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Abstract Low back pain is a leading cause of disability
worldwide and the second most common cause of phy-
sician visits. There are many causes of back pain, and
among them, disc herniation and intervertebral disc de-
generation are the most common diagnoses and targets
for intervention. Currently, clinical treatment outcomes
are not strongly correlated with diagnoses, emphasizing
the importance for characterizing more completely the
mechanisms of degeneration and their relationships with
symptoms. This review covers recent studies elucidating
cellular and molecular changes associated with disc
mechanobiology, as it relates to degeneration and regen-
eration. Specifically, we review findings on the bio-
chemical changes in disc diseases, including cytokines,
chemokines, and proteases; advancements in disc dis-
ease diagnostics using imaging modalities; updates on
studies examining the response of the intervertebral disc

to injury; and recent developments in repair strategies,
including cell-based repair, biomaterials, and tissue en-
gineering. Findings on the effects of the omega-6 fatty
acid, linoleic acid, on nucleus pulposus tissue engineer-
ing are presented. Studies described in this review pro-
vide greater insights into the pathogenesis of disc de-
generation and may define new paradigms for early or
differential diagnostics of degeneration using new tech-
niques such as systemic biomarkers. In addition, re-
search on the mechanobiology of disease enriches the
development of therapeutics for disc repair, with poten-
tial to diminish pain and disability associated with disc
degeneration.
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Introduction

Low back pain (LBP) is a leading cause of disability
worldwide, with a lifetime incidence of 80 % [1] and an
estimated 11.9 % of the worldwide population affected
at any time [2]. In the USA, the population incidence of
LBP is even greater with CDC surveillance demonstrat-
ing that 30.1 % of American women and 26 % of men
report LBP within a 3-month period [3, 4]. As the
second most common cause of doctor visits, LBP con-
tributes $20–100 billion in direct health care spending
[5], and between $100 and 200 billion annually in total
economic burden [6, 7]. There are many causes of LBP,
and among them, disc herniation and intervertebral disc
(IVD) degeneration are the most common diagnoses and
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targets for intervention [8]. Disc degeneration (DD) is a
multifactorial process characterized by cellular and bio-
chemical changes in disc tissue that result in structural
failure [9]. While DD is a part of normal aging, a
significant number of people with indications of DD
on MRI are actually asymptomatic, with no history of
pain or disability [10, 11]. Consequently, routine radio-
logical diagnostics do not strongly correlate with symp-
toms including pain, except in more severe and persis-
tent conditions [12]. In addition, diagnostic criteria such
as changes in disc height, bulging, or herniation do not
provide strong correlations with treatment outcomes in
patients who are in pain [13, 14]. This discrepancy
between the asymptomatic state despite physiologic de-
generation and the symptomatic state emphasizes the
importance of characterizing more completely the mech-
anisms of degeneration and their relationships with
symptoms.

Multiple changes are observed in DD, each of which pro-
vides insights into the disease process. A normal disc is a
composite of two tissue types—the nucleus pulposus and the
annulus fibrosus, which have different functions in load bear-
ing. The nucleus pulposus (NP) is gelatinous, composed pre-
dominantly of type II collagen and proteoglycans, with high
water content that contributes to its hydrostatic pressurization
and resistance to compressive forces [15, 16]. In degeneration,
loss of proteoglycans and water content are observed by
changes in disc height and MRI signal [17], which results in
redistribution of load onto the fibrochondrocyte-like cells in
the annulus fibrosus (AF) [18]. The AF consists of concentric
lamellae rich in collagen and elastin, whose content varies
with distance from inner to outer portions. This review covers
recent studies elucidating cellular and molecular changes in
DD, which provide greater insights into pathogenesis, may

define new paradigms for early and/or differential diagnostics
of DD using new techniques such as systemic biomarkers, and
enriches the development of therapeutics for IVD repair
(Fig. 1).

Updates on currently available treatments

Current standard of care for LBP due to degenerative disc
changes includes non-operative (pain management) and oper-
ative approaches. Non-operative management focuses on
symptomatic pain relief, while permitting possible endoge-
nous recovery such as resolution of herniation [19, 20] or
repair of structural damage [21, 22]. Analgesia is the primary
target of non-operative management and is accomplished by a
combination of NSAIDs and physical therapy to strengthen
core muscles among other programs. Surgical management
may begin with epidural injections of local anesthetic, ste-
roids, or a combination of both prior to more invasive surgical
approach. The evidence of efficacy is variable among different
epidural injection techniques, such as interlaminar, caudal,
and transforaminal injections, and for various conditions in-
cluding intervertebral disc herniation (DH), spinal stenosis
(SS), and discogenic pain without disc herniation or
radiculitis. The debate continues with regard to the effective-
ness, indications, and medical necessity of epidural injections
[23, 24]. For radicular pain secondary to DH, treatment with
epidural injections of steroids in conjunction with local anes-
thetic resulted in greater pain relief compared to anesthetic
alone, reinforcing the contribution of neuro or disc inflamma-
tion in LBP [23, 24]. The indications for use of lumbar
epidural injections for discogenic pain without DH or radicu-
lar pain due to SS are fair, and a recent study found that
injection with anesthetic alone is comparable to use of

