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Abstract
Food adulteration imposes a significant health concern on the community. Being one of the key ingredients used for 
spicing up food dishes. Red chilli powder is almost used in every household in the world. It is also common to find chilli 
powder adulterated with brick powder in global markets. We are amongst the first research attempts to train a machine 
learning-based algorithms to detect the adulteration in red chilli powder. We introduce our dataset, which contains high 
quality images of red chilli powder adulterated with red brick powder at different proportions. It contains 12 classes 
consists of 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, and 100% adulterant. We applied various image 
color space filters (RGB, HSV, Lab, and YCbCr). Also, extracted features using mean and histogram feature extraction 
techniques. We report the comparison of various classification and regression models to classify the adulteration class 
and to predict the percentage of adulteration in an image, respectively. We found that for classification, the Cat Boost 
classifier with HSV color space histogram features and for regression, the Extra Tree regressor with Lab color space 
histogram features have shown the best performance.
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Introduction

Food adulteration is an illegal practice of adding cheaper ingre-
dients or fake substances to pure food products to increase their 
quantity, making them unhygienic to eat. It poses a significant 
health concern, and when consumed, it deprives necessary 
nutrition in the human body (Manasha and Janani 2016). Adul-
terated foods can cause various health issues ranging from mild 
to life-threatening, including allergic reactions, skin diseases, 
loss of vision, cancer, and heart diseases (Bansal et al. 2017). 
Sometimes, it shows immediate side effects in the human body, 
including vomiting, abdominal pain, and diarrhoea.

Individuals in the food supply chain perform adulteration 
intentionally to maximize profits. They reduce the food quality 
to increase its quantity. They put consumers’ health in dan-
ger for personal economic gains. Adulterants are also used to 
expand the shelf life. Improper processing of these food items 
also leads to abdominal pain and food poisoning or other food 
infections, usually with fever (Nascimento et al. 2017).

Food adulteration also results in economic losses to the 
countries as it leads to a decrement in consumer demand. It 
impacts consumer confidence. Food quality assurance efforts 
are significant to make consumers’ trust intact. Food adul-
teration at the production level usually happens due to a lack 
of monitoring and testing measures (Bansal et al. 2017).

Red chilli powder is one of the key ingredients used for 
spicing up Indian cooking. It is rich in vitamins and miner-
als. It also comes in several varieties like Kashmiri Chilli 
powder, Guntur Chilli, ghost pepper, bird-eye Chilli, Byad-
agi Daggi Chilli, etc. (Jamaluddin et al. 2022). The variety of 
the Chilli powder depends on the type of Chilli used and the 
process followed for drying and grinding. As it is typically 
consumed in small amounts, it does not contribute much 
towards one’s diet. Red chilli powder typically constitutes 
88% water, 0.3% protein, 1.3% carbohydrates, 0.8% sugar, 
0.2% fiber, and 0.1% fat and has a Caloric value of 6 Cal. It 
contains vitamins like vitamin C, vitamin B6, vitamin K1, 
and vitamin A (Khan et al. 2019). It also contains miner-
als like potassium and copper. Consumption of red chilli 
powder has many benefits, such as providing pain relief, 
promoting weight loss, fighting inflammation, clearing 
congestion, boosting immunity, preventing stomach ulcers, 
boosting immunity, etc. (Ayob et al. 2021; Mi et al. 2022). 
It is not uncommon to find Chilli powder adulterated with 
brick powder in Indian markets. Typically, people identify 
this kind of adulteration using visual cues like adulterated 
Chilli powder looks more orangish instead of the rich color 
of unadulterated Chilli powder.

