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Abstract Cardiovascular disease continues to impose a high
societal and economic burden. Although it occurs primarily in
later life, there is strong evidence that it originates in early life.
The nutritional environment that an unborn child is exposed to
can heavily influence later disease risk, with nutritional expo-
sures altering organ development and programming metabolic
changes that are then maintained during the life course.
Epigenetic changes induced by the early life environment
are thought to be a key mechanism by which these early life
events influence subsequent disease risk. Here, we review the
emerging role of epigenetics in the development of cardiovas-
cular disease.
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Introduction

Non-communicable diseases (NCDs) such as diabetes, cardio-
vascular disease, obesity and cancer collectively represent one

of the greatest challenges to global health in the twenty-first
century [1]. Globally, NCDs kill 38 million people a year,
accounting for approximately 8 out of every 10 deaths in the
developed world [2]. NCDs are not restricted to industrialized
countries; they are also the leading cause of death in both low
and middle income countries [3]. Countries undergoing rapid
socio-economic improvement are especially vulnerable, as
while the burden of infectious diseases decreases with ad-
vances in health care provision, the incidence of NCDs has
increased rapidly along with the adoption of more sedentary
lifestyles and consumption of westernized diets [4, 5].
Together, these factors are predicted to drive a 17 % increase
in NCD levels over the next decade [3]. This book chap-
ter will explore the role of the early life environment in
the development of cardiovascular disease, and examine
the growing evidence that epigenetic changes underlie this
link between early life and later CVD disease risk.

Aetiology of CVD

Cardiovascular disease (CVD) is the single largest cause of
death among NCDs, responsible for almost a third of all NCD
deaths [2]. CVD encompasses a class of diseases involving
both the heart and the wider circulatory system, and includes
cardiac hypertrophy, damage to blood vessels, endothelial
dysfunction and arterial narrowing that can lead to heart fail-
ure, stroke and myocardial infarction. Atherosclerosis and hy-
pertension are considered the two main underlying causes of
CVD [6]. There are a number of risk factors associated with
CVD including family history and age as well as a number of
modifiable risk factors which include obesity, hypertension,
high cholesterol concentrations, physical inactivity, diabetes,
poor nutrition and smoking [7, 8].

Obesity is the largest modifiable risk factor for CVD [8].
Obesity levels are increasing at a dramatic rate: global obesity
levels having doubled since the 1980s, with 55% of European
adults now overweight and 20 % clinically obese [3]. Obesity
increases metabolic load due to increased blood volume
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serving the greater adipose mass, leading to increased pre-load
on the heart, while afterload is increased by arterial stiffness,
with obese adults often exhibiting both concentric and eccen-
tric hypertrophy [6, 9]. Obesity is also thought to account for
as much as 70 % of essential hypertension [10]. Obesity
amongwomen of child-bearing age has also steadily increased
over the last 20 years, with some western countries now
reporting that two thirds of potential mothers are overweight
and a third obese [11, 12]. This is of particular concern as there
is mounting evidence that exposure to maternal obesity in
utero can increase adult CVD risk. Consistent with the rise
in maternal obesity, obesity among children is also increasing
globally with some western countries reporting that a third of
children are overweight, of whom half are clinically obese [2].
Childhood CVD should be rare, but is increasing along with
childhood obesity. Obese children exhibit several physiologi-
cal signs of cardiovascular dysfunction, independent of obe-
sity related co-morbidities, with altered cardiac structure [13]
and increased regional deformation of the left ventricle [14••].
By adolescence, obese children display both diastolic and sys-
tolic dysfunction, along with reduced ventricular stain rate
[15, 16]. Childhood obesity also promotes endothelial dys-
function leading to atherosclerotic plaque formation, hypertro-
phy and ultimately, cardiac dysfunction [9, 17].

The Early Life Environment and the Risk of NCDs

Research into CVD and its co-morbidities initially focused on
the disease in adulthood, but there is now increasing evidence
that CVD may originate in early life [18]. The early life envi-
ronment has been shown to greatly influence future health,
with nutrition during pregnancy and in early post-natal life
impacting upon organ development and metabolic regulation,
influencing later disease risk [19].

The initial link between adult CVD risk and the early life
environment came from a Norwegian study that found an as-
sociation between CVD in middle age and under nutrition and
poverty during childhood and adolescence [20]. Later work in
Britain by David Barker and colleagues expanded on these
observations by comparing birth measurements with health
in middle age. Here, they found a strong correlation between
low birth weight (LBW) and coronary heart disease (CHD), as
well as diabetes, increased systolic blood pressure and hyper-
lipidemia [21–24]. Subsequent cohort studies have confirmed
these associations, with LBW linked to an increase in CVD
risk factors in childhood [25•, 26–28], leading to greater mor-
tality risk from stroke and CHD in adult life [27, 29, 30].