Fig. 1 Biomarkers of disc
degeneration and back pain. Disc
degeneration process begins years
before disc height narrowing is
observable by current diagnostic
methods (structural, radiological).
There is an urgent need for earlier
methods of detection of disc
degeneration, which can lead to
novel and earlier, less invasive
therapies
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anesthetic and steroids for pain relief [23–25]. While signifi-
cant complications can arise from needle placement, including
epidural hematomas, disc puncture, and infections in the
epidural space, meninges, IVD, and vertebrae, the use of
fluoroscopic guidance mitigates some risk of adverse events
involved with this invasive therapy [26].

Operative management includes in situ repairs using min-
imally invasive microdiscectomy or open procedures for re-
moval of herniated tissue, impingement relief, and spinal
stabilization [8, 27]. In cases where laminectomy and spinal
fusion are performed, achieving stability is crucial.
Recombinant human bone morphogenetic protein-2
(rhBMP-2), a popular adjuvant for spinal fusion procedures,
has recently garnered attention due to safety concerns. Though
previous studies have indicated that rhBMP-2 achieves higher
fusion rates in spinal surgery compared to iliac crest bone graft
[28, 29], recent studies have focused on potential side effects
and complications. The recent analyses were performed by
independent groups under the auspices of the Yale Open Data
Access project, where complete patient data generated from
clinical trials sponsored by the manufacturer, Medtronic, were
made publically available for review. Two independent teams
performed meta-analyses on studies using BMP-2 and found
similar, but not identical, results. Fu et al. found no improve-
ment in outcomes with rhBMP-2 compared with iliac crest
bone graft and increased rate of cancer with rhBMP-2 use
[30]. In contrast, the analysis by Simmonds et al. found better
rates of fusion at 24 months with rhBMP-2, but increased
postoperative pain and no significant improvements in clinical
outcomes. They also found a significant increased risk of
heterotopic bone formation and the possibility of increased
cancer risk [31]. These analyses provide the most comprehen-
sive review of side effects and complications of rhBMP-2 in
spinal fusion and form the basis for the current consensus
statement regarding the use of rhBMP-2 in spine surgery for
clinically indicated or off-label procedures [32]. However,
their nuanced messages support continued controversy sur-
rounding the use of rhBMP-2 for spinal fusion following
operative management of DD.

Biochemical changes in disc disease: cytokines,
chemokines, and proteases

Inflammation is implicated in both the triggers and effects of
DD, which can both involve cells and molecules that partic-
ipate in immune responses (reviewed in [33••]). Inflammation
is a process that the body engages in response to harmful
stimuli, such as damaged cells or infectious material. While
inflammation is a necessary step in wound healing, persistent
inflammation can damage tissue and organs and may contrib-
ute to pain [34]. Factors associated with adaptive immunity,
and more recently innate immunity, have been implicated in

IVD disease. In healthy conditions, NP tissue is considered to
be immunologically privileged or naïve because of lack of
direct vasculature into the tissue or interaction with the sys-
temic immune system once formed. In DH, NP tissue and
cells protrude beyond the interspace and interact with the
systemic immune system, leading to accumulation of immune
cells on the herniated NP and within the IVD, including
macrophages, T cells, and neutrophils (reviewed in [33••]).
Thus, DH triggers an immune response mediated by pro-
inflammatory signaling by disc or immune cells and generates
pain by physically touching, impinging, or chemically stimu-
lating nerve roots or dorsal root ganglion.

To investigate the role of sterile inflammation in IVD,
Rajan et al. modeled IVD degeneration by stimulating Toll-
like receptor 4 (TLR-4), a pattern recognition receptor of the
innate immune system, with one of its ligands, lipopolysac-
charide (LPS) [35]. TLR-4 activation stimulated increases in
inflammatory mediators (TNF-α, IL-1β, and IL-6) in vivo
and in vitro and identified production of novel mediators
(HGMB1 and MIF) in vivo. Activation of inflammatory me-
diators was also achieved by exposure to individual cytokines
(TNF-α, IL-1β); however, the inflammatory response was
significantly higher with LPS stimulation [35]. Klawitter
et al. also demonstrated that expression of TLR-1, 2, 3, and
4 is enhanced in the presence of TNF-α in human IVD cells,
and TLR-2 expression is elevated by IL-1β stimulation.
Interestingly, expression levels of TLR-1, 2, 4, and 6 were
also found to increase with increasing degeneration severity in
human IVD [36]. Activation of TLR-4 in the IVD induced
moderate disc degeneration in vivo, in the absence of traumat-
ic injury, confirming that inflammation alone is able to trigger
DD [35]. Studies on pattern recognition receptors and the
interaction of cytokines in IVD tissue highlight the importance
in further defining the role of innate immunity in DD. In
addition, the presence of autoimmune antibodies in
degenerating discs obtained from human subjects supports
continued examination of the adaptive immune system’s in-
volvement in disc disease [37].