Artificial Intelligence enables computers to do tasks that 
earlier needs human interference. Computer vision is a field of 
artificial intelligence that allows computers to see, understand, 
and recognize digital content by processing images and videos 

(Ma et al. 2016). Adulteration in food is detectable by training 
algorithms on the labelled dataset. Therefore, the need to create 
a genuine dataset in presence of a domain expert for mapping 
food images with various percentages/ratios of adulteration or 
purity is a must. Image Augmentation techniques are used to 
make the image classification-based computer vision model 
more robust and image pre-processing techniques to improve 
image quality (Subashini 2010). Various filters including gray-
scale (Vincent 1993), RGB (Li et al. 2016), HSV (Sadhukhan 
et al. 2019), median smoothening (Vijaykumar et al. 2010), 
adaptive thresholding (Bao and Zhang 2003), Canny edge 
detection (Sarkar et al. 2022), Sobel edge detection (Gao et al. 
2010; Hussein et al. 2011), and YCrCb (Lakhwani et al. 2015) 
are used to enhance features in the images. Feature extraction 
techniques are also used to extract features from the training 
dataset consisting of images.

Machine learning algorithms enable computers to make inform-
ative decisions based on raw data. Deep learning (subset of machine 
learning) algorithms are able to learn complex features from 
unstructured data as they mimic the way the human brain works. 
Researchers have used neural networks containing one or more 
hidden layers consisting of neurons to extract and learn complex 
information. Deep learning (DL)-based image recognition methods 
are spread across various fields. DL is being used to recognize food 
objects in an image and to recognize possible food allergens in an 
image (Salim et al. 2021). DL also provide food recommendations 
to the user based on their past choices (content-based filtering for 
food recommendation) (Bianchini et al. 2016). DL is also being 
used in detecting food adulteration by mixing cheap ingredients in 
order to maximize the quantity (Goyal et al. 2022).

Machine learning is essential to detect food adulteration 
in an image captured using mobile phone or any other device 
(Goyal et al. 2022). This will enable the detection of food adul-
teration even if it is not distinguishable by a human being. Deep 
learning-based food adulteration detection models are able to be 
deployed at a large scale as in this digital age major chunk of the 
population is having smartphones and access to an internet con-
nection (Rateni et al. 2017). Deep learning models efficiently 
and precisely can detect food adulterants and their percentage 
using an image. Recent advances in adulteration detection using 
DL models for various foods ensures that this methodology is 
well tested and effective (Calle et al. 2022b).

The aim of this study is to detect the adulteration of red 
chilli powder; adulterated with red brick dust/powder. We 
have considered various machine learning algorithms for 
detecting the percentage of adulteration in red chilli powder.

Literature Review

Machine learning (ML) algorithms outperformed the 
earlier rule-based classical algorithms. ML enables sys-
tems to define rules on their own by recognizing hidden 
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patterns in data. In order to make ML model perform pre-
cisely and accurately, there is a need to provide the best 
suitable and as many features during training the model. 
Image processing is generally used to improve image 
quality and extract useful features from an image. Various 
filters including grayscale, RGB, HSV, median smoothen-
ing, adaptive thresholding, canny edge detection, Sobel 
edge detection, and YCrCb are used to enhance features 
in the images. Feature extraction using various methods 
including neural networks is also used to extract various 
features from the images.

Researchers have trained the Linear Discriminant Analy-
sis (LDA) Classifier on 1080 greyscale images for detecting 
the quality of wheat seeds into 9 categories with an accu-
racy of 98.15% by extracting the features using various fea-
ture extraction matrices including local similarity numbers 
(LSN), local similarity patterns (LSP), gray level run length 
matrix (GLRM), gray level cooccurrence matrix (GLCM), 
and local binary patterns (LBP) (Pourreza et al. 2012). Vari-
ous image processing techniques have been applied to dif-
ferentiate the quality of rice by using various filters includ-
ing canny edge detection, adaptive thresholding, median 
smoothing, and grayscale (Pratibha et al. 2017) (Table 1). 
Researchers have designed the automated mango grading 
system. They used the fuzzy rule-based algorithm by pro-
cessing video images captured using a CCD camera includ-
ing background elimination and contour detection using the 
Graph Contour tracking system. They have predicted the 
maturity using RFE-SVM and gradation with multi attrib-
utes decision method (MADM). They reported an average 
grading precision rate of 90% (Nandi 2014). Scholars have 
applied image processing techniques via performing various 
morphological operations including dilation, erosion, and 
intensity of border to classify oranges based on maturity 
level (Carolina and David 2014).

