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Abstract
Purpose of Review Cardiac resynchronization therapy (CRT) is an established modality for treating heart failure. However, one-
third of patients do not respond and it is increasingly recognized that response is not binary and we should be aiming for “best
response”. This review looks at factors predicting response and remodelling and highlights areas where we may improve both the
proportion of responders but also maximize response in an individual.
Recent Findings We review the clinical characteristics predicting response including structural and electrical remodelling and
discuss areas of debate. We examine the evidence supporting the recently described move from anatomical-based placement of
the left ventricular (LV) lead to an electrical approach with intra-operative electrical mapping and targeting of late activating
regions of the LV. Finally, evidence for electrocardiographically guided post-implant programming, aiming for the narrowest
paced QRS, is discussed. This includes the increasing use of atrioventricular and interventricular delay optimization and the use
of newer algorithms and methods (Sync-AV, Adaptiv-CRT, Multipoint pacing, etc.) for achieving the best response.
Summary Recent data supports a tailored, individualized approach to patient selection, LV lead placement and programming to
get the best response from CRT.
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Introduction

Cardiac resynchronization therapy (CRT), with or without
defibrillator capabilities, has been a major advance in the

therapy of heart failure, and its use is reflected in all major
guidelines [1–3]. However, there has been a consistent obser-
vation that about one-third of patients receiving CRT do not
“respond” [4–6] and it is increasingly recognized that re-
sponse is not binary and we should be aiming for “best re-
sponse”. This review examines clinical, procedural and post-
procedural factors predicting response and remodelling and
highlights areas where we may improve both the proportion
of responders and maximize the response from CRT.

Definition of Response

Response to CRT has been variably described and lacks a
consensus definition. Response can be driven by clinical end-
points (such as death or heart failure hospitalization), im-
provement in symptoms (New York Heart Association
(NYHA) functional class, quality of life scores, six-minute
walk test, etc.), or echocardiographic parameters (including
left ventricular dimensions in diastole and systole and pre-
defined absolute or relative increase in left ventricular ejection
fraction (LVEF)) [5, 7–9]. Often, response is defined using a
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mixture of clinical and/or echocardiographic findings; the
most common being the Clinical Composite Score [8–10].

This makes cross-comparison of trials and registries chal-
lenging. For example, in the Predictors of Response to
Cardiac Resynchronization Therapy (PROSPECT) trial, the
response rate varied between 56 and 69%, purely dependent
on the definition of the criteria for response to CRT [7].
Furthermore, the term “response”, as arbitrarily defined in
many studies, gives an impression that it is a categorical or
binary variable. A “responder” may have achieved an im-
proved LVEF and/or reduced internal dimensions and/or im-
proved NYHA class, but this may be a sub-maximal response
for that individual patient.We should be aiming to achieve the
“best response” in every patient.

In our practice, we use a combination of symptomatic
(NYHA class) and echocardiographic assessment (left ven-
tricular dimensions and LVEF) as markers of response. This
allows cross-comparison with the literature and the combina-
tion is useful as we find that clinical response occurs early,
typically preceding positive echocardiographic remodelling
by several months. Response using these variables is docu-
mented at every visit and changes in programming are per-
formed to try and maximize response on a regular basis.

Clinical Characteristics Predicting Response

Multiple factors have been suggested as predictors of a posi-
tive response to CRT, including female sex, non-ischaemic
cardiomyopathy, absence of scar on cardiac magnetic reso-
nance (CMR), ejection fraction and ECG duration and mor-
phology [11–15, 16•, 17, 18]. Fornwalt and colleagues [19]
examined 15 clinical and echocardiographic parameters asso-
ciated with response and applied them to the 426 patients
enrolled in the PROSPECT trial [7]. Using these parameters,
prediction of response varied between 32 and 91%. Utilizing
κ-values for agreement between parameters, they found over-
all agreement to be poor, especially between echocardiograph-
ic and clinical parameters.

