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Abstract Several devices allow to measure anterior and rota-
tional static knee laxity. To date, the use of rotational laxity
measurements in the daily clinical practice however remains
to be improved. These measurements may be systematically
integrated to the follow-up of knee injuries. Physiologic laxity
measurements may particularly be of interest for the identifi-
cation of risk factors in athletes. Furthermore, knee laxity
measurements help to improve the diagnosis of knee soft tis-
sue injuries and to follow up reconstructions. Further prospec-
tive follow-ups of knee laxity in the injured/reconstructed
knees are however required to conclude on the best treatment
strategy for knee soft tissue injuries.
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Introduction

Clinical assessment of knee laxity is useful to diagnose
knee injuries and to evaluate the success of reconstruction
procedures. Anterior and rotational knee laxity is usually
evaluated manually with the Lachman, the anterior drawer,

the dial, or the pivot shift tests. The latter is recognized to
be more closely correlated with Bgiving-way^ episodes de-
scribed by patients with anterior cruciate ligament (ACL)
injuries as it tests the knee in more than one direction.
Static tests, which evaluate the knee in one or several spe-
cific directions, are of higher interest to quantify laxity
characteristics of the knee envelope as well as to diagnose
and follow-up knee soft tissue injuries [1].

Devices to measure anterior and rotational knee laxity have
been designed to reproduce manual tests and to allow for an
objective and standardized evaluation of knee laxity. Static
laxity measurements must be interpreted with caution as more
than one structure contributes to restrain the knee in one di-
rection. The primary restraint for anterior laxity between 0 and
30° of knee flexion is the ACL [2•]. Secondary restraints in-
clude the iliotibial band, the collateral ligaments, the menisci,
and the popliteal tendon [2•]. Between 0 and 30° of knee
flexion, internal rotation is primarily restrained by the poste-
rior oblique ligament and the iliotibial band. Secondary re-
straints include the ACL, the medial collateral ligament
(MCL), the menisci, the popliteal tendon, and the anterolateral
ligament (ALL) [2•]. It must be highlighted that contributing
structures vary with the degree of knee flexion so that patient
position and/or arthrometer must be chosen in relation to the
structure(s) to be analyzed. The purpose of this article is thus
to provide an overview of current devices and knowledge on
static knee laxity measurements.

Arthrometers

Static anterior knee laxity

Devices measuring anterior knee laxity reproduce the
Lachman test: the patient is lying supine and the knee tested
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at 20° of flexion. The patient must be relaxed as a muscle
contraction may limit the anterior displacement [3].
Furthermore, the leg must be tested in neutral rotation [4].

– KT-1000 and KT-2000 [5]: The KT-1000 is one of the
most commonly used devices to measure anterior knee
laxity. Its reproducibility was however questioned as
examiner experience [6] and hand dominance [7] have
been reported to influence its measurements. The inter-
rater error was estimated at 2.9 mm for experienced
examiners [8].

– Stryker Knee Laxity Tester (Stryker, Kalamazoo, MI) [9]:
The reliability of the Stryker Knee Laxity Tester is similar
than for the KT-1000® with an Intraclass Correlation
Coefficient (ICC) superior to 0.9 [10]. More than 50 %
of the displacement measured with the Stryker Knee
Laxity Tester is due to soft tissues deformation at a load
of 180 N [11].

– Rolimeter (Aircast Europa, Neubeuern, Germany) [12]:
This arthrometer is as reliable as the KT-1000® [12, 13]
even when used by novice examiners [14].

– GNRB (Genourob, Laval, France) [15]: The GNRB®
proposes a motorized application of the force. It is more
reliable than the KT-1000® regardless of the examiner’s
experience [16]. Vauhnik et al. reported a low precision of
the device with measurement errors up to 3.8 mm [17].
However, much lower measurements errors of 1.2 mm
have recently been reported [18] in a study that insisted
strongly on the standardization of patient positioning and
testing protocol.