Researchers have trained PLS-DA and LDA models to 
detect the adulteration of mined beef with pork and vice-
versa using the dataset consisting of 18 different wavelengths 
of 220 meat samples spread across nine adulteration classes 
(Ropodi et al. 2015). They reported accuracy of 98.48%. 
Researchers have trained three variants of Partial Least 
Squares Regression (PLSR) including R-PLSR, A-PLSR, and 
KM-PLSR with the data retrieved by visible near infrared 
hyperspectral imaging. They reported an R2 score of 0.96 and 
RMSEP of 2.83% for R-PLSR; R2 score of 0.97 and RMSEP 
of 2.61% for A-PLSR; and R2 score of 0.96 and RMSEP of 
3.05% For KM-PLSR (Kamruzzaman et al. 2016).

ANN classifier has been used to classify healthy (65% 
images) and unhealthy nuts (35% images) based on two 
different sets of features. First consists of 22 original 
features including 6 texture properties and 16 features 
extracted using gray level co-occurrence matrix (GLCM) 
at angles of 0, 45, 90, and 135. The second consists of a 

feature set obtained from the principal component analy-
sis (PCA) algorithm. They split the dataset into 70:15:15 
for training, validation and testing respectively. They 
reported an accuracy of 81.8% using the first set of fea-
tures and 100% using the second set of features on the 
testing dataset (Khosa and Pasero 2014).

Decision tree, random forest, SVM, K-nearest neigh-
bor (KNN), and ANN classifiers have been used to detect 
white rice adulteration using the dataset containing 330 
samples spread across 7 different ratios. They reported 
that SVM and random forest outperformed other clas-
sifiers and are more robust in distinguishing white rice 
and adulterated mixtures (Lim et al. 2017). Scholars have 
proposed the model based on ANN, PLSR, and PCR algo-
rithms for recognizing milk adulteration using the dataset 
containing milk samples mixed with bromothymol blue. 
They used RGB values and luminosity as features (Kobek 
2017). MLP classifier has been considered to classify 
three varieties of rice, the dataset contains 222 images of 
each variety of rice, a total of 666 images. They used PCA 
for feature ranking and extracted 41 textural features and 
17 morphological features from the images. They obtained 
the classification accuracy of 55.93 to 84.62% on the test 
dataset (Fayyazi et al. 2017).

Researchers have applied a window local segmentation algo-
rithm to detect the surface defects in oranges on the dataset com-
prised of 1191 grey level images of oranges (Rong et al. 2017). 
Anami et al. 2019 trained BPNN, SVM, and k-NN classifiers 
to detect paddy adulteration into 7 different varieties and then 
classify it into 5 different adulteration levels (10%, 15%, 20%, 
25%, and 30%). They extracted color features, GLCM features, 
and LBP features from RGB images. They also applied PCA 
and sequential forward floating selection (SFFS) algorithm for 
feature selection. They reported an accuracy of 41.31% using the 
BPNN classifier trained on extracted color features, the accu-
racy of 44.74% when trained on extracted GLCM features, and 
accuracy of 39.03% when trained on extracted LBP features. 
They also reported an accuracy of 35.80% using SVM classifier 
trained on extracted color features, accuracy of 37.00% when 
trained on extracted GLCM features, and accuracy of 35.00% 
when trained on extracted LBP features. They also reported an 
accuracy of 36.40% using k-NN classifier trained on extracted 
color features, accuracy of 34.40% when trained on extracted 
GLCM features, and accuracy of 34.71% when trained on 
extracted LBP features. They found significant improvement 
in performance after applying feature selection algorithms and 
using combined color-texture features. On Selected features 
using SFFS algorithm, they reported an accuracy of 91% using 
BPNN classifier, 86.91% using SVM classifier, and 82.14% 
using k-NN classifier. On Selected features using PCA algo-
rithm, they reported an accuracy of 93.31% using BPNN clas-
sifier, 89.29% using SVM classifier, and 83.66% using k-NN 
classifier (Anami et al. 2019).
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Materials and Methods