Of the various clinical variables associated with response,
gender and the underlying substrate appear to be the most
important and reproducible. There has been a consistent dem-
onstration of superior benefit from CRT in females compared
with males [11, 12]. Furthermore, the benefit of CRT appears
to be less reliant on QRS duration [12], raising the question as
to whether women should have a different QRS width cut-off
for qualifying for CRT as opposed to men [11]. With respect
to substrate, multiple authors have shown improved response
to CRT in patients with non-ischemic cardiomyopathy
(NICM) compared with those with ischemic cardiomyopathy
(ICM) [13, 14]. This is driven by a higher increment in LVEF
[13], better functional status [13] and possibly improved sur-
vival [14]. Furthermore, NICM is associated with improved

electrical remodelling [20] and higher chance of “super-re-
sponse” with increased rates of normalization of LVEF [21].

ECG Characteristics Predicting Response

QRS duration and morphology remain the biggest indepen-
dent predictor of response to CRT, which is reflected in inter-
national guidelines [1–3]. This is not surprising, given that
CRT aims to electrically resynchronize the heart and a broad
QRS duration (> 150 ms) associated with left bundle branch
block (LBBB) indicates electrical delay in the LV and there-
fore electrical dyssynchrony.

The benefit of CRT in right bundle branch block (RBBB),
intraventricular conduction defect (IVCD) and more modest
QRS durations (130–149 ms) is less clear and has lower clas-
ses of recommendation in guidelines [1–3]. However, this is a
large group of patients and may still benefit from targeted LV
lead placement, especially when one considers LV electrical
delay in the absence of LBBB. Poole et al. (2016) [16•] ex-
amined the pattern and local timings of LV activation in pa-
tients with various patterns of conduction system disease
(Fig. 1). As expected, in patients with LBBB, the latest acti-
vating LV segments are the lateral basal LV and the adjoining
regions—the traditional target for LV lead implantation. In
contrast, in those with RBBB, latest activation occurs in areas
of the RV free wall. Although there can be relative delays
between LV segments, the absolute delay is lower than in
those with LBBB, indicating a lesser degree of dyssynchrony,
reducing the potential benefit of CRT. However, a sub-group
of patients with RBBB have associated distal conduction dis-
ease in the left system (left anterior fascicular and left posterior
fascicular block). In such patients, there were areas in the LV
that had both relative and absolute late activation compared
with similar segments in patients with pure RBBB. In this
group, targeted implantation of an LV lead at the latest acti-
vated LV site may significantly improve dyssynchrony and
derive benefit from CRT. In those with IVCD, there were
variable areas of late activation within the LV, often not in
the traditional basal or lateral areas, again raising the possibil-
ity of targeted LV lead placement.

In contrast, CRT confers no benefit (and may be harmful)
in patients with narrow QRS duration (< 130 ms) [17, 22]
even in the presence of echocardiographic dyssynchrony
[17] and is therefore not recommended in this group.

Implantation Characteristics

The key step of a CRT procedure is the placement of the LV
lead in a tributary of the coronary sinus (CS). The greatest
benefit is derived from a LV lead which is able to optimally
resynchronize the ventricle. Therefore, the primary objective
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is to consider the best possible lead position rather than to use
a branch that is just procedurally easy or quick to target. We
believe delineation of all available CS branches is important
and use sequential balloon occlusion venography with long
cine times to outline all tributaries of the CS, as well as col-
laterals. Collaterals may be important for advanced techniques
including snaring. Suitable veins can then be targeted anatom-
ically or electrically.

Anatomical Considerations

Anatomically, the principal considerations are lateral versus a
non-lateral and basal versus apical position. As previously
discussed, typical LBBB usually produces latest activation
in the basal lateral LV [16•]. CS tributaries in this area have
been traditionally targeted for LV lead placement. A snapshot
of real-world practice comes from a meta-analysis from
Gamble and colleagues [23] who identified a total of 164
studies (including randomized trials and cases series) that
yielded 29,503 patients. The final LV lead position was re-
ported in 7695 LV leads (26%). Nearly three-quarters had a
LV lead position in the lateral or postero-lateral position (43%
lateral and 30% postero-lateral), and > 80% in the non-apical
position (62% mid-ventricular, 22% basal and 15% apical).