While these epidemiological studies demonstrated the re-
lationship between foetal growth and CVD risk, studies car-
ried out on people whose mothers were exposed to the Dutch
Hunger Winter, a famine that occurred in the Netherlands in
1944–1945, revealed the importance of maternal nutrition to

the offspring’s health in later life. In these studies, individuals
born to mothers exposed to famine during the periconceptual
period up to the first trimester of pregnancy had an increased
risk of CVD and obesity in middle age, whereas individuals
that were exposed to famine in the later stages of gestation
showed an increased risk of developing insulin resistance and
hypertension in adulthood [31, 32]. Such findings also suggest
that the timing of the dietary constraint may be important and
may determine which organ system is affected.

Postnatal growth trajectory has been linked to CVD risk,
with evidence that rapid catch up growth among those born
with a low birth weight impacts upon endothelial function and
subsequent atherosclerosis [6, 33] leading to hypertension and
coronary heart disease in adulthood [26, 34].

A number of studies have also shown a J- or U-shaped
relationship between birth weight (BW) and disease risk with
babies born at the highest BW also being at increased risk of
developing CVD and other NCDs [33, 35–39] (Fig. 1).
Maternal obesity and weight gain during pregnancy have also
been associated with subsequent obesity [40] and an increase
in offspring systolic blood pressure [41]. Further studies have
also linked parental BMI and offspring cardiovascular risk
factors such as increased diastolic and systolic blood pressure,
elevated insulin levels and lowered HDL [8, 42•, 43], and
more specifically, shown an association between increased
maternal BMI during pregnancy and later death from car-
diovascular events [26, 44•]. Maternal obesity has been
shown to influence the BMI of the grandchildren [45],
implying a transgenerational effect that has far reaching
implications for the health of future generations [38].
Maternal obesity may affect the developing foetus through
intrauterine interactions and while confounding factors in
human studies prevent inferences about the mechanisms of
disease, animal models have allowed investigation of the
potential mechanisms underlying these associations.

Animal Models of Nutritional Programming

Animal models have sought to replicate findings from human
epidemiological studies that show an association between the
quality of the early life environment and future disease risk.
Models of maternal undernutrition, such as global dietary and
protein restrictions, as well as models of maternal overnutri-
tion such as high fat diets and maternal obesity, have resulted
in offspring that exhibit persistent metabolic changes often
leading to features similar to human cardio-metabolic disease
such as obesity, insulin resistance, hypertension and raised
serum cholesterol levels in later life [46].

Maternal exposure to a protein-restricted diet alters off-
spring metabolism, leads to impaired glucose homeostasis
[47], increased fat deposition, altered feeding behaviour to-
wards a preference for high-fat foods [48, 49] and vascular
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dysfunction and hypertension [50]. Pre-natal undernutrition,
particularly during the late intrauterine period, also results in
restricted kidney development that reduces final nephron
numbers, which disrupts kidney natriuresis [51–53].

The induction of persistent changes to the metabolism and
physiology of the offspring by perturbations inmaternal diet is
accompanied by changes in the expression of key metabolic
regulators [54–56]. For example, maternal protein restriction
has been shown to directly impact upon offspring vascular
function, promoting hypertension [50, 57] and increasing ox-
idative stress; the latter is a key inducer of endothelial dys-
function, leading to atherosclerosis and is accompanied by the
upregulation of enzymes that produce reactive oxygen spe-
cies, while at the same time, a decrease in antioxidant activity
[58, 59]. Maternal protein restriction has also been shown to
alter adrenal gene expression, with offspring exhibiting de-
creased expression of type II adrenal receptors, reducing the
capacity for negative feedback that lowers blood pressure [53,
60, 61], while adrenal type I receptor density was increased,
upregulating production of adrenal aldosterone, which raises
blood pressure by promoting nephron sodium and water
reabsorption [60, 62]. Maternal exposure to global dietary
restriction also influences blood pressure by inducing long-
term changes in the expression of 11β-hydroxysteroid de-
hydrogenase type 2 (HSD11β), a key regulator of active
glucocorticoid levels that play a central role in regulation
of blood pressure [63, 64].