Sample preparation

Full grown red chilli of variety Bullet Lanka-5 (Capsi-
cum annuum L.) were collected from Kaliachak, Malda 
(24°86'N 88°01' E). The samples were rinsed with double 
distilled water, followed by Sun drying (37 ± 3 °C, rela-
tive humidity 75–81%, and for consecutive 3 days from 
9.00 am to 5.00 pm). The final moisture content of the 
dried samples were 4–5% (dry weight basis) and ash con-
tent was 4.5%. The dried samples were grinded with mixer 
grinder (500 W, grinding jar capacity 0.5 L, hybrid motor) 
for 9 min (3 min per cycle, in total 3 cycles, 18,000 rpm). 
The final product was passed through a screen of 60 mesh, 
and the undersized powdered samples were considered as 
pure red chilli powder.

Burnt clay bricks (IS: 1077–1992) were procured from 
local market, and passed through jaw crusher, the crushed 
brick powder was passed through a screen of 60 mesh, and 
the undersized powdered materials were considered as 
adulterant.

The chilli powder sample was mixed thoroughly with the 
brick powder (5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 
45%, and 50%) to prepare a homogeneous mixture of adul-
terated samples.

Image Acquisition

In total, 12 sets of samples were prepared, 100% pure red 
chilli powder, 100% brick powder, and 10 sets of adulter-
ated samples (5–50%). A total of 20 equal sized cells were 
drawn on the white A4 paper sheet an white A4 paper 
sheet (210 mm × 297 mm, 80 gsm). The samples were 
spread over the paper in thin layer. Thus, 20 equal sized 
cells were there loaded with similar samples (Fig. 1). In 
total,12 × 20 = 240 images were captured.

Each of the cells were captured separately with Realme 
8 Pro (Android 11, Realme UI 2.0, Adreno 618, Octa-core, 
108 MP, f/1.9, 26 mm (wide), 1/1.52", 0.7 µm, PDAF, 8 MP, 
f/2.3, 119˚, 16 mm (ultrawide), 1/4.0", 1.12 µm, 2 MP, f/2.4, 
(macro), 2 MP, f/2.4, (depth)) without flash. The perpendicu-
lar distance between each of the cells and the camera lens 
was 15 cm. The schematic diagram for image acquisition has 
been shown in Fig. 2.

Color Space Representation

The color space representation chosen to represent 
images matters, as it can make ignoring or emphasiz-
ing certain information easier. For example, in HSV Ta
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representation emphasizing color (Hue) is easy and it 
is also easy to ignore brightness (Value) information. 
In our study we have explored four different color space 
representations which are discussed below.

RGB  Single RGB pixel consists of intensities of red, green, 
and blue components of light illuminating that spot in the 
image. These intensities can take values from 0 to 255. RGB 
is one of simplest and straight forward ways of representing 
an image digitally.

HSV  Single HSV pixel consists of hue, saturation, and 
value (brightness) components of light illuminating that 
spot in the image. This representation is better at mod-
elling the way humans perceive color when compared 
to RGB. Hue can take values from 0 to 360. Saturation 
and value can take values from 0 to 100. The formula 
for conversion from RGB to HSV is given below. The 
inverse formula can be used for converting the other 
way around.