Implanters are therefore preferentially targeting lateral and
non-apical sites and early data supported this concept. Butter
et al. [24] studied acute haemodynamic response with respect
to the placement of the LV lead at anterior versus lateral free
wall sites of the LV in 30 patients included in the PATH-CHF
II trial. The lateral free wall LV sites yielded better acute
haemodynamic parameters—LV dp/dt(max) and pulse
pressures—compared with anterior sites. However, data on
improved long-term outcome is lacking, with the MADIT
CRT Study [25] showing no significant relationship of LV
lead position (anterior, lateral and posterior) to outcome.

However, the same study demonstrated significantly better
outcomes in patients with basal placement compared with
apical placement of LV leads [25]. However, this was recently
challenged by Leyva and colleagues [26] who found in a
retrospective study that an apical position was significantly
better than a non-apical position for cardiac survival, the dif-
ference being driven by reduced pump failure and sudden
cardiac death.

The data on LV lead position is conflicting with only ret-
rospective analyses of trials with heterogeneous lead positions
to guide us. At best, targeting anatomical placement gives
some guidance but cannot solely be relied on to produce best
outcomes.

Electrical Considerations

The central concept of CRT is correction of electromechanical
dyssynchrony via electrical resynchronization. As such, con-
sideration of the electrical timings of LV lead placement pro-
vides an intriguing target to maximize response to CRT
(Fig. 2).

Q-LV

The interval from the beginning of the surface QRS to the
sensed LV epicardial electrogram gives the Q-LV (Fig. 2a).
A long Q-LV interval indicates late local activation, and may
be a useful feature to guide CS lead placement.

One of earliest studies looking at targeting LV leads to
electrical “lateness” [27] examined 71 patients undergoing
resynchronization therapy for standard indications.
Intraoperatively, they measured left ventricular lead electrical
delay (LVLED)—the Q-LV interval expressed as a percent-
age of the QRS dura t ion—and examined acu te

Fig. 1 Activation patterns using 3-dimensional electroanatomic mapping
comparing right bundle branch block (RBBB), left bundle branch block
(LBBB) and RBBB + left anterior hemiblock (LAHB). Earliest activation
displayed in red, latest in blue. In LBBB (left panel), latest activation is
seen in the lateral LV. In RBBB (middle panel), the RV free wall has

latest activation with the LV lateral wall activated mid cycle. In RBBB
and LAHB (right panel), although latest activation remains in the RV free
wall, basal lateral LV is also activated late, towards the end of the QRS.
Figure adapted with permission from Poole et al. [16•]
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haemodynamic response using echocardiographic derived
delta dp/dt change. They reported significant correlation of
LVLED with delta dp/dt. Additionally, at 12-month follow-
up, reduced LVLED (< 50% of the QRS) was associated with
significantly higher combined endpoint of heart failure hospi-
talization and/or all-cause mortality (HR 2.7, 95% confidence
interval 1.17–6.68, P = 0.032). Subsequent investigators have
confirmed these findings, with high predictive values of a
prolonged Q-LV for positive remodelling [28–31•].

Van Everdingen and colleagues [30] examined mean Q-
LV timings in 51 patients at various branches of the CS and
found that the segment with the average most prolonged Q-
LV timings was the lateral segment. However, while this was
true of the whole group, there was heterogeneity within the
group, with the absolute latest site in individual patients being
spread between the antero-lateral, posterior and postero-lateral
segments. Furthermore, there was heterogeneity in the longi-
tudinal direction no clear cut “best site” between apical and
non-apical segments.