– RadioStereometry Analysis (RSA) [19]: This method re-
quires the surgical implantation of intra osseous tantalum
beads of a diameter of 0.8 to 1.6 mm [19]. To determine
the anatomical positions of the markers, two orthogonal
radiographs are obtained simultaneously. This tridimen-
sional technique has a precision of 0.1 mm [20] and is not
influenced by skin movement artifacts [21]. It is however
invasive.

– Telos Stress Device (Telos GmbH, Hungen-
Obbornhofen, Germany): This method requires a lateral
radiograph realized in a constraint position. The anterior
displacement is represented between (1) a line perpendic-
ular to both tibial plateau and tangent to the posterior
corner of the medial condyle (2) perpendicular to both
tibial plateau and tangent to the posterior border of the
medial tibial plateau. Reliability of posterior displace-
ment between testers is estimated to reach an ICC of
0.91 and the measurement errors reached 2.77 mm [22].

– Lerat’s method [23]: In this invasive method, a mass of
9 kg is attached to the patient’s thigh above his patella to
induce a posterior translation of the femur compared to
the tibia. This technique seems to be reliable with an
intra-tester ICC superior to 0.9 [24].

Static rotational knee laxity

Rotational knee laxity measurements of the tibia with respect
to the femur are not yet used in the daily clinical practice. The
amount of torque applied usually varies between 5 and 15 Nm
depending on lower limb fixation and patient comfort. Most
researchers apply this torque from internal to external rotation
or from external to internal rotation to obtain a complete cycle
of rotation. A solution to avoid the hysteresis phenomenon,
which comes along with this technique and influences the
reproducibility of the measurements [25, 26], is to perform
separate measurements of internal and external rotation and
to include Bpreconditioning trials.^

Rotational knee laxity is influenced by the patient’s posi-
tion and by the location of rotation measurement. Knee rota-
tion is higher if the knee is flexed at 90° compared to 20° and
if the hip is extended compared to the flexed position at 90°
[27]. To avoid overestimation of the measurements when ro-
tation is measured at the foot, a solution is to measure tibial
rotation directly at the proximal tibia via electromagnetic sen-
sors [28].

– Rottometer [26]: The patient sits on a modified chair with
knees and hips flexed to 90°. The inter-rater ICC varied
between 0.49 and 0.85 depending on the amount of
torque and degree of knee flexion. The highest ICC was
obtained for the highest torque (9 Nm) and the higher
degree of knee flexion (90°) [29]. The measurements be-
tween examiners varied between −7.9° and 3.8° [29].

– Device by Musahl et al. [30]: To measure the relative
rotation of the tibia with regards to the femur, magnetic
sensors are placed on the Aircast Foam Walker boot, on
the medial surface of the proximal tibia and on the ante-
rior surface of the thigh. The examiner holds the leg while
applying the torque, which may influence muscle relaxa-
tion and flexion angles. An initial cadaver study reported
a high intra- and inter-rater ICC (>0.94) [30]. In 11
healthy subjects, the inter-rater ICC was the greatest at
90° of knee flexion (0.88). Measurement errors reached
3.2° for the total range of rotation at 90° of knee flexion
and 5.1° at 30° [31]. The average side-to-side difference
(SSD) between normal knees was 3.5° [31].

– Device by Park et al. [32]: Park et al. [32] presented the
first motorized device to measure knee rotational laxity.
The patient sits in a modified chair with the hips flexed at
85° and knees at 60°. No data is available on its
reproducibility.

– Rotameter [33]: Two prototypes of the Rotameter exist. In
both versions, the subject is lying prone to reproduce the
dial test position. Hips are extended and knees flexed at
30°. The Rotameter overestimates the total range of rota-
tion at 5, 10, and 15 Nm by an average of 5, 10, and 25°,
respectively [33]. ICCs for these different torques were
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superior to 0.67 [34]. Regarding the second version of the
Rotameter, it yields lower values for rotational laxity than
the first device due to improvements in the standardiza-
tion of the patient installation and joint fixation. The
Minimum Detectable Change (MDC) has been deter-
mined to reach 4.2° for internal rotation and 5.9° for ex-
ternal rotation [18]. Individualized normative references
have been established taking into account gender and
body mass [18, 35].