Hue calculation:

Saturation calculation:

Value calculation:

(1)R
�

=
R

255

(2)G
�

=
G

255

(3)B
�

=
B

255

(4)Cmax = max
(
R

�

,G
�

,B
�)

(5)Cmin = min
(
R

�

,G
�

,B
�)

(6)Δ = Cmax − Cmin

(7)H =

00Δ = 0

60
0 ×

(
G

�
−B

�

Δ
mod6

)
,Cmax = R

�

60
0 ×

(
B
�
−R

�

Δ
+ 2

)
,Cmax = G

�

60
0 ×

(
R
�
−G

�

Δ
+ 4

)
,Cmax = B

�

(8)S =
0,Cmax = 0
Δ

Cmax

,Cmax ≠ 0

(9)V = Cmax

Lab  This color space representation represents lightness, 
and green–red and yellow-blue values of pixels. It is also 
referred to as L*a*b* color space. It is commonly used for 
detecting minor variations in color. The L component takes 
value from 0 to 100, a and b components value from –128 
to 128. Conversion from RGB color space (IEC 61,966–2-
1:1999) to the CIE Lab colorspace is carried out using the 
D65 illuminant function and aperture angle of “2” for the 
observer (van der Walt 2014).

YCrCb  This color space represents an image using luma, 
blue-difference, and red-difference chroma components. 
This representation is perceptually uniform. The luma com-
ponent varies from 0 to 1. The blue-difference and red-differ-
ence components vary from –0.5 to 0.5. The digital version 
of the below RGB to YCrCb is used in this study.

Feature Extraction

Instead of using images directly we use feature extraction 
methods for speeding up training and inferencing, ease of 
model comprehension, improving stability of the model.

Color Histogram  This feature extraction method is based on 
making histogram for each individual channel and concat-
enating the bin-count values of every channel. 256 was the 
number of bins picked for RGB, Lab, YCrCb color space 
images. 360 was the number of bins picked for HSV images. 
This representation only has color information and it ignores 
spatial information. This is suitable for our application as we 
want to be sensitive to the color of the Chilli powder while 
being insensitive to its geometric distribution.

Channel Mean Value  This feature extraction method simply 
utilizes the mean channel intensities of the image. This is 
primarily used for providing comparison with color histo-
gram features.

Classification Techniques

Classification is performed on the extracted features to deter-
mine the level of adulteration. The techniques used for clas-
sification are discussed below.

(10)
Y

�

= 16 +
(
65.481 × R

�

+ 128.553 × G
�

+ 24.996 × B
�)

(11)
CB = 128 +

(
−37.797 × R

�

− 74.203 × G
�

+ 112 × B
�)

(12)CR = 128 +
(
112 × R

�

− 93.786 × G
�

− 18.214 × B
�)
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Cat Boost Classifier  Cat Boost (Dorogush et al. 2018) clas-
sifier is a open-source gradient boosted tree-based classifier 
method by Yandex. It is highly scalable making it suitable 
for big data applications. It is also one of the best-known 
algorithms for performing classification on tabular data. This 
algorithm is implemented using the Cat Boost library. Cat 
Boost classifier name consist of two words which are “Cat-
egory” and “Boosting”. It works well with the various type 
of categorical data such as text, image, and audio. It uses 
ensemble-based learning technique named as Boosting to 
create an ensemble of well chosen strong and diverse mod-
els by combining all weak learners. It relies on the ordering 
principle and called target based with prior (TBS). It auto-
matically converts categorical data into numerical data using 
various statistics on combination of categorical features and 

combination of categorical and numerical features without 
using any explicit pre-processing technique. It uses oblivious 
decision trees, where the same splitting rule is used across 
all intermediate nodes within the same level of tree. It is a 
robust classifier as it is less prone to overfitting. It also low-
ers the need for parameter tuning, providing great results 
using default parameters only. The Oblivious Decision Tree 
used by CatBoost Classifier has been shown in Fig. 3.