This argues for the case that there are potentially good sites
for LV leads in terms of timing delay at positions that are not
“traditionally ideal” by anatomical standards. This may be
especially true in those with non-LBBB morphology.
Kandala et al. [32] studied 144 patients receiving CRT—82
patients with LBBB and 62 patients with non-LBBBmorphol-
ogy. They reported that Q-LV correlated with paced QRS
duration significantly in both LBBB and non-LBBB groups
(r = 0.52, P < 0.0001). Importantly, LVLED was significantly
higher for the LBBB group as opposed to the non-LBBB
group (73 ± 25% vs. 61 ± 21%, P = 0.002), indicating a larger

“electrical window” for resynchronization in patients with
LBBB as opposed to non-LBBB, and may also indicate one
of the reasons for a lack of comparable reverse remodelling in
non-LBBB patients. In terms of clinical end-points such as
heart failure hospitalization and composite outcomes (com-
prising heart failure hospitalization, left ventricular assist de-
vice implantation, cardiac transplantation and all-cause mor-
tality), although those with LBBB and LVLED ≥ 50% had the
best outcome, LVLED predicted response regardless of left or
right bundle branch morphologies.

These findings introduce the idea of individualization of
LV lead placement based on direct electrical measurement,
rather than relying purely on anatomical parameters, but need
to be validated in prospective randomized controlled trials.

RV to LV Timings

Q-LV is a measure of delayed activation of the LV, but CRT
needs to resynchronize the heart and consideration of the rel-
ative timings of the septum to the lateral wall is critical. This
can be determined by examining the timing delay between the
RV lead electrogram (often placed on the septal aspect of the
RV) and the LV lead electrogram. Gold et al. [33•] studied
1342 patients having CRT for standard indications and exam-
ined the timing delay of the sensed LV electrogram with re-
spect to the sensed RV electrogram during intrinsic conduc-
tion (the interventricular delay) (Fig. 2b). They dichotomized
the cohort into two groups above or below the median value of
RV-LV timing (67 ms). They demonstrated an improved

Fig. 2 Examples of electrical parameters tested. The timing callipers
measure intervals from either the beginning of the QRS or the RV
electrogram to the point of the maximum deflection (positive or
negative) on the LV electrogram for the sake of consistency and
reproducibility. a Device recording during intrinsic conduction showing
five channels, from top to bottom—ECG lead I, ECG lead II, marker
channel, LV channel and RV channel. The surface QRS duration is
190 ms (marked with a red calliper) and the Q-LV duration is 160 ms
(marked with a black calliper). b Device recording during intrinsic

conduction showing four channels, from top to bottom—ECG lead I,
atrial channel, RV channel and LV channel. The surface QRS duration
is 164 ms (marked with a red calliper) and the duration between the
sensed RV electrogram and the sensed LV electrogram is 142 ms
(marked with a blue calliper, RV-LV sense). c Device recording during
sequential atrial and RV pacing showing five channels, from top to
bottom—ECG lead I, ECG lead II, marker channel, LV channel and
RV channel. The duration from the RV-paced electrogram to the LV-
sensed electrogram is 119 ms (marked with a black calliper, RVp-LVs)
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outcome with better heart failure–free survival at 12 months in
the group with intrinsic RV-LV timing > 67 ms, compared
with the ones with a shorter interval. Similar results have been
reported by the same group [34] where longer RV-LV timings
predicted significantly better CRT outcomes and have been
reproduced by other authors [28, 35••].

Sensed RV-LV timings during intrinsic conduction are
a reflection of His-Purkinje and intramyocardial conduc-
tion delay but examination of intramyocardial conduction
delay between leads during RV pacing may be more use-
ful in predicting response to biventricular pacing. This
may be especially pertinent in the group of patients with
both intrinsic AV nodal and distal conduction system
(BOCK HF group) [36]. Oddone et al. [37] studied 97
patients undergoing CRT and measured the timing inter-
val between the RV-paced electrogram and the sensed CS
electrogram (Fig. 2c) and quantified this as a percentage
of the total QRS width which they termed as the RLD
index. They found that the sites with the longest RLD
were found in the basal and mid-lateral segments and
were correlated inversely and significantly with
biventricular paced ECG QRS width, which can be con-
sidered a surrogate for clinical outcome. RLD index was
not altered by the presence of intrinsic AV nodal disease.
Other authors have demonstrated similar positive results
for RV-paced to LV-sensed timings predicting outcome
[38, 39], and a larger prospective trial is recruiting
(OPSITE 2) [37].

