT/P). In Title 21, Part 1271 of the
Code of Federal Regulations (CFR), the FDA outlines its cov-
erage of stem cells as part of HCT/P [4••]. Further guidance of
the clinical use for HCT/P has been outlined by the Public
Health Service Act (PHSA) and the Food and Drug
Cosmetic Act (FDCA) [4••, 5]. What was initially expected
to be a simple area of regulation resulted in a complex field
with great potential for new therapeutic agents and ap-
proaches. In 2001, the FDA promulgated a plan to promote
the safe use of HCT/Ps in human patients. This was followed
in 2005 by the development of a 3-tiered approach to regulate
the risks associated with the use HCT/Ps. Under section 361
of the PHSA, category 1 products are considered to be lower-
risk products and do not require guidance under HCT/P laws
[4••, 6]. Category 2 products are also considered lower-risk
products; however, they must meet the following criteria: [1]
minimal manipulation, [2] homologous use, [3] no combina-
tion products, and [4] cannot act systemically and cannot be
dependent on the metabolic activity of living cells [4••].
Category 3 products define HCT/Ps considered to be higher-
risk and do not meet the criteria outlined under category 2.
Category 3 products are regulated under section 351 of PHSA,
requiring clinical evaluation and investigational new drug
(IND) approval by the FDA; this allows for more extensive
screening to ensure products approved for clinical use follow
stringent FDA guidelines.

Stem Cells

The term “stem cell” first appeared in literature in 1868 by the
German scientist Ernest Haeckel when he theorized that all
multicellular organisms originated from unicellular ancestors
he called “stammzelle” [7]. Although his definition of a stem
cell may have been broad, the principle idea that one cell can
produce distinct varieties of cells and tissues sparked much
interest. However, it was not until a century later that we
began to understand what Haeckel meant by “stammzelle”.

In a series of papers, Owen and Friedenstein described how
single precursor cells isolated from bone surfaces were capa-
ble of differentiation into various cell phenotypes, leading to
what they called a stromal fibroblastic system [8–10]. These
studies established that stromal tissue originated from a small
population of stem and progenitor cells, whose ultimate fate
could be determined by the microenvironment in which they
reside. Although the definition of a “stem cell” is constantly
evolving, at the most basic level a stem cell must [1] have the
ability for self-renewal while maintaining an undifferentiated
state and [2] possess the capacity for differentiation into ma-
ture, tissue-specific cells of various phenotypes [11].

Stem cells can be stratified to two major classes—
embryonic and adult. Embryonic stem cells have the capacity
to mature into any cell line in the body. These cells possess the
ultimate “stem” capacity with no restrictions as to how they
may differentiate. This unique quality also contributes to the
challenges in controlling their growth and differentiation [12].
Because these cells are derived from human embryos, there
are important ethical concerns that have limited the use em-
bryonic stem cells for clinical application. Adult stem cells can
differentiate into numerous cell lines; however, there are sev-
eral key differences. Adult stem cells are multipotent, meaning
they have a more limited capacity to differentiate into cells of
similar origin. Adult stem cells can be harvested from readily
available sources such as bone marrow, adipose tissue,
synovium, or umbilical vein, making them an ideal candidate
for cell therapy [3]. In the following paper, we will discuss
basic concepts related to cell therapy, their potential for use by
sports medicine clinicians, and the current limitations associ-
ated with these treatment strategies.

Mesenchymal Stem Cells

In his 1991 paper titled “Mesenchymal Stem Cell”, Arnold
Caplan described a population of plastic-adherent progeny
cells, capable of bone and cartilage formation, repair, and
turnover. He called these cells mesenchymal stem cells, refer-
ring to a single cell with the capability to differentiate and
maintain numerous phenotypic lineages including bone, car-
tilage, tendon, and ligament [13]. However, his definition has
since been challenged, even by himself [14]. In a recent paper,
Caplan explored the numerous advancements in MSC re-
search and elaborated how putative criteria and isolation
methods for mesenchymal stem cells generates a heteroge-
neous population of multipotent cells [14]. Furthermore, he
explains how the in vivo activity of MSCs to drive tissue
healing and regeneration may be due to secretion of signaling
molecules to the resident host cells, leading to the suggestion
that the acronym “MSC” may represent medicinal signaling
cells, as a more accurate description of their function [14, 15].