Random Forest Classifier  Random forest (Breiman 2001) clas-
sifier is a model based on an ensemble of decision trees. It 
uses bagging technique for creating the ensemble. In bagging 
technique, we have various base learners. Similarly, random 
forest consist of various decision trees as base learners. We 
pick some sample of rows (known as row sampling) and fea-
tures (known as feature sampling) from the dataset various 
times with replacement to train various decision trees (known 
as base learners). Then, we use the majority vote on decision 
trees inference to calculate the prediction and accuracy of 
Radom Forest Algorithm. That’s why, Random Forest Clas-
sifier shows low variance while Decision Trees shows high 
variance. An implementation by the scikit-learn (Pedregosa 
et al. 2011) library is used by us. The working of Random 
Forest Classifier has been shown in Fig. 4.

Extra Trees Classifier  Extra Trees classifier (Geurts et al. 
2006) is a variant of the random forest classifier which also 
shows low variance. Unlike random forest it uses entire data-
set instead of subsampling with replacement. It also some-
times uses random splits instead of always picking locally 
optimum splits like random forest classifier. An imple-
mentation of this algorithm is provided by the scikit-learn 
(Pedregosa et al. 2011) library.

Extreme Gradient Boosting Classifier  Extreme gradient 
boosting (Chen and He 2017) is a technique similar to gra-
dient boosting classifier but it utilizes a second-order Taylor 
approximation making it behave more like Newton–Raphson 
method rather than gradient descent in function space. It 
splits the tree level wise (depth wise) (Fig. 5). There are 
various hyper parameters that can be optimized. XGBoost 
library is used for implementing this classifier.

Light Gradient Boosting Machine Classifier  Light gradient 
boosting machine (Ke et al. 2017) classifier is fast, distributed, 
high performance gradient boosting-based model that uses 
gradient-based one side sampling and exclusive feature bun-
dling for better performance. It splits the tree leaf wise (best 
first) (Fig. 6). Like XGBoost, there are various hyper param-
eters that can be optimized. It can lead to overfitting which 
can be minimized by defining the depth for splitting. The 
LightGBM library is used for implementing this algorithm.

Fig. 1   Prepared samples spread in thin layer over 20 equal sized cells 
on an A4 white paper

Fig. 2   Schematic diagram for image acquisition with smartphone
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Gradient Boosting Classifier  Gradient boosting classifier (Fried-
man 2001; Hastie et al. 2009) algorithm is similar to Ada Boost 
Classifier with the main difference being this algorithm has a 
fixed base estimator. It also has a differentiable loss function and 
training is done by utilizing the technique of gradient boosting. 
In Gradient boosting algorithm, suppose we have some function 
Y(β0, β1). We want to minimize this function by starting with 
some β0, β1 and keep changing β0, β1 to reduce Y(β0, β1) until 
we hopefully end up at a minimum.

Repeat until convergence

The implementation by scikit-learn library is used 
(Pedregosa et al. 2011).

K Nearest Neighbors Classifier  K nearest neighbors (KNN) 
(Fix and Hodges 1989) classifier is a lazy learner that picks 
the nearest k points and predicts the modal class of the k 
points. Different spatial metrics can be used for picking near-
est points (Fig. 7). An implementation of KNN by scikit-
learn library is used in this study.

This method may utilize any distance metric like Euclid-
ean distance, Manhattan distance, Minkowski distance, etc. 
Distance between vectors xi and yi in a n-dimensional vector 
space is given for the above-mentioned metrics below,

Ridge Classifier  Ridge classifier (McDonald 2009) method 
converts output to range –1 to 1 and solves it as a ridge 

(13)βj ∶= βj − α
�

�βj
Y(β0, β1)forj = 0andj = 1

(14)DEuclidean(x, y) =

√∑n

i=1

(
xi − yi

)2

(15)DManhattan(x, y) =
∑n

i=1
||xi − yi

||

(16)
DMinkowski(x, y) =

(∑n

i=1

|||x
p

i
− y

p

i

|||
) 1

p

forsomerealp ≥ 1

regression problem. One versus all approach is used for 
multi-class classification.