Workflow in our Lab

The RV lead in our lab is typically placed in the mid to low
septum. The steps for implantation of the LV lead (after the
RV and RA leads) are as follows:

1 CS venogram delineating all the branches—high and low,
with long cine times to look at collaterals and proximal
tributaries.

2 Electrical mapping of the CS tributaries—a 014-in. coro-
nary wire is passed through the CS and inner sheaths to
cannulate a previously identified tributary and a unipolar
signal is obtained by connecting cathode to the wire and
anode to the skin. The duration from the onset of the sur-
face QRS to the first rapid change in deflection of the
unipolar electrogram is obtained from the wire at a sweep
speed of 100 mm/s, giving the Q-LV. This is repeated for
all identified tributaries and the longest two chosen for
placement of CS lead.

3 RV-LV timings—a quadripolar lead is passed to the trib-
utary with longest Q-LV and tested for sensing, pacing and
diaphragmatic capture. Assuming adequate pacing param-
eters, Q-LV is reconfirmed using all four poles as

cathodes, followed by measurement of both sensed RV
to sensed LV timings and paced RV to sensed LV signal
(using all four cathodes). This is repeated in the other
branch identified on initial Q-LV screening, unless there
are concerns over ability to recannulate the vein. Final
placement is determined based on pacing parameters and
combination of all timing intervals.

4 Post-implant—the CS poles are checked again for the lon-
gest Q-LV, longest sensed RV to sensed LV times and
longest paced RV to sensed LV times. Assuming satisfac-
tory pacing parameters, the bipole with the longest time is
chosen for pacing. Subsequently, multiple ECGs are per-
formed with different LV offsets and different AV
delays—the settings that yield the narrowest QRS are cho-
sen and programmed.

Post-implant Characteristics

Post-implantation programming of the device has two major
objectives, to convert non-responders to responders and to
maximize response in all patients. Traditionally, the non-
responder group has been the principal focus, but the recog-
nition that response is not a binary variable has pushed many
investigators to seek maximal response in all.

It is critical to ensure high degrees of biventricular pacing
[40] and in patients with AF, one should consider AV nodal
ablation [41]. There are several avenues open for program-
ming to try and maximize response, predominantly modifica-
tion of atrioventricular and interventricular timing delay with
or without the use of proprietary algorithms such as Sync-AV,
Adaptiv-CRT or SonR and the use ofmultipoint pacing. There
is increasing interest in the use of paced ECG duration to
guide programming (Fig. 3).

Early trails such as PATH-CHF and PATH-CHF II
[42, 43] showed significant changes in LV dp/dt max
with different AV delays and small studies of AV delay
optimization using echo parameters showed a small ben-
efit in clinical outcome [6, 44]. However, the larger
prospective SMART-AV and FREEDOM studies [45,
46] failed to show any significant difference in the out-
come of optimization of AV intervals compared with
nominal settings. This may in part be explained by the
dynamic nature of the intrinsic AV intervals, dependent
on heart rate, autonomic tone and other factors, where
“best” AV delays may vary significantly over time. This
could be potentially overcome by automated algorithms
to assess intrinsic AV times and proprietary algorithms
for programming AV delays.

Sync-AV (Abbott Medical, USA) is one such algorithm
of dynamic AV optimization using fixed reduction of
sensed AV delay. Verma and colleagues [47•] have
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recently examined the effect of various programming
modes including the use of Sync-AV on paced QRS du-
ration in 73 patients and found significantly narrower
QRS duration with Sync-AV programmed on. However,
to date, no prospective data on outcome is available using
this algorithm. Adaptive CRT (Medtronic, USA) is anoth-
er proprietary algorithm dynamically altering AV delays
to produce LV pacing synchronized with intrinsic activa-
tion to produce fusion with intrinsic conduction, also
effecting VV timings. This produces narrower QRS dura-
tion and is superior to echocardiographically optimized
biventricular pacing with reduced risk of death or heart
failure hospitalization [48]. Finally, SonR (Sorin, Italy) is
a proprietary algorithm with automatic optimization of
AV and VV delays based on a Peak Endocardial
Acceleration signal system. The CLEAR study demon-
strated with improvement in composite clinical endpoint
using SonR, largely driven by improved symptomatic sta-
tus [49]. The larger RESPOND-CRT trial [50] demon-
strated non-inferiority to echo optimization, with a 35%
risk reduction in heart failure hospitalization.