RANTES (CCL5), a chemoattractant for monocytes, mac-
rophages, and T cells, also changes significantly with DD and
was elevated in discs from patients with more severe degen-
eration, independent of herniation. This expression was in-
creased in response to TNF-α, and both baseline and induced
RANTES expression were particularly localized to AF cells
[38]. AF cells also demonstrated constitutive expression of
growth differentiation factor-5 (GDF-5), a growth factor that
belongs to the BMP gene family and is implicated in mitigat-
ing DD [39, 40]. The expression of GDF-5 in the AF was
significantly upregulated in herniated versus non-herniated
discs but was independent of degeneration, suggesting a re-
sponse induced explicitly by herniation. Exposure of AF cells
in vitro to inflammatory cytokines TNF-α and IL-1β induced
a significant downregulation of GDF-5 expression [41]. These
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findings support the concept that an endogenous repair mech-
anismmay be activated in response to herniation and impaired
by inflammation. While this repair mechanism may be ame-
nable to therapeutic treatments, one important gap in knowl-
edge is the efficacy of anti-inflammatory drugs at promoting
recovery of GDF-5 expression and activity in AF cells.

Understanding the development of DD has increasingly
implicated the presence and dynamics of inflammatory medi-
ators which act to stimulate chemokine, protease activity, and
calcification in and by disc cells [33••]. Recent efforts to
identify differences between pathologic processes and normal
aging suggest that matrix metalloproteinase (MMP)-3 is asso-
ciated with pathological processes in diseased discs [42, 43].
MMPs contribute to extracellular matrix turnover and disrup-
tion, and recently MMP-3 and to a lesser extent MMP-8 have
been shown to be strongly upregulated in human samples with
histological evidence for DD [42]. MMP-3 expression levels
were correlated with histomorphologic age-related alterations,
such as cell proliferation, tears and cleft formation, and mu-
coid degeneration. MMP-8 expression levels were correlated
with pain duration and histologic degeneration score [42].
Interestingly, an upregulation in expression ofMMP inhibitors
(TIMP-1 and TIMP-2) paralleled that of MMPs [42]. More
recently, Canbay et al. examined relationship between
Pfirrmann grade, immunohistochemical expression of MMP-
3, and the histopathologic signs of IVD degeneration [44].
This investigation found that histopathological score was sig-
nificantly correlated with DD severity on MRI (Pfirrmann
grade) and MMP-3 expression, although MMP-3 expression
was not significantly correlated with age. Thus, the absence of
correlation of MMP-3 with age suggests that mechanisms of
IVD may be distinct from normal aging [44]. Increases in
MMP-2 were also recently shown to occur in experimentally
induced preclinical models of degeneration. AF cells appear to
use MMP-2 in a directed fashion for local matrix degradation
and collagen remodeling [45]. These findings strengthen the
association between catabolic breakdown associated with pro-
tease activity and DD. For example, Furtwangler et al. ob-
served that injecting disc explants with known proteases as-
sociated with DD (MMP-3 or ADAMTS-4) and a less studied
protease in disc (HTRA1) decreases cellular activity and disc
height; however, the histopathologic features of degeneration
were not observed on the time scale tested [46].

Increasingly, recent research has focused on associations
between disc disease and comorbidities that may induce in-
flammatory signaling. Albert et al. found high prevalence of
asymptomatic infection in surgically removed herniated IVD
tissue (46 % of patients had positive bacterial culture) [47].
Patients with positive cultures were significantly more likely
to have evidence of bone edema (Modic changes [48]) 1 year
after surgery, in the absence of symptomatic or persistent
infection [47]. These findings may represent a nidus of infec-
tion leading to persistent inflammation with associated

changes in the adjacent bony tissues. Modic changes are
associated with pain [49], so these findings of chronic inflam-
mation secondary to bacterial infection may contribute to the
frustrating diagnosis of chronic LBP.

There is a common relationship among LBP and DD,
obesity, and metabolic syndrome including diabetes, in that
they are associated with increased cytokine activity. The ox-
idative stress resulting from diabetes mellitus [50, 51] poses a
risk to IVD tissues by potentially inducing or accelerating
inflammation. A recent animal model used by Tsai et al.
demonstrated that a rat model of type I diabetes mellitus had
increased expression of MMP-2 when exposed to advanced
glycation end products (AGEs), as compared to similar expo-
sure in non-diabetic rats [52]. Considering the role of MMPs
in degeneration and painful symptoms of disc disease, the
possibility that diabetes further accelerates inflammation and
degeneration may offer recommendations for the prevention
of disc disease in diabetics, as well as an explanation for its
increasing incidence [53]. A similar model by Illien-Junger
et al. examined disc height, glycosaminoglycan (GAG) con-
tent, and inflammatory factors in a murine model of type I
diabetes treated with broad spectrum anti-inflammatory and
AGE-inhibiting medications. Untreated diabetic mice showed
decreased IVD height, decreased GAG content, and increased
catabolic factors (including AGEs and TNF-α) compared to
both control mice and diabetic mice in the treatment group.
Treatment also decreased, but did not entirely protect, against
expression of catabolic factors (ADAMTS-5, MMP-13) in
diabetic mice [54]. The response to treatment adds a dimen-
sion of specificity to the proposed pathogenesis of disc disease
in diabetes and may help focus clinical management in dia-
betics. These studies suggest multiple sources of inflammation
in disc disease, including infection and diabetes, which may
represent important future therapeutic targets.