Most authors in this field use the criteria established by the
International Society for Cellular Therapy (ISCT) when
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discussing an “MSC” [11]. However, it should be noted that
the original ISCT criteria defined mesenchymal stromal cells
[11, 16]. These criteria defined stromal cells based on plastic
adherence in tissue culture, a specific cell surface marker pro-
file by flow cytometry, and ability to differentiate into several
cell phenotypes (bone, cartilage, and adipose). These criteria
were defined for cultured cells, which differ from the uncul-
tured cell populations used in current “point of care” clinical
applications. More importantly, the ISCT criteria are now felt
to be outdated and not useful, as some of the cell markers label
non-stem populations. Despite this, in this paper, we will use
“MSC” in reference to cells defined by ISCT criteria for mes-
enchymal stromal cells given the ubiquity of this definition
throughout the current literature.

MSCs are the most studied cell type for tissue regener-
ation in MSK injuries. These cells demonstrate tremendous
potential to regenerate tissue by directly replacing dam-
aged cells, mitigating inflammation, providing important
“signals” to resident host cells in a paracrine fashion, and
promoting vascular ingrowth [14, 17]. Additionally, MSCs
are considered to be evasive from the immune system; as
they have relatively low expression of HLA class 1 surface
markers permitting potential use for allogeneic therapy
[18]. These cells are defined as multipotent stromal stem
cells with the capacity to differentiate into cells of the me-
soderm—osteoblast, adipocytes, and chondrocyte. The
widely accepted criteria for defining mesenchymal stromal
cells include [1] adherence to plastic in culture, [2] expres-
sion of cell surface markers CD105, CD73, and CD90, and
lack of expression of CD45, CD34, CD14 or CD11b,
CD79alpha or CD19, and HLA-DR surface molecules
[11]. Along with the multi-lineage differentiation capacity,
MSCs have been isolated from various tissues, providing
significant advantages for cell source and accessibility. The
following paragraphs will cover MSC source and
preparations.

& Bone marrow-derivedMSC (bmMSC) are harvested from
bone marrow aspirate. This cell source is the most studied
MSC for therapeutic use. As with other stromal cell pop-
ulations, the total number isolated from a single bone mar-
row harvest is very small and considered to be below the
therapeutic threshold. For this reason, the development of
potency assays has been a critical step in creating effective
therapies [18]. Although current regulatory guidelines
prohibit the in vitro expansion of harvested cells for clin-
ical applications, researchers have developed novel tech-
niques to increase cell quantity while maintaining the high
level of potency. One method involves a modified cryo-
preservation technique to preserve cell viability and over-
all ability to secrete growth factors, providing clinicians
the opportunity to perform multiple harvests to reach a
therapeutic cell concentration [19, 20].

& Adipose-derived MSCs (aMSC) have emerged as a viable
source for cell isolation. One significant advantage to this
cell source is the ease of accessibility. Adipose-derived
MSCs can be isolated from culture of the stromal vascular
fraction preparation derived from subcutaneous fat
through liposuction or lipoaspiration [21, 22].

& Synovial derivedMSC (snMSC) have gained recent atten-
tion; these cells are isolated from samples of synovium
and related nearby tissues, making this cell population a
challenging source for autologous transplant. Prior studies
demonstrate an increased number of snMSCs in the joint
after injury, suggesting an intrinsic healing capacity, fur-
ther supporting to their therapeutic potential [23].

& Birth-tissue-derivedMSC (btMSC) are harvested from the
amnion, placenta, and umbilical cord blood. In vitro stud-
ies have revealed a greater capacity for expansion, partic-
ularly with placenta-derived MSCs. However, further re-
search is necessary to understand their full differentiation
potential [24, 25].

Endothelial Progenitor Cells-Vascular Stem Cell

The vascular niche has long been known to play a critical role
in wound healing and tissue regeneration. Recent studies sug-
gest that the vascular niche functions to maintain the tissue
microenvironment and homeostasis. Building off this princi-
ple, endothelial progenitor cells (EPC) have emerged as a
viable source to augment neovascularization and healing
[26, 27]. EPCs can be characterized as +CD34 or +CD133,
and endothelial markers, +CD31, +Flk-1/kinase insert domain
receptor (KDR)/VEGF receptor2 (VEGFR2), +vascular
endothelial- (VE-) cadherin, and +Tie2. However, there re-
mains some controversy over what defines a bona fide EPC
[28, 29]. One unique quality of EPCs is that they can routinely
be found circulating in the blood, although basic studies sug-
gest that the true source of these circulating cells is from bone
marrow. Further studies have revealed that tissue-specific en-
dothelial progenitor cells may also provide proliferative and
regenerative signals to the tissue [30]. The use of EPCs for
tissue regeneration has primarily been focused on tissue ische-
mia models, particularly chronic limb ischemia [31, 32].
Additionally, EPCs are being studied in bone fracture healing
as well as ligament reconstruction and healing [26, 33, 34].