Both Sync-AV and adaptive CRT produce shorter paced
QRS duration which has been shown to be a good predictor of
clinical response [5, 51, 52] and recent data shows correlation
with long-term mortality [53]. Programming to shortest QRS
duration has recently been examined prospectively by Trucco
and colleagues [54] where 180 patients with LBBB undergo-
ing CRT implant were randomized to fusion optimized inter-
vals (FOI) or nominal settings. In the FOI group, atrioventric-
ular and interventricular delays were optimized using the
narrowest QRS using fusion and intrinsic conduction. They
reported significantly shorter paced QRS duration in the FOI

group with improved LV reverse remodelling (74% vs. 53%,
P = 0.026).

Multipoint pacing is associated with shorter paced QRS
duration [55] and is associated with improved acute hae-
modynamic response compared with conventional
biventricular pacing [56, 57]. Smaller studies have sug-
gested some benefit over conventional CRT [55, 58] with
the larger MPP trial [59] showing non-inferiority overall,
but increased rates of response in those in whom
multipoint pacing was programmed appropriately (>
30 mm inter-electrode spacing and near-simultaneous ac-
tivation). The use of multipoint pacing is being addressed
in currently enrolling trials.

Workflow in our Clinic

There is no consensus in the manner, timing or frequency
of post-implant programming. However, post hoc analysis
of the CLEAR study [60] demonstrated improved out-
come of more intense follow-up in the 1st year post-
implant with respect to the composite endpoint of free-
dom from death or heart failure hospitalizations and im-
proved symptomatic status (85% vs. 61%, P < 0.001),
largely driven by a reduction in heart failure hospitaliza-
tions. We optimize immediately post-implant and review
the patient at 2–4 weeks to test baseline lead function as
well as to look at the wound site. Patients are reviewed at
3 months and 6 months post-implant then 3–6 monthly
thereafter in a dedicated CRT clinic.

At all visits, the following steps are undertaken:

Fig. 3 Examples of ECG morphologies from same patient. a Intrinsic
ECG, sinus rhythm, LBBB, QRS width 170 ms. b Atrial sensed,
biventricular paced rhythm, sync AV mode (optimal sync AV delay),
with simultaneous LV and RV pacing, paced QRS width 130 ms. c

Atrial sensed, biventricular paced rhythm, sync AV mode (optimal sync
AV delay), with LV ahead of RV by 20 ms, paced QRS width 120 ms. d
Atrial sensed, biventricular paced rhythm, sync AV mode (optimal sync
AV delay), with LV ahead of RV by 40 ms, paced QRS width 110 ms
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1. Documentation of symptoms (NYHA class) left ventric-
ular dimensions and LVEF.

2. Standard testing examining %pacing, arrhythmia burden,
lead and battery parameters.

3. Baseline 12-lead ECG in current settings and with pacing
turned off (intrinsic conduction). The goal of program-
ming is to achieve the narrowest QRS, as this has been
shown in the past to be a good predictor of clinical re-
sponse [5, 51, 53]. With each adjustment in settings, we
repeat a 12-lead ECG to assess the QRS width.

4. Choosing the LV pacing pole: If the patient has intrinsic
rhythm, Q-LV and RV-LV timings are measured at all
four poles and the pole with the longest interval is select-
ed, provided acceptable pacing parameters. In patients
who have no or weak intrinsic AV nodal conduction,
the pole with the longest RV-paced to LV-sensed timing
is used. In the case of high threshold or diaphragmatic
pacing, the pole with the next best timings is selected.