Select drugs that are used in the treatment of rheumatoid
arthritis or osteoarthritis have been examined for treatment of
DD. Drugs targeting inflammatory cytokines implicated in
inflammation, such as TNF-α and IL-1, are being widely used
clinically in the treatment of rheumatologic diseases through
systemic administration. Clinical trials have also explored the
use of these same anti-cytokine therapies for the treatment of
LBP and radicular pain, using epidural injection delivery. The
TNF-α inhibitor etanercept has demonstrated varied results
for treatment of sciatica or spinal stenosis, with some studies
showing significant improvement in pain over the placebo
groups, while others indicating no benefit over placebo and
found it to be less effective than steroids [55–59]. Another
TNF-α inhibitor, adalimumab, demonstrated improvement in
leg pain and reduced the proportion of patients requiring
follow-up back surgery, while another inhibitor, infliximab,
did not demonstrate significant effect on pain [60–62]. A
study on an inhibitor of IL-6, tocilizumab, had significant
improvement in leg pain, leg numbness, and back pain
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compared with demographically matched patients who re-
ceived steroid treatment. Currently, the evidence supporting
these therapies in back pain and related disc etiologies remains
limited [63]. The use of glucosamine supplements for osteo-
arthritis has been widely adopted; however, concerns have
been raised regarding the use of glucosamine supplementation
for LBP [64, 65]. Studies have explored the effects of glucos-
amine on disc matrix homeostasis in an animal model of DD
and demonstrate a net negative effect on the matrix [64]. In
vitro studies revealed a complex mechanism of action, where
glucosamine alleviated some inflammatory effects but in-
creased deleterious effects of mechanical loading on AF cells
[65]. These results may partially explain the conflicting re-
ports of efficacy, though future research is warranted to estab-
lish clinical relevance [64, 65].

Advancement in disc disease diagnostics by imaging
modalities

The measurement of biomechanical properties of the IVD
provides the opportunity for quantitative analyses of tissue
integrity and improved opportunities in the diagnosis of DD
and LBP. The establishment of benchmarks for the biome-
chanical properties of IVD tissues will further allow for im-
proved clinical diagnosis of DD. IVD biomechanical proper-
ties, including elastic moduli, water content, permeability,
GAG content, and Poisson’s ratio have all been proposed
[66] as a reference for comparative analysis in clinical diag-
nostic settings. Additionally, the use of finite element model-
ing has been used to predict biomechanical behavior and
properties of the IVD and simulate changes in those properties
during DD [67]. Therefore, biomechanical properties predict-
ed for DD may be useful in validation of benchmarks for the
clinical diagnosis of DD.

Conventional MRI used clinically for diagnosis of DD is
largely qualitative and dependent on subjective assessment of
anatomical changes associatedwith disease. QuantitativeMRI
(qMRI) measures, specifically T1 and T2 relaxation times,
represent inherent properties of tissues which may change
with structural alterations due to disease. In DD, T1 and T2
have been shown to significantly decrease in both the NP and
AFwith increasing degeneration grades [68]. QMRImeasures
have also been shown to be correlated with regional or overall
changes in disc tissue biomechanical properties [68]. Other
specialized sequences, such as T2* MRI mapping was shown
to be significantly correlated with changes in biomechanical
properties that are indicative of the IVD degenerative process-
es, specifically range of motion and stiffness changes [69].
Similarly, magnetic resonance elastography (MRE) is an im-
aging technique that allows for non-invasive measurement of
the shear modulus of soft tissues [70•]. Shear modulus mea-
sured withMRE provides a new diagnostic measure that could

potentially be compared to known values of healthy and
degenerative IVD tissue. Shear modulus measured with
MRE was also shown to correlate significantly with clinical
DD severity measures on MRI (Pfirrmann grade). The use of
quantitative computed tomography (QCT) and micro-QCT
(μQCT) has also been used to investigate relationships be-
tween the microstructure of the IVD in degenerative condi-
tions. In a study by Jackman et al., increased deflection of the
IVD end plate was found to be a significant indicator of
vertebral fracture [71]. The ability to measure IVDmicrostruc-
ture using QCT and μQCT can potentially allow for the
measurement of biomechanical properties that can be used
in the diagnostics. The development and use of these tools for
DD diagnosis represent opportunities for potential quantifica-
tion of degeneration severity, which is largely a qualitative
assessment in disc degeneration. In addition, the development
of μCT-based 3D kinematic analysis can provide a quantita-
tive assessment of repair in preclinical models to complement
current gold standard methods used for efficacy assessment of
new therapeutic approaches [72].