Tissue-Specific Endothelial Cells/HUVECs

It is established that the vascular niche harbors a population of
cells which produce various cytokines that regulate and con-
trol the intrinsic progenitor cells in a tissue-specific manner.
The substances produced by these cells are termed “angiocrine
factors” and are tissue-specific [35••]. These cells can be iso-
lated from endothelium and represent an important research
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tool to study the role of the intrinsic stem cell niche in tissue
repair. While these cells lack stem-like properties, they pos-
sess the unique ability to augment their microenvironment and
ultimately promote healing and regeneration [36].

Human umbilical vein endothelial cells (HUVECs) were
first isolated and characterized by Jaffe et al. in the 1970s
[37]. However, their therapeutic potential in soft tissue regen-
eration was not realized until more recently. A study by Yuan
et al. demonstrated a dose-dependent migratory effect on bo-
vine meniscal fibrochondrocytes (bMFC) cultured in the pres-
ence of HUVECs [38]. Similarly, the use of HUVECs has
gained much interest in in vitro tissue regeneration as a means
to enhance capillary networks allowing for the growth and
development of larger tissue constructs [39].

Intrinsic Progenitor Cells

An intrinsic progenitor cell describes a unique population of
cells specific to the tissue in which they reside. These cells
retain the capability to terminally differentiate into tissue-
specific cells while maintaining a state of self-renewal. First
described in the tendon by Bi et al., it is believed that these
cells possess the innate ability to proliferate, repair, and regen-
erate tendon tissue [40] (Bi 2007). Since then, the identifica-
tion of tissue-specific progenitor cells has expanded to numer-
ous tissues including ligament, meniscus, and cartilage [41•,
42, 43, 44, 45, 46]. Although these cells possess great poten-
tial for therapeutic application, autologous harvesting of cells
yields sub-therapeutic concentrations. Furthermore, in their
natural state, these cells remain quiescent therefore requiring
biological, mechanical, and/or spatiotemporal cues to initiate
differentiation and repair of the tissue.

Induced Pluripotent Stem Cells/Embryonic Stem Cell

Embryonic stem cells are derived from the inner cell mass of
the blastocyst in the developing embryo and these cells can
differentiate into essentially any cell type. Due to pervasive
ethical considerations, embryonic-derived stem cells are not
readily available or practical for research or therapeutic appli-
cations. Furthermore, this class of cells possesses a teratogenic
potential, with studies highlighting the dangers of injecting
pluripotent cells in the undifferentiated state [47, 48]. In con-
trast, induced pluripotent stem cells (iPSC) are generated from
somatic cells and thus do not have associated ethical concerns.
iPSCs are produced by the transient over-expression of four
specific transcription factors in differentiated “adult” cells,
such as cells derived from skin or blood. The challenge with
iPSCs lies in establishing GMP-grade manufacturing process-
es to produce cells at clinical scale (i.e., adequate quantities for
clinical use). A further risk related to iPSCs is the potential for
oncogenic mutations to occur during culture expansion of
iPSCs [49]. Rigorous FDA regulations have restricted the

use of embryonic stem cells and iPSCs to FDA-approved
trials. Currently, there are no approved therapeutic indications
for the use of induced pluripotent stem cells in sports
medicine.