– Robotic Knee Testing system [36]: The patient lies supine
with knees flexed at 25°. Electromagnetic sensors placed
on the proximal tibia showed that tibial rotation represent-
ed in average 48.7 % of the total rotation measured at the
foot [36]. Inter-rater ICC for total range of rotation
reached 0.97 at a torque of 5.65 Nm [36]. The average
expected difference between two measurements as mea-
sured with the repeatability coefficient reached 6.9° for
internal rotation and 3.5° for external rotation [37].

– Rotational Measurement Device [38]: Subjects are posi-
tioned at 90° of knee flexion. Measurement at the foot
overestimated rotation on average by 136 % compared
to the Rotational Measurement Device. The latter only
slightly overestimated rotation (2°) compared to electro-
magnetic sensors placed on the tibia [38]. Intra-rater ICC
of the device reached 0.9 [38].

Static multiplanar laxity

– Genucom Knee Analysis System (FARO Medical
Technologies, Montreal, Ontario, Canada): This
arthrometer allows to measure antero-posterior laxity
and rotational and varus-valgus laxity [39]. At 20° of
knee flexion, the least significant difference reached
17.5°. In other words, a difference of 17.5° is required
to indicate a real change in rotational laxity of a tested
person between 2 measurements [40].

– Vermont Knee Laxity Device [41]: The Vermont Knee
Laxity Device measures anterior, rotational, and varus-
valgus laxity. The subject lies supine with knees flexed
at 20° and hips at 10°. The intraclass correlation coeffi-
cient (ICC) is above 0.86 for internal, external, and total
range of rotation [42]. Measurement errors were evaluat-
ed at 5 to 7°, respectively, for internal (IR) and external
rotation (ER) [42].

Knee laxity in the non-injured knee

Physiological laxity represents the amount of laxity which is
considered to lie within the Bnormal^ range and is specific to
every individual.

Physiological laxity, knee function, and injuries

The contralateral knees of ACL-injured patients display
greater anterior and rotational knee laxity than knees of
healthy individuals [36, 43, 44, 45•]. As such, increased
physiological laxity could be a risk factor for ACL injuries.
Indeed, subjects with excessive physiological knee laxity
have been reported to have movement patterns associated
with non-contact ACL injury mechanisms. They display
greater hip and knee movements in the transverse, sagittal,
and frontal planes during drop landings [46]. Furthermore,
they have greater increase in anterior and rotational knee
laxity with exercise and fatigue [47•, 48].

Even though the influence of physiological knee laxity on
knee function has not been clearly established, several studies
suggest it could influence the outcome of ACL reconstruc-
tions [49–51]. After ACL reconstruction with a bone-
patellar-tendon-bone graft (BPTB), patients with an increased
physiological laxity have lower Lysholm [50, 51] and IKDC
subjective [49–51] scores. As preoperative scores were not
reported, it remains unclear whether lower outcomes are the
consequence of the ACL reconstruction or of the injury itself.

Influencing factors

Although gender has been previously reported to significantly
influence anterior knee laxity, several studies reported a minor
difference of less than 1.5 mm [43, 52–54]. As for rotational
knee laxity, it has been shown that women have up to 40 %
higher knee rotation compared to men [32]. This difference
has been confirmed by several investigations [18, 32, 36, 55].
It may represent one of the factors explaining the higher risk
for ACL injuries in females. Body mass also influences rota-
tional laxity with increased body mass being related to lower
knee rotation [18, 56].

Age does not influence anterior or rotational knee laxity
measurements in adults [18, 53, 55]. However, increased an-
terior and rotational knee laxity in the pediatric population has
been observed [57–59]. Knee laxity is indeed reported to de-
velop during knee growth and maturation. It stabilizes at ap-
proximately 14 years for girls and 16 years for boys [57–59].
Unlike in adults, no difference has been observed in the pedi-
atric population between boys and girls both in anterior and
rotational knee laxity [57, 58].