Response of IVD to injury

Structural changes and misalignment in the spine may induce
injurious changes in the IVD. For example, the facet joints
transfer loads, guide, and constrain motions in the spine.
Injury, degeneration, or anatomical perturbations due to sur-
gery may alter the facet joints, leading to misalignment and
biomechanical dysfunction (summarized in [73]). Fractures
within the vertebral bodies also affect the alignment of adja-
cent facet joints that can cause increased wear and altered
loading and can subsequently lead to IVD degeneration.
Degeneration of the IVD and adjacent facet joints have been
observed to occur coordinately, suggesting the involvement of
an interactive stimuli (such as mechanical tissue insults) or
shared mechanisms (such as inflammation or chemical irrita-
tion) [73, 74]. Indeed, we have recently observed that inflam-
matory and degradative expression in spinal ligaments (the
ligamentum flavum) of subjects with DD or HD increases
with disc disease severity [75].

Fractures of the vertebral body and adjacent cartilaginous
end plate (CEP) of the IVD have been implicated in the
progression of degenerative changes within the disc. In a
study by Dudli et al., burst fracture of the CEP, in which a
highly energetic impact causes fracture of the CEP and expul-
sion of NP from the IVD in organ culture studies, leads to
significant increases in DD markers and cell death. Non-
fracturing impact as well as non-energetic NP depressuriza-
tion did not lead to the same patterns of degenerative markers,
as identified by primary component and clustering analyses
[76, 77]. Degeneration in a preclinical rabbit model was also
found to increase the potential for delamination between AF
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layers. Substantial change to the integrity of the AF after
degeneration may facilitate disc herniation and represents an
additional therapeutic target for strengthening the AF [78].
These findings further support the notion that localized me-
chanical disruption of a distinct tissue (CEP, AF, or NP)
dysregulates interactions among them and facilitates fracture
or delamination that may dispose the IVD to subsequent
degeneration or herniation [76–79].

Dynamic mechanical stimulation of IVD affects the meta-
bolic activity of IVD cells and may consequently alter their
ability to maintain the integrity of disc extracellular matrix
(ECM). Dynamic loading has been shown to increase the
metabolic activity of both NP and AF cells by increased
glycolysis [80, 81]. Increased levels of ATP and ATP con-
sumption due to these changes in metabolic activity can alter
the production of GAGs within the disc, an ATP-demanding
process, leading to possible changes in disc ECM integrity.
Increased ATP levels have also been suggested to cause CEP
calcification and consequently reduced delivery of nutrients to
the inner IVD, leading to cell death and subsequent degener-
ation. Differences between the responses of AF and NP cells
to dynamic loading have also been observed in cell cytoskel-
eton [82], viability, and gene expression [83], all of which can
contribute to compromised IVD structure and degenerative
effects. Dynamic loading experiments have also shown cells
isolated from older subjects are even more susceptible to
degenerative changes following tensile loading, versus cells
of younger subjects [84]. Complex loading of disc explants,
which combines compression and torsion, induced a stronger
degree of disc degeneration compared with compression or
torsion loading alone [82, 83].

The behavior of IVD cells, especially in their response to
mechanical loading, is dependent upon their morphology,
mechanical properties, the properties of the extracellular ma-
trix (ECM), and cell-matrix interactions. NP cells respond to
mechanical stimuli such as compression, tension, and shear,
through cell-ECM interactions which control the deformation
and stress propagated from the tissue down to the cell and
cytoskeleton. Inflammatory stimulation of IVD cells has been
shown to alter the mechanobiology of single cells, by altering
morphology, the cytoskeleton, and hydraulic permeability of the
cell [85]. Significant changes in ECM composition with degen-
eration can also alter the mechanobiology of disc cells.
Manipulation of the cell-ECM interaction, such as substrate
stiffness and content of the ECM constituents, can be used to
control and modify cell responses, promoting NP cell phenotype
and morphology [86•]. Changes in the mechanobiological prop-
erties of these cells can affect the properties and integrity of the
IVD as a whole potentially making it susceptible to further
degeneration. The control of cell-ECM interactions can be used
for altering the response of cells to loading in disease or for the
development of tissue engineering or cell delivery
strategies [86•].

Inflammatory response of IVD cells to mechanical stimu-
lation or injury has also been suggested to play a role in the
presentation of discogenic and lower back pain. Exposure of
dorsal root ganglion to NP tissue following disc herniation is
thought to induce nerve hyperalgesia and associated lower
back pain, due to interaction with cytokines released from
NP cells [87]. Increases in the expression of brain-derived
neurotrophic factor (BDNF) and nerve growth factor (NGF)
within the IVD have been observed in response to whole body
vibration [88]. Interactions between AF cells and endothelial
cells (ECs) that line the microvasculature were also investi-
gated [89]. AF cells from DD secreted factors which stimu-
lated EC production of factors known to induce matrix deg-
radation, angiogenesis, and innervations, including IL-8 and
VEGF [89]. Increases in such factors may promote ingrowth
of blood vessels and nerves into the IVD and may be associ-
ated with increased discogenic pain.