With the increasing prevalence of obesity, particularly
among mothers of child-bearing age, several animal models

have been used to examine the effects of exposure to a western
style maternal diet enriched in fat and sugar or the effects of
maternal obesity on the later health of the offspring. Offspring
of mice fed an obesogenic diet during pregnancy and lactation
developed endothelial dysfunction and hypertension, and also
exhibited increased fasting insulin and plasma glucose levels
as well as a dysregulation of appetite [65]. Exposure to a
maternal high fat diet can also induce structural changes in
the foetal heart, with offspring having an accelerated cardiac
growth rate leading to impaired baseline cardiac function and
cardiac hypertrophy. At a molecular level, maternal obesity
triggered re-expression of cardiac foetal genes in the offspring
that altered cardiac muscle structure [66•]. Exposure to mater-
nal obesity also alters the regulation of the renin-angiotensin
system, which regulates blood pressure and water balance;
Guberman and colleagues found that exposure to a maternal
high fat diet in a rat model stimulated adipose angiotensin
(AGT) production, causing hypertension in the offspring.
Additionally, adipose production of AGT stimulated lipogen-
esis, resulting in increased adiposity that altered adipose tissue
angiogenesis and smooth muscle tone, further exacerbating
the animals’ hypertensive state [67•].

Developmental Plasticity

The influence of the early life environment on later phenotype
may in part reflect predictive adaptive responses that allow

Fig. 1 The association between
maternal diet on subsequent
offspring CVD risk. Birth weight
is often used as a surrogate for an
adverse intrauterine environment.
Being born either underweight or
overweight is associated with an
increased CVD risk, effecting
cardiovascular health through the
development of hypertension and
atherosclerosis. There is,
however, much evidence that
developmental influences can
programme increased CVD risk
without necessarily affecting birth
weight
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organisms to adjust their development in response to environ-
mental cues, to aid fitness or survival [68]. This developmen-
tal plasticity allows change and adaption to the environment
within a set developmental window, after which changes can
persist throughout the life course. Early life adaption could
result in later disease, if an organism adapts to one environment
but is then exposed to a different environment post birth, cre-
ating a mismatch [69]. Mismatches between pre-natal and post-
natal environments may be a key factor behind the rapid rise of
NCDs in developing countries, as they undergo rapid urbani-
zation and sudden shifts in dietary composition [70–72].

Epigenetics Mechanisms

Genetic differences between individuals cannot explain the
inter-individual differences in NCD disease risk [73]. Firstly,
the overall proportion of risk variance accounted for by genet-
ic variation accounts for less than 5 % of the observed differ-
ences [74•, 75], and secondly, fixed genomic variation cannot
explain the observed flexibility of a developing organism to
physiologically adapt to the early life environment [19].
Epigenetic mechanisms have the potential to provide both
the variability and adaptability required to change the devel-
opmental programme in response to environmental cues, and
then maintain these changes throughout the life course.
Epigenetics is thought to be the key mechanism underpinning
the developmental origins of NCDs [73].

‘Epigenetic modifications are stably inherited through cell
division without alteration of the DNA sequence’, and provide
a large degree of control over a gene’s transcriptional state.
The main components of the epigenetic regulatory apparatus,
DNA methylation, histone modifications and non-coding
RNAs work together to control access to the underlying
DNA sequence, determining gene transcription and ultimately
defining the role of each cell within the body; DNA methyla-
tion at regulatory regions, often upstream of a gene’s transcrip-
tional start site, is generally associated with gene repression.
The presence of DNA methylation causes recruitment of re-
pressive protein complexes that prevent gene transcription
[76]. DNAmethylation alters during early development; gam-
etes exhibit high levels of methylation, but shortly after fertil-
ization, global methylation levels decrease, reaching their
lowest levels around the time of blastocyst implantation. De
novo methylation then occurs within the inner cell mass giving
rise to cell lineage-specific methylation patterns that are main-
tained in differentiated cells [77, 78].

Epigenetics and the Early Life Environment

‘There is an increasing body of evidence suggesting that the
early life environment can alter the epigenome’, and that once

these changes have occurred in early life, they are then main-
tained during the life course. Some of the first clear examples
of maternal diet altering DNA methylation in the offspring
came from studies of Agouti viable yellow (Avy) mice.
Here, ‘supplementation of the maternal diet with dietary meth-
yl donors and cofactors (folic acid’, vitamin B12, ‘choline and
betaine) shifted the coat colour of the offspring from yellow
(agouti) to brown (pseudo-agouti)’ due to increased methyla-
tion of the agouti gene [79–82].

Subsequent animal studies have shown that alterations in
maternal macronutrient intake can alter the epigenetic regula-
tion of key metabolic genes. For example, a maternal protein-
restricted diet-induced altered DNA methylation and expres-
sion of genes involved in fat metabolism (PPARα) and stress
response (glucocorticoid receptor (GR)) in the liver of both
juvenile [55, 56] and adult offspring [54]. Furthermore, these
epigenetic changes in PPARα and GR also led to alterations in
the activity of their downstream target genes and specific
physiological processes.