The influence of the menstrual cycle on knee laxity has also
been debated [60], and a recent systematic review revealed
that six out of nine studies found no significant variation of
anterior knee laxity throughout the menstrual cycle. Two other
studies reported a significant variation of knee laxity during
the menstrual cycle of about 0.5 mm and the last study of
1.5 mm [61]. These observed variations are minor and the
ability of existing devices to detect such little differences can
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be questioned. As for rotational knee laxity, no variation dur-
ing the menstrual cycle could be observed [62].

An association may also exist between lower extremity
alignment and knee laxity. Shultz et al. [63] demonstrated that
a greater genu recurvatum and a greater navicular drop were
predictors of a greater anterior knee laxity. In another study,
the authors determined the different knee laxity profiles
existing in healthy subjects when considering anterior, rota-
tional, and varus-valgus knee laxity as well as genu
recurvatum [56]. The subjects with increased laxities were
characterized by greater navicular drop, lower BMI, lower
Q-angle, lower tibial torsion, lower quadriceps peak torque
and shorter femur length compared to subjects with decreased
laxities. Some differences were however minor and their clin-
ical meaning is not yet established.

Normative references

Although laxity measurements overestimate knee laxity, nor-
mative references must be established to define Bnormal^ lax-
ity for each device. Mouton et al. proposed a methodological
approach to calculate standardized laxity scores for anterior
and rotational knee laxity taking into account influencing in-
dividual characteristics [18]. For rotational knee laxity, sex
and body mass were found to significantly influence its mea-
sure and to explain a non-negligible amount of the variability
in internal and external rotation (46 to 60 %). As a conse-
quence, the latter parameters were taken into account to cal-
culate an individualized score which has the advantage to
allow for the direct comparison of individuals, regardless of
differences in sex or body mass.

The different laxity types (sagittal and rotational) have re-
cently been shown to be only weakly correlated [18, 54]. The
consideration of both laxities may thus provide complemen-
tary information and should allow to establish more detailed
individual knee laxity profiles. The existence of knee laxity
profiles have been suggested [56]. By combining measure-
ments of anterior displacement and internal and external rota-
tion, Mouton et al. showed that only 32 % of the participants
displayed a laxity profile with all three scores within the av-
erage plus or minus one standard deviation [18]. The diversity
of the identified profiles highlights both the complexity of
multidirectional knee laxity and the necessity for individual-
ized care of knee injuries and diseases.

Knee laxity in the injured knee

Diagnosis of ACL injuries

The diagnosis of ACL injuries with arthrometers is currently
based on the SSD observed in anterior laxity measurements
between the injured and the healthy knee. The Bgold standard^

to describe the objective function of the knee is currently the
IKDC objective score. It allows to classify laxity in four
grades. A SSD in anterior laxity inferior to 3 mm is classified
as normal (grade A), between 3 and 5 mm as nearly normal
(grade B), between 6 and 10 mm as abnormal (grade C), and
superior to 10 mm as severely abnormal (grade D). This clas-
sification has never been questioned and it is generally accept-
ed that a SSD greater than 3 mm relates to an ACL injury
regardless of the device used to measure anterior knee laxity.

At this threshold, the KT-1000® performed at a maximal
manual force seem to display the highest sensitivity and spec-
ificity for the diagnosis of complete ACL injuries compared to
other devices (Table 1). It is important to highlight that most
studies reported the sensitivity and the specificity of
arthrometers to diagnose ACL injuries by only considering
complete ACL tears, which are the easiest to detect. With
the GNRB®, for all types of ACL tears (including total tears,
partial tears, and ligament remnants) and regardless of associ-
atedmeniscocapsular injuries, the sensitivity and specificity of
the GNRB® reached, respectively, 75 and 95% for the ATD at
200 N and an optimal threshold of 1.2 mm [67•].