Advancement in repair strategies

Management of IVD degeneration currently focuses on reso-
lution of symptoms and, to a lesser degree, prevention. With
more information regarding the pathogenesis and
mechanobiological changes, there is an increased therapeutic
focus on biological treatments with growth factors, cell trans-
plantation, and biomaterial-based repair.

Growth factors

The premise for growth factors in disc repair is to encourage
endogenous repair processes and maximize the efficacy of
other interventions, but utilization depends on understanding
other interactions in the cellular environment and limiting
unintended effects. To address the change in anabolic factors
in response to inflammation, Tran et al. performed a study on
connective tissue growth factor (CCN2), a protein found in the
extracellular matrix with important implications in responding
to growth factors and promoting wound healing [90, 91].
They found reduced expression of CCN2 following inflam-
matory stimulation, and this reduction was mediated by nu-
clear factor-κB (NF-κB). The protective effects of CCN2
resulted in decreased expression of catabolic genes in IVD
cells, and this protection persisted with NF-κB inhibition.
However, severely degenerated cells were unable to generate
the same response to CCN2 [92] independent of NF-κB
exposure, suggesting that inflamed and degenerated cells lack
a robust response to CCN2. Kim et al. found anti-
inflammatory and protective effects of autologous platelet-
rich plasma (PRP) on IVD tissue in a small study on patients
(N=3) with intermediate level of degeneration. While this
study did not address the mechanism, PRP is also able to
inhibit NF-κB [93, 94]. Application of PRP significantly
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restored gene expression of collagen type II and aggrecan and
significantly reduced COX-2 and MMP-3 gene expression
following exposure to pro-inflammatory stimuli [95]. The
intersection of many anti- and pro-inflammatory pathways
onto the NF-κB pathway makes it an important target for
further elucidation and potential therapeutic targeting.

The TGF-β superfamily and its constituent members of the
BMP family are also implicated in DD. In culture, stimulation
with bone mineralizing protein-2 (BMP-2) or transforming
growth factor-β3 (TGF-β3) increases expression of matrix
proteins, such as collagen and aggrecan. However, a rabbit
tissue explant model has also shown pronounced ossification
in the AF following application of BMP-2 and TGF-β3 [96].
Similarly, insulin-like growth factor-1 (IGF-1) in IVD tissue
increases production of proteoglycans in a dose-dependent
fashion [97]. Huang et al. explored a clinically relevant mech-
anism of introducing IGF-1 into the disc via injection, for
evaluating competition between growth factor diffusion and
binding kinetics required to produce anabolic stimulation.
IGF-1 demonstrated a significant binding reaction to IGF-1
binding protein, thus lowering the availability of freely soluble
IGF [98]. The resulting increased metabolic demand of this
anabolic stimulation was found to also decrease pH, decrease
glucose, and decrease oxygen tension, all biophysical shifts
thought to hinder anabolic benefits of growth factor stimula-
tion [98]. The therapeutic use of IGF-1 and other growth
factors at effective dosages needs to balance the metabolic
demands in the avascular disc and changes in cellularity with
increasing disease severity. This class of treatment may be
more effective before severe DD onset, further highlighting
the need for augmented diagnostics in DD for better identifi-
cation of subjects who may find benefit from potential treat-
ments (Fig. 1). Several growth factors have overlapping sig-
naling pathways, including CCN-2 and IGF-1 [99], empha-
sizing the need for a greater understanding of growth factor
activation mechanisms and physical interactions. One feature
of mid- to late-stage DD is the onset of calcification in the
disc. Suppression of calcification potential has been hypothe-
sized as a possible therapeutic target. A study by Madiraju
et al. demonstrated that human parathyroid hormone (PTH)
can potentially retard IVD degeneration by stimulating matrix
synthesis and suppressing markers of calcification potential in
degenerated disc cells [100]. Tissue engineering provides a
promising approach to recover the functionality of the degen-
erative intervertebral disc. Many studies are directed toward
nucleus pulposus (NP) tissue engineering because DD is
associated with weakening and matrix loss in the NP.
Tissue-engineered IVDs are designed to be utilized as a living
tissue replacement in IVD repair, promoting healing and re-
covery of mechanical properties. Previous studies of
engineered NP have borrowed techniques from cartilage tis-
sue engineering, including culture media composition,
hydrogel-based scaffolds, and biophysical conditioning.

However, important phenotypic differences exist between
NP and articular cartilage, including higher water content
and GAG to collagen ratio in NP tissue [101, 102], supporting
disc-focused investigations. Understanding how biological
factors regulate in vitro NP matrix development represents
an important step toward generating a physiologically relevant
model for NP tissue engineering.