Altered epigenetic regulation of the renin-angiotensin sys-
tem, important for kidney natriuresis and a potential cause of
hypertension, has been observed in animal models. Maternal
protein restriction programmed increased AGTR1 levels in
the offspring; this was accompanied by a decrease in DNA
methylation at key regulatory sequences within the gene pro-
moter region, suggesting that altered epigenetic regulation
was behind the increase in receptor numbers, driving the ob-
served hypertension [60, 83]. In addition to altered receptor
expression patterns that favour hypertension, maternal under-
nourishment also alters the epigenetic regulation of angioten-
sin converting enzyme (ACE1), the enzyme responsible for
converting angiotensin to its active form. Increased levels of
ACE1 in mice exposed to maternal protein restriction was
accompanied by a reduction in DNA methylation within the
gene’s promoter and upregulation of miRNAs associated with
positive regulation of ACE1 [84].

Over feeding in early life has also been shown to induce
hypermethylation of the proopiomelanocortin (POMC) pro-
moter, preventing the upregulation of POMC expression that
normally occurs after feeding, promoting satiety. POMC
methylation perturbed the normal physiological response to
high plasma levels of both leptin and insulin, contributing to
the development of obesity in the offspring [85].

Human studies have also found epigenetic changes associ-
ated with perturbations in early life nutrition. In studies from
the Dutch Hunger Winter, periconceptual famine exposure
was associated with altered DNA methylation across the im-
print control region of IGF2 in individuals whose mothers had
been exposed to famine compared to their non-exposed sib-
lings, while exposure to famine in late gestation showed no
altered methylation at the same region [86]. Examination of
further genes found the same pattern: periconceptual famine
exposure was ‘associated with small DNA methylation
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changes within multiple loci (including leptin, IL-10, MEG3
and ABCA3)’ while a later exposure did not alter DNA meth-
ylation [87]. The detection of these epigenetic marks associ-
ated with famine exposure in peripheral blood 60 years after
famine exposure supports the findings from animal models
that early life nutrition can induce epigenetic changes in the
offspring that persist long after the nutritional constraint has
been removed, and that these epigenetic changes may underlie
the long-term changes seen in metabolism and disease risk.
Consistent with these findings, Godfrey et al. have shown that
the methylation level of a CpG site within the promoter of the
RXRA gene in the umbilical cord predicted greater than 25 %
of the variation in fat mass in children aged 9 years [88] with
replication of the finding in a second group of children aged
6 years. Furthermore, methylation of PGC1A in whole
blood of children aged 5–7 years was found to predict
adiposity in teenagers [89••]. Such ‘findings not only sup-
port that hypothesis that developmentally induced epige-
netic marks make a significant contribution to later phe-
notype but also suggest that the detection of epigenetic
marks even in peripheral tissue may allow identification
of individuals at increased risk of chronic disease in later
life before the onset of clinical disease’.

Conclusions

Cardiovascular disease is increasingly viewed as not simply
developing in adulthood, but rather as a group of disorders
that become apparent in adulthood, but which have their ori-
gins in the early life environment [90]. Undernutrition or ex-
posure to an obesogenic environment pre-birth has a great
impact upon an individual’s future health, with nutritional
exposure altering development of the cardiovascular system
and kidneys, as well as triggering wide-ranging alterations to
gene expression of many critical factors that regulate blood
pressure and metabolism. Many of the changes brought about
by nutrition in early life are thought to be mediated by epige-
netic alterations that regulate how a gene is expressed, with
epigenetic changes maintaining this new pattern of expression
during an individual’s life course, thereby setting them on the
path to future disease.

While many factors contribute to an individual’s CVD risk,
it is the central role of the early life environment and the
cyclical nature of disease risk whereby maternal obesity and
diet impact upon the health of the next generation that in turn
passes on the burden of disease, which must be addressed [5].
Pregnancy and early infancy represents a window of opportu-
nity to promote healthier diets and increased physical activity,
with dietary interventions during pregnancy shown to reduce
CVD risk associated with undernourishment [7, 19, 91, 92].
Studies onmaternal weight loss through bariatric surgery prior
to pregnancy have found that transmission of obesity to the

next generation can be avoided or reduced [93], suggesting
that the transgenerational impact of obesity can be blunted by
nutritional intervention. The importance of early life influ-
ences on an individual’s future cardiovascular wellbeing is
central to any health and prevention strategy that seeks to
ameliorate the burgeoning rates of cardiovascular-linked mor-
tality, and to tackle what has been described as the most im-
portant global health issue of this century [2]. Such pre-
emptive strategies are possible, practical and will provide
long-term benefits for public health.
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