To improve the diagnosis of ACL injuries, additional anal-
ysis of rotational knee laxity has been proposed [68].
Cadaveric studies revealed that the section of the ACL led to
2.4 to 4° increase in rotation in knee flexion angles below 30°
[69, 70]. Above this degree of flexion, the increase in rotation
induced by the lesion was not detectable anymore [25, 71].
Early in vivo studies demonstrated a similar increase of rota-
tion in the injured knee by 10 % (3°) compared to the healthy
knee [72]. More specifically, the posterolateral bundle may
play a specific role in restraining rotation as its section induced
the major increase (3° at 5 Nm) in internal rotation [73]. To
date, only the sensitivity and specificity of the Rotameter to
detect an ACL injury has been reported in the literature [67•].
A threshold of 3.2° for the SSD in internal rotation at 5 Nm
allowed to correctly identify 38 % of patients (sensitivity) and
reject 95 % of healthy subjects (specificity). Although the
sensitivity appears to be low, it remains superior to the sensi-
tivity of 24 % reported for the pivot shift test in a previous
meta-analysis [74].

The different characteristics of the force-displacement
curve (i.e., slope, representative of knee stiffness) have not
been deeply explored yet in the context of ACL injuries. In
the 1980s, this characteristic was shown to be modified in the
ACL-injured knee [72, 75], but its use in the diagnosis of ACL
injuries has only been recently proposed [15, 76]. To further
improve the diagnosis of ACL injuries, consideration of the
slope is advised as it has been shown to increase the specificity
of anterior and rotational knee laxity tests to 100 %. As a
result, simultaneous consideration of displacement and knee
stiffness provide a test without a false positive [67•].

The concomitant analysis of anterior and rotational knee
laxity measurements as well as the concomitant analysis of
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the SSD in final displacement and of the slope of the load–
displacement curve further improves the diagnosis of ACL
rupture. With this combination, a positive result was correct
in 100 % of patients (sensitivity: 81 %) regardless of the sub-
type of the ACL tear and the associated injuries [67•]. This
performance is similar to the one reported for MRI (sensitivity
81 %, specificity 96 %) [77].

Further considerations for diagnosis

The studies which investigated the diagnostic performance of
arthrometers were often limited to patients with complete
ACL lesions. Based on arthroscopy, it is however possible to
differentiate partial tears (the antero-medial bundle being
more often concerned than the posterolateral one) from com-
plete ACL lesions presenting either as a totally resorbed

ligament or as a healed remnant on the intercondylar notch
or the PCL [78]. These different lesions influence the SSD
observed in anterior and rotational knee laxity measurements
[76, 79–82]. As such, only considering complete tears to eval-
uate the diagnostic performance of an arthrometer cannot re-
flect its true diagnostic capacity. It is thus preferable to con-
sider all kinds of ACL lesions and to determine if different
types can be identified prior to surgery [67•].

It is recommended to take into account associated le-
sions when interpreting the laxity measurements in the
context of diagnosis to avoid false positives. Indeed, only
40 % [83] of all ACL lesions can be considered as isolated.
A lesion of the collateral ligaments may influence tibial
rotation [84] while a medial meniscus lesion can modify
anterior displacement due to its stabilizing role in ACL
ruptures [84].

Table 1 Sensitivities and specificities of arthrometers

Arthrometer Injuries studied Force Threshold Number of
injured subjects
included

Sensitivity
(%)

Number of healthy
subjects included

Specificity
(%)

KT-1000 [64] Complete ACL tears
(meta-analysis)

Maximal manual force 3 mm 377 93 150 93

Stryker Knee
Laxity Device
[64]

Complete ACL tears
(meta-analysis)

Maximal manual force 3 mm 124 82 69 90

Genucom [64] Complete ACL tears
(meta-analysis)

Maximal manual force 3 mm 92 74 58 82

Rolimeter [65] Unclear Maximal manual force 3 mm 18 89 20 95

GNRB [15] Complete ACL tears 134 N 3 mm 21 70 20 99

GNRB [66] Complete ACL tears 200 N 1.9 mm 64 92 54 98

GNRB [67•] All types of ACL tears
(including total tears,
partial tears, and
ligament remnants)