Biologics–PRP/BMAC/APS/ACS

Platelet-Rich Plasma—PRP

The classic definition of platelet-rich plasma (PRP) describes
a preparation of plasma with a concentration of platelets 5
times greater than baseline, or greater than 1 million platelets
per milliliter [50, 51••]. The applications for PRP have ex-
panded significantly over the last decade. Particularly, the
use of PRP in sports medicine applications has grown to en-
compass many common pathologies [52]. Although the pre-
cise mechanism of action is incompletely defined, the biologic
activity is attributed to the abundance of cytokines and growth
factors possessed within platelet α-granules and dense gran-
ules. PRP supports cell migration and proliferation, but also
promotes an immunomodulatory function, attenuating pain
and inflammation. Some early data support a positive effect
of PRP in treating symptoms of knee osteoarthritis and over-
use tendinopathy [53•]. However, clinical studies evaluating
PRP demonstrate tremendous variability in outcomes, leading
clinicians to question the true benefits of this treatment. A
fundamental challenge in the evaluation of PRP is the wide
variability in PRP formulations due to lack of standardization
in sample preparation protocols. Important factors to consider
when deciding to use PRP include platelet concentration, leu-
kocyte content, timing of platelet activation, fibrin content,
and numerous other plasma proteins beyond those derived
from platelet granules. Furthermore, patient demographics
(age, sex) and medical comorbidities likely have important
effects on the biologic activity of autologous blood products
such as PRP. Furthermore, most third-party insurance carriers
do not pay for the use of PRP due to the lack of robust clinical
evidence, placing a large financial burden on patients receiv-
ing this treatment. While PRP is still widely used, further
high-quality studies will be necessary to validate its efficacy.

Autologous Conditioned Serum and Autologous
Protein Solution—ACS and APS

Further modulation of autologous blood products has resulted
in the development of autologous protein solution (APS) and
autologous conditioned serum (ACS). APS, like PRP, is proc-
essed by centrifugation and filtration of fresh whole blood
samples. However, the production of APS introduces a second
centrifugation step using modified devices containing poly-
acrylamide beads [54], further concentrating the protein com-
ponents in whole blood while also retainingmononuclear cells
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[55]. ACS production involves the incubation of whole blood
samples in treated syringes for up to 24 h at 37 °C [56]. This
process stimulates mononuclear cells to produce interleukin 1-
receptor antagonist (IL-1RA), as well as other anti-
inflammatory molecules [57]. Furthermore, the levels of pro-
inflammatory cytokines, IL-1 and TNF-α, remain unchanged.
The theoretical basis for the use of IL-1RA-rich products was
established by studies performed in the early 1990s demon-
strating how macrophages and monocytes serve as a robust
source of IL-1RA, an inhibitor of the potent inflammatory
mediator IL-1 [58, 59]. Although the use of autologous blood
products sounds appealing in theory, there is need for more
RCT and level 1 evidence to support the use of these formu-
lations as effective therapeutics.

Alpha-2-Macroglobulin

Alpha-2-macroglobulin (A2M) has emerged as a potential
targeted therapy for mitigating the degenerative environment
common in many musculoskeletal diseases. Using large-scale
screening with Western blotting and mass spectrometry, A2M
was identified as major inhibitor of endogenous serum matrix
metalloproteases—known drivers of inflammation and degen-
eration of connective tissues [60].

Bone Marrow Aspirate—BMA

Similar to PRP, the use of bone marrow aspirate (BMA)
has grown significantly over the past decade. As the name
suggests, BMA is harvested directly from bone marrow of
the patient and centrifuged to create separate cell layers,
effectively concentrating the cellular components of the
aspirate. This process allows for concentration of hemato-
poietic stem cells (HSC), mesenchymal stem cells (MSC),
platelets, and other mononucleated cells (WBC).
Therefore, BMA allows for delivery of progenitor cells
while adhering to the criteria of minimal manipulation
set by the FDA. Although it is common practice for in-
dustry to label BMA as “stem cell” therapy, the preva-
lence of stem cells by formal criteria is approximately
0.005–0.01% of total cells [61, 62••, 63], propagating
the poor understanding, misinformation, and false expec-
tations that is pervasive in this field. BMA yields have
shown to vary significantly based on source of harvest
and inter-individual variability. It is known that aspirate
from the iliac crest yields a higher concentration of pro-
genitor cells when compared to other bones with
hematopoetic marrow, such as femur and distal tibia.
Furthermore, a study by Davies et al. demonstrated that
this variability was not affected by patient age or other
common demographic factors [64–66]. The use of BMA
as a source of tissue augmentation has shown some prom-
ise in preclinical and clinical trials, despite lack of

detailed understanding of the underlying biological pro-
cesses. It is essential for clinicians to become accurately
informed about the potential benefits and current limita-
tions of cell therapy, and to understand that much of this
remains unproven.