5. AV delays: After determining the appropriate LV polari-
ty, sequential 12 lead ECGs are performed for various AV
delays in an effort to further narrow the QRS width. In
devices where they are available, we programme dynamic
AV delays and use proprietary algorithms as appropriate
(Sync-AV, Adaptiv-CRT, SmartDelay, etc.). It is our
preference to ensure 100% atrial sensing or pacing to en-
sure homogeneity of AV delays and programme the de-
vice accordingly.

6. VV delays: Using the best AV delay, we programme var-
ious VV timings and offsets, starting with simultaneous
LV and RV timings increasing and decreasing LV offset
in increments of 10 ms—recording QRS duration on 12-
lead ECG at each point.

7. Recheck of AV delay: Once best VV timing has been
confirmed, step 4 is repeated to check no significant
change following VV optimization.

8. Multipoint pacing (MPP): There is no strong evidence for
MPP. However, the MultiPoint Pacing Trial [59] has
shown non-inferiority and safety and a suggestion of im-
proved outcome. As such, we reserve trial of MPP for
non-responders or those whose response has been minor.

Nonresponse/Poor Response

The above steps recognize that response is not a binary
variable, and the aim is maximal response to CRT in
any individual patient. However, there will be a small
group of people who will not respond or only poorly
respond to CRT despite careful implantation and follow-
up. In such patients, the following points should be
considered.

1. Re-evaluate the 12-lead ECG with intrinsic conduction (if
present): Occasionally, the intrinsic QRS may be
narrower than the best-paced QRS, in which case the pa-
tient may be better with CRT programmed OFF.

2. Re-evaluate medical therapy: Ensure the patient is on ap-
propriate maximal medical therapy. Close liaison with
heart failure physicians is mandatory in this group.

3. Re-evaluate substrate: Was the patient really expected to
improve? In some situations, CRT may have been per-
formed on hearts that are extremely scarred where there
is no scope of positive remodelling. Such patients would
not obviously be expected to improve—these patients
probably need consideration of assist device/transplant.

4. Re-evaluate venous anatomy: Review of original CS
venogram films can be performed to look for alternative
branches which could be targeted as a new site of LV
endocardial pacing. If no suitable tributaries, consider
the need for an epicardial LV lead.

5. “Non-progressor”: Heart failure is a progressive disease
with the expectation of continued reduction in pump func-
tion. The concept of the “non-progressor” has recently
been raised [61], where although LV chamber parameters
do not improve, they remain constant over time, with
CRT arresting the expected worsening of LV function
over time. While this is an intriguing concept, we would
caution its importance in routine practice.

6. Echo optimization: Although imaging with cardiac MRI
and echocardiography is important to define the nature of
the substrate and serial assessment of LV internal dimen-
sions and ejection fraction by echocardiography is critical
to assess efficacy of CRT programming, the evidence for
its routine use in CRT optimization is lacking [62, 63].
We find it cumbersome and non-reproducible and use it in
very limited cases of non-responders where electrical
reprogramming has failed.

Conclusions

Our goal is to maximize the response to CRT both to improve
symptoms and achieve positive electrical and structural re-
modelling. This involves choosing the right patient,
implanting the LV lead in the best position and ensuring cor-
rect programming. Clinical characteristics such as sex and
underlying substrate are important, but the 12-lead ECG re-
mains the most powerful pre-implant characteristic predicting
response to CRT. More work is required to try and identify a
subset of patients who are unlikely to benefit from CRT, to
allow better targeting of therapy.With respect to implantation,
intra-operative electrical mapping represents a paradigm shift
for LV lead placement, introducing the concept of individual-
ized therapy. This has recently extended to programming,

Curr Cardiovasc Risk Rep (2020) 14: 6 Page 7 of 10 6



with increasing recognition of the importance of paced QRS
duration and the use of algorithms to improve AV and VV
timings on a dynamic basis. The era of “one size fits all” is
behind us and future clinical trials need to focus on principles
of programming with therapy tailored to the individual.
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