We are investigating effects of the fatty acid linoleic
acid (LA) and the morphogen transforming growth fac-
tor (TGF-β) on engineered NP tissues. LA is an omega-
6 polyunsaturated fatty acid that has been shown to
decrease production of inflammatory cytokines in oste-
oarthritic chondrocytes [103]. TGF-β is a potent mor-
phogen used for induction of a chondrogenic phenotype
in undifferentiated mesenchymal stem cells (MSCs) and
chondrocytes. Transient supplementation of TGF-β for
the first 14 days in culture improves chondrogenic
growth and mechanical propert ies of ar t icular
chondrocytes in tissue-engineered constructs, compared
to continuous growth factor supplementation [104, 105].
However, the effect of transient TGF-β supplementation
on NP cells in 3D culture has not been widely investi-
gated. We explored the temporal effects of TGF-β
(10 ng/ml) and LA (470 μg/ml) exposure on the bio-
mechanical and biochemical development on NP cells
grown in 3D hydrogel scaffolds (2 % agarose), mimick-
ing an engineered NP tissue replacement (Fig. 2). While
t r ans ien t TGF-β i s more po ten t in induc ing
chondrogenic tissue growth of articular chondrocytes
compared to continuous culture [104, 105], our findings
suggest that NP cells respond less robustly to transient
TGF-β exposure. Short-term TGF-β exposure results in
comparable GAG content and mechanical properties as
compared to continuous exposure for 6 weeks in vitro,
confirming the pro-anabolic effects of TGF-β on NP
cell tissue engineering [106, 107]. The presence of LA
synergized with short-term TGF-β to yield the greatest
increase in GAG content and mechanical properties.
Consequently, LA appears to be a critical supplement
for engineered NP tissue. LA inhibits MSC proliferation
and alters MSC expression and secretion of known
mediators of angiogenesis [108]. In addition, LA de-
creases production of inflammatory cytokines in osteo-
arthritic chondrocytes [103], suggesting potential mech-
anisms for the observed effects of LA on NP cells.

A recent preclinical study described the evaluation of an
electrosurgical technique for ablation or tissue removal in the
IVD using plasma-mediated radiofrequency-based ablation.
This technique appears to have an anabolic effect on disc
cells, stimulating proteoglycan and IL-8 production and main-
taining annulus architecture [109]. The increasing IL-8 may
promote maturation and remodeling of the disc matrix and
may restore overall disc architecture [109].
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Cell-based repair

Stem cell therapies are gaining attention in many diseases, and
IVD degeneration is no exception. However, the avascular
environment of the disc and concerns over disruption of the
matrix integrity during cell delivery via needle injection pres-
ent unique obstacles to the successful introduction of regen-
erative cells. Chan et al. developed a model for evaluating
efficacy of cell-based repair, using papain to enzymatically
degrade the proteoglycans of the NP, and found that discs with
moderate to severe loss of extracellular matrix were better able
to accommodate cell delivery via intradiscal injection [110].
While this model simulates structural and biomechanical
changes of degeneration, the ability to understand the inflam-
matory environment and its role in intracellular interactions
are limited.

Multipotent stem cells (MPSCs) derived from umbilical
cord blood show promise at protecting disc height and in-
crease aggrecan expression in IVD repair. The availability of
umbilical cord blood MPSCs through cord blood banks may
also be less invasive than use of autologous stem cells collect-
ed from bone marrow or adipose tissue. However, the avas-
cular nature of IVD and concern for disrupting the integrity of
the AF complicate delivery of cells for disc repair. A mouse

model by Tam et al. evaluated the therapeutic tradeoff be-
tween disc puncture for administration of MPSC directly to
the IVD versus delivery via intravenous injection. Discs that
were punctured and did not receive stem cells showed signif-
icant loss of disc height, whereas discs that were injected with
the MPSCs preserved their height. Both intradisc and intrave-
nous administration of stem cells resulted in an improvement
in aggrecan expression and appeared to stimulate endogenous
repair, though the delivered stem cells did not persist in the
disc [111]. Another study in a rabbit model showed similar
trends for repair with MPSC, but was unable to establish
superior outcomes in stem cell-treated groups versus rabbits
treated with hydrogel carrier alone [112].

Notochordal cells are the developmental origin of the nucleus
pulposus; however, they are not expressed in the adult human
IVD. Induced pluripotent stem cells (iPSCs) have demonstrated
their capacity to differentiate into various cell types. In IVD
applications, mouse and human iPSCs have been shown to
differentiate into NP-like cells expressing notochordal markers
and suggest the possibility that they may be used as a novel cell
source for cellular therapy [113, 114]. Notochordal cells have
been observed to substantially stimulate biosynthetic activity of
NP cells through factors secreted into conditioned medium [115,
116]. These findings support the notion that molecular agents

Fig. 2 Temporal effects of TGF-β and LA on NP Cells. a NP cells were
cultured in 2 % agarose hydrogels for up to 42 days in culture. Bars
indicate duration of exposure. b Percent increase in equilibrium modulus
from day 14 values measured by unconfined compression tests.