Cell Therapy for Soft Tissue Injury

ACL/MCL

Ligament repair and reconstruction are among the most com-
mon sports medicine procedures. Biologic approaches have
been explored for augmentation of intrinsic ligament healing
(i.e., knee medial collateral ligament) and for improved graft
healing in ACL reconstruction. There are currently no ap-
proved stem cell therapies for ACL or MCL reconstruction
in the USA. Bone marrow aspirate and PRP have been studied
in preclinical and clinical trials, with some studies showing an
added benefit to using these therapies. However, there is cur-
rently no consensus on whether or not PRP or BMA improve
integration of a tendon graft in a bone tunnel, improve failure
rates, and the overall clinical significance. To date, there is a
paucity of rigorous data to support a role for cell therapy to
improve mid-substance ligament healing, to accelerate ACL
graft healing in a bone tunnel, or to improve maturation and
remodeling of an ACL graft [67–69]. While the potential for
cell therapy is significant, there remains a significant need for
high-quality studies supporting the use of these therapies.

Meniscus

Meniscus injury is one of the most common injuries seen by
clinicians. Given the important role of the meniscus in carti-
lage contact mechanics, preservation of the meniscus with
repair when possible is favored over meniscectomy.
However, meniscus healing is limited by several factors, in-
cluding relatively poor vascularity, hypocellularity,
fibrinolysates in the injured joint that prevent formation of
an initial fibrin clot, and the complex mechanical loads on
the healing meniscus.

Although cell therapy for meniscus repair has not been
approved for use in the USA, there is much promise for the
future. The application of bmMSC has been studied as a via-
ble treatment strategy [70], and it has been established that the
in vitro addition of MSC to electrospun scaffolds stimulates
the production of glycosaminoglycan’s (GAGs) and collagen-
rich extra-cellular matrix consistent with the composition of
native fibrocartilage tissue present in the central zone of the
meniscus [71]. In a recent study, Piontek et al. describe a
novel, all-inside meniscal repair technique using acellular col-
lagen scaffold in conjunction with bone marrow aspirate to
wrap meniscal lesions in patients who would otherwise
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receive partial meniscectomy. At 2-year follow-up, 46 of 50
patients show statistically significant improvement on clinical
assessment. Furthermore, MR imaging revealed evidence of
healing in 38 of the 50 operated menisci, suggesting a novel
and safe technique for meniscus repair [72•].

Synovial-derived cells appear to have significant potential
to improvemeniscus healing and regeneration. Several studies
have reported improved meniscus healing with the use of
snMSC [73•, 74]. In a series of studies, Sekiya et al. reported
a significant increase in the presence of synovial-derived stem
cells in the post-traumatic joint space, suggesting that these
cells may play a significant role in meniscal and ligamentous
healing [23]. Additionally, the use of HUVECs as paracrine
signaling mediators stimulated enhanced migration of bovine
meniscal fibrochondrocytes (bMFC) in vitro. Further evalua-
tion revealed a paracrine effect, increasing expression of
PDGF/R and VEGF/R through the function of endothelin-1
leading to improved integrative repair of explanted menisci
[38]. In addition to intra-articular injection of stem cells,
tissue-engineered scaffolds have emerged as a vehicle for de-
livery. Implanted scaffolds serve to provide structurally sig-
nificant microarchitecture, as well as the necessary molecular
cues to enhance and promote tissue regeneration.
Furthermore, these scaffolds can be molded to a unique shape
and size on an individual basis. Taking it a step further, the use
of biologic and cell therapy in combination with scaffolds has
revealed promising outcomes in pre-clinical studies.
However, further investigation is necessary before clinical tri-
als can be explored.

Tendinopathy

Tendinopathy is a common and debilitating disease prevalent
among athletes and the general population. The underlying
pathophysiology is due to cumulative microscopic matrix
damage, with associated molecular inflammation and dysreg-
ulated activity of matrix metalloproteinases. The resultant
clinical manifestations include activity-related pain, dysfunc-
tion, and progressive macroscopic tendon injury. This under-
lying pathophysiology is felt to be similar in diverse condi-
tions such as rotator cuff tears, patellar tendonopathy (“jum-
per’s knee”), lateral epicondylitis (“tennis elbow”), and
Achilles tendon disorders. Currently available therapies in-
cluding eccentric exercise therapy, NSAIDS, corticosteroid
injections, and shockwave therapy are very limited and many
patients continue to suffer from chronic pain and dysfunction.
Given these limitations in our current treatment options, clini-
cians have looked to the use of cell therapy as a treatment
option to modify the underlying biology and to restore tissue
architecture, with the goal of mitigating the chronic degener-
ative response seen in recalcitrant cases.