200 N 1.2 mm 128 75 104 95

Fig. 1 Follow-up of anterior knee laxity (GNRB) in a female patient who
sustained a knee injury during alpine skiing at the age of 18. The ACL
was not reconstructed and she was addressed to our hospital at the age of
21. A nonoperative treatment was initiated and regular laxity
measurements were performed. During this year of follow-up, her laxity

increased (in red: injured knee −1/2/3/4). A decision for ACL
reconstruction was finally taken. The healthy knee (green) was stable
and reproducible over time (less than 0.8 mm difference between the
four tests)
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While rotational knee laxity is mainly investigated in ACL
injuries, it may also be of interest in other lesions such as
posterolateral corner injuries. These injuries indeed induce
an increase in tibial external rotation of 6 to 14° [85, 86],
resulting in a posterolateral rotational instability. Clinically,
these injuries are best assessed with the dial test [87]. The
latter does not allow for an objective assessment but, to the
authors’ knowledge, results of instrumented measurements
have never been reported in such injuries. Finally, as knee
osteoarthritis affects rotational knee laxity [88], rotational
knee laxity measurements may also have the potential to be
an indicator of the type and severity of osteoarthritis.

Knee laxity after anterior cruciate ligament
reconstruction

Ligament reconstruction surgery aims to restore knee laxity in
all directions. Knee laxity measurements are therefore of in-
terest as a postoperative control to follow the graft evolution
(Fig. 1) and detect potential anomalies like elongation, recur-
rent tears, increased postoperative laxities. These may occur in
graft malpositioning [89, 90] or graft failures [91]. Numerous
studies reported knee laxity measurements at a specific time
point after ACL reconstruction. Their conclusions are difficult
to generalize, due to the diversity of graft types, surgical tech-
niques, fixations, associated injuries, rehabilitation ap-
proaches, but also the measurement techniques. Prospective
follow-up studies with systematic measurements of knee lax-
ity are missing, so that the current knowledge on postoperative
changes of knee laxity and on the graft ligamentisation pro-
cess is poor.

This lack of methodological scientific evidence may ex-
plain why many studies have shown no difference in anterior
laxity after different types of surgical reconstruction between a
bone-patellar tendon-bone (BPTB) and a semitendinosus (ST)
autograft [92–94]. However, two meta-analyses comparing
the two main graft types (BPTB vs. ST) have demonstrated
that a SSD superior to 3 mm was less frequent in BTPB com-
pared to ST grafts [95, 96]. Regarding the use of allografts,
some authors reported similar outcomes compared to auto-
grafts [97, 98], while others suggested that they may be infe-
rior [99]. As for the double-bundle HS autograft technique,
there are indications suggesting that it may be superior in
terms of sagittal and rotational laxity [100–102].

The current knowledge on knee laxity after ACL recon-
structions as well as after many other surgical interventions
thus needs to be improved. For example, medial
meniscectomy may influence postoperative knee laxity [84].
The same conclusion holds true for the anterolateral capsular
structures of the knee [103]. As for posterolateral corner inju-
ries, Tardy et al. reported that external rotation was in average
similar to a healthy control group after reconstruction [104].

The authors also found a remaining increase in internal rota-
tion of the tibia in 40 % of patients. They assumed that this
finding was either due to the surgical technique or to associ-
ated lesions and/or unrecognized soft tissue damage at the
time of injury.

Conclusions

Static knee laxity measurements offer the possibility to im-
prove the understanding of the capsuloligamentous knee en-
velope, both in healthy and injured knees as well as after
different types of reconstruction procedures. The recent devel-
opment of rotational laxity measurement devices has added
significant knowledge to the field. The combination of knee
laxities is now possible and has led to the concept of knee
laxity profiles in healthy knees. The high variability between
individuals as well as the ability to identify knees with in-
creased physiological knee laxity may be of interest in the
screening and prevention programs for athletes. Indeed, sub-
jects with excessive physiological knee laxity may have a
greater risk to sustain an ACL injury as well as to display
inferior outcomes after an ACL reconstruction.

The combination of laxity assessments in ACL-injured
knees has shown to improve the diagnostic capacity of
arthrometers. Although the knowledge of preoperative knee
laxity measurements is evolving, some factors are still insuf-
ficiently understood. The same holds true for postoperative
laxity measurements after ligament reconstructions. As such,
future studies may help not only to individualize the care of
knee injuries but also to improve the understanding of degen-
erative diseases.
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