*p<0.001 versus all other groups. c Percent increase in GAG content
per wet weight of NP constructs from day 14 values. *p<0.001 versus
respective LA− group. +p<0.002 versus LA−/TGF+
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secreted byNCs constitute a promising alternative for disc repair.
In another approach, preconditioning of stem cells prior to injec-
tion was explored. Improved proteoglycan content and expres-
sion of IVD-specific markers were achieved by non-viral over-
expression ofGDF-5. Themodel did not demonstrate an increase
in type II collagen but introduced a novel way of utilizing stem
cells optimized for IVD repair [117]. Controlled interactions
between stem cells andNP cells using bilaminar coculture pellets
were developed as a cell-based therapy, adapting inductivemech-
anisms from development to trigger differentiation [118]. This
3D coculture system was found to stimulate greater MSC prolif-
eration and differentiation, compared to single cell type or ran-
domly mixed coculture controls [119]. Results of stem cell
studies in IVD are developing and, if delivery obstacles can be
overcome, may offer alternative future treatment strategies.

Hydrogels/biomaterials

Material science is developing scaffold materials, such as
hydrogels and other biomaterials, for support of and delivery
of cells for restoration of tissue function. Hydrogels are poly-
mers with high water content and the ability to serve as a
scaffold for cells, making them a promising choice for NP
prostheses as they perform a similar biomechanical function,
and can metabolically support endogenous NP cells. In con-
trast, repairing the AF necessitates restoration of circumferen-
tial integrity, preventing NP extrusion and interfacing with the
cartilaginous end plates of the vertebrae. The duality of these
tissues within the IVD necessitates development of prostheses
that combine different biomechanical properties, and the ap-
plication of appropriate mechanical influences allows for the
optimization of function-specific tissue engineering [120].

Damage to the NP with loss of water content and disc height
has been shown to compromise the IVD mechanical function.
Range of motion, axial rotation, and compressive stiffness are all
vulnerable to deterioration when the NP has been compromised.
In fact, Reitmaier et al. demonstrated an AF injury without
disruption of the NP does not exhibit these mechanical signs of
degeneration [121]. Injection of hydrogels and biomimetic com-
posites into the NP restores axial compressive stiffness when
delivered directly into the disc via needle injection or when used
to fill a defect created with a balloon catheter (modified
kyphoplasty) [122]. However, the selection of the optimal pros-
thesis relies on bothmechanical properties of the hydrogel and its
ability to assimilate biologically [123]. A study of a hydrogel
prosthesis that swells in situ upon delivery in a canine model
showed improvement in flexion and extension and in disc height
following replacement of injured IVDs with prostheses. In this
work, Kranenburg et al. describes a model for designing a
prosthetic NP with subsequent restoration of the biomechanical
neutral zone, which has been clinically posited to correlate with
reduction in pain [124]. An injectable prosthesis studied by
Malhotra et al. was also able to correct changes in range of

motion following replacement with an NP injection to an ovine
model, but could not restore compressive stiffness without ad-
dressing the AF defect [125].

Most commonly, AF repair is performed by sutures or an
increasing array of devices that insert through the defect and
seal the AF to prevent NP herniation. Though sutures and
implants are capable of preventing extrusion of the central
tissue in some studies, Reitmaier et al. found repair strategy
neither held the NP in place [121] nor restored biomechanical
function of the AF [126]. The concept of an adhesive for
repair injected to the IVD following restoration of the NP by
stem cell or growth factor treatment is attractive because it
may maximize therapeutic benefit and minimizing iatrogenic
damage. One such adhesive, a fibrin-genipin hydrogel opti-
mized for AF repair showed excellent success at sealing AF
and preventing loss of disc height in response to experimental
compression [127]. The biomechanical function of the
repaired disc approached that of uninjured tissue and was
not significantly different from intact tissue with regard to
compressive stiffness. However, these findings were tempered
by the histological observation of inflammatory cells and
fibrosis, and better understanding of the immune response to
such materials is required for clinical application [127].
Another approach to AF repair also utilizes hydrogel scaffolds
with fiber reinforcement to improve cellular differentiation
and fusion with cartilaginous end plate. The mechanisms
behind these improvements are uncertain, and inflammatory
response of these composites was not explored [128].

Summary

Low back pain occurs with many diseases and represents a
tremendous burden to the health care system and economy.
Understanding more about these underlying pathologies helps
delineate differences between these disease processes and
describe opportunities that may represent critical therapeutic
targets. Inflammation is increasingly critical as both a cause
and effect of IVD disease. Treatments that utilize inherent
growth potential, through growth factors or stem cells, can
stimulate tissue repair but may also provide benefit by miti-
gating inflammation. Understanding of IVD mechanics con-
tributes an essential piece of the repair puzzle, as much of the
damage in DD is associated with mechanical dysfunction of
the IVD, and appropriate loading affects the growth and
metabolism of IVD cells. Optimum management of LBP will
continue to integrate new and refined concepts in pathophys-
iology, earlier detection of disease, and improved develop-
ments in tissue engineering.

With regard to the authors’ research cited in this paper, all
institutional and national guidelines for the care and use of
laboratory animals were followed.
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