Regeneration of the microstructure and composition of
both normal tendon matrix and the native tendon-bone

enthesis requires a complex interaction between cellular, bio-
logic, and mechanical factors. While the exact mechanisms
are not completely known, the need for mechanical loading
in conjunction with appropriate cellular cues is essential for
the development of tendon and the enthesis [75, 76]. There is
very little data to support the use of cell therapy for treatment
of overuse tendinopathy at this time. Current literature sup-
ports the possibility that cell therapy may be an effective ad-
juvant to improve tendon following surgical repair [77•, 78].
Cell therapy approaches may also be used as an adjunct to the
use of currently available extracellular matrix patch materials.
In this way, these scaffold materials may serve as an effective
“carrier vehicle” for cell therapy. Extracellular matrix may
provide important “signaling cues” for the cells [79–81].

Rotator Cuff Repair

Rotator cuff tears are a common and debilitating injury, often
managed by surgical repair. Due to its complex structure and
poor intrinsic healing quality of the enthesis, the success rate
of these procedures is often unsatisfactory, despite advance-
ments in surgical technique. Current clinical guidelines do not
support the use of cell therapy; however, there is one study
that reports improvement in rotator cuff tendon healing fol-
lowing surgical repair with bone marrow aspirate applied at
the repair site, with a significantly higher rate of intact tendon
repair at mean 10-year follow-up compared to untreated pa-
tients [78]. Taking it a step further, Rothrauff et al. studied the
effects of adipose-derived stem cells delivered with hydrogels
for acute and chronic massive rotator cuff repair in a rat model.
Their study revealed decreased bone loss at the proximal hu-
meral epiphysis in chronic, but not acute, tears regardless of
delivery method suggesting a temporal relationship [82].

Knee Osteoarthritis

Knee osteoarthritis (OA) remains one of the most prevalent
and debilitating orthopedic conditions worldwide, although
little is known about the disease mechanism and factors that
determine progression. For this reason, cell therapy has
emerged as a potentially promising solution for these patients.
The majority of studies have examined treatment of knee os-
teoarthritis, with variable results reported. Several studies
using culture-expanded bone marrow cells have reported pos-
itive effects on both symptoms as well as some evidence of a
positive effect on cartilage structure. However, a single-blind,
placebo-controlled study demonstrated no significant differ-
ence when compared to saline injections [83•]. In a small
prospective study of patient with chondral lesions, one study
demonstrated how the supplementation of hyaluronic acid-
based scaffolds with bmMSC results in significant clinical
improvement at 5-year follow-up [84•]. Additionally, the use
of biologics such as PRP, hyaluronic acid, and APS/ACS has
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been of great interest to mitigate pain and inflammation asso-
ciated with knee OA. In a study by Gobbi et al., they demon-
strated that repeat intra-articular injections of PRP for knee
OA demonstrated significant improvement in pain scores at
12 and even 18 months; however, these results were not
sustained at 24 months [85]. While short-term studies have
shown promising results, the long-term efficacy of these treat-
ments is yet to be determined.

Conclusion

Many sports injuries involve tissues with intrinsically poor
healing potential, including tendon, ligament, meniscus, artic-
ular cartilage, and muscle. Both acute injury to these tissues
and chronic degenerative changes due to overuse represent
difficult management conditions for the treating physician.
Cell therapy has tremendous potential to affect the underlying
biological activity of these difficult-to-treat tissues.
Autologous tissues such as bone marrow and adipose contain
a small population of progenitor cells with the potential to
induce tissue healing and regeneration. However, it is recog-
nized that the number of true stem cells by any formal criteria
is very low in any of these autologous tissues. Changes in the
regulatory environment in the USA is necessary to allow cell
sorting to isolate and then expand in culture the small popu-
lation of true stem cells in these tissues. A further limitation is
the significant variability in cell formulations derived from
different patients, which makes interpretation of the literature
very difficult. Advances in this field will require careful char-
acterization and reporting of the composition and the biolog-
ical activity of various cell formulations used in clinical trials
so that we can begin to relate the outcomes for different tissues
to the actual material delivered. Further understanding of the
biologic activity of various cell formulations will also allow
the ability to identify the optimal cell type and formulation for
specific pathologies and tissues, permitting the clinician to
better match the treatment to the underlying condition being
treated, rather than the “one size fits all” approach that has
been used with orthobiologics. Progress in these areas will
ultimately allow us to begin to realize the tremendous promise
of cell therapy in sports medicine.
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