This model converts class 0 into value of –1 and keeps 
class 1 values unmodified. Then it applies Ridge regression 
to model the data (Fig. 8). Then it predicts class 1 for given 
input if the value of Ridge regression output is greater than 
0, otherwise it predicts class 0. Typically, the parameters 
are optimized either analytically using a formula or esti-
mated using methods based on gradient descent or Newton–
Raphson method. Ridge classifier is realized by utilizing the 
scikit-learn library (Pedregosa et al. 2011).

Support Vector Machine Classifier  Support vector machine 
(SVM) classifier uses support vector machine and kernel 
trick for performing classification (Platt 2000). One ver-
sus rest technique is utilized for multi-classification. SVM 
implementation by scikit-learn is utilized in this study.

This technique utilizes a support vector w to describe a 
hyperplane that nearly separates the two classes (Fig. 9), in 
such a way that the margin between the two classes is large. 
The support vector is learned by minimizing the following 
cost function l,

Here, � is a hyperparameter that determines the trade-off 
between the size of the margin and the classification accu-
racy. b is some real constant, n denotes number of inputs, xi 
denotes ith input and yi denotes ith output. The loss function 
is typically minimized using L-BFGS technique.

Ada Boost Classifier  Ada Boost (Freund and Schapire 1997; 
Zhu et al. 2006) uses a technique called adaptive boosting 
for ensembling several decision stumps (weak-learners) into 
one strong learner. A decision tree with one depth is known 
as a decision stump. In boosting techniques, there are vari-
ous sequential base learners, where incorrectly classified 
records by first base learner will pass to the next base learner, 

(17)l = � ∥ w ∥ +
1

n

∑n

i=1
max

(
0, 1 − yi

(
wTxi − b

))

Fig. 3   The oblivious decision 
tree used by CatBoost classifier
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incorrectly classified records by second base learner will pass 
to the next base learner and so on. In Ada Boost algorithm 
(Fig. 10), all the base learners are decision trees and weights 
will decide the sequence of base learners. We calculate either 
entropy or Gini index of all decision stumps (for each feature) 
to calculate the updated weights and normalized weights to 
decide the sequence of all base learners. An implementation 
by scikit-learn library is utilized (Pedregosa et al. 2011).

Logistic Regression  Logistic regression (Kleinbaum and 
Klein 2002) performs binary classification using the logis-
tic function applied on a linear regression model to get 
probabilities (Fig. 11). One versus rest approach is used for 

multi-class classification. This technique is utilized by us 
with the help of scikit-learn library (Pedregosa et al. 2011).

This technique models the log odds of binary classifica-
tion as a linear combination of the inputs. The probability of 
true class p(x) associated with input x is computed as follows 
where �0 and �1 are trainable parameters,

The log loss function  l is used for optimization and 
parameter estimation. Here, pk denotes the true class 

(18)p(x) =
1

1 + e−(�0+�1x)

Fig. 4   The working of random 
forest classifier

Fig. 5   Level-wise tree growth in 
XGBoost

Fig. 6   Leaf-wise tree growth in 
LightGBM
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probability associated with input at index k and yk denotes 
actual class for input at index k.

The parameters are usually solved by direct formula or 
gradient descent-based techniques.

Dummy Classifier  This classification technique predicts the 
modal class and is used as a baseline. An implementation by 
scikit-learn with the ‘prior’ strategy is utilized by us.

Quadratic Discriminant Analysis (Quadratic Classifier)  Quad-
ratic discriminant analysis (Tharwat 2016) is a generaliza-
tion of linear discriminant analysis. This technique is imple-
mented using sckit-learn library in this study. Unlike linear 
discriminant analysis, this technique does not make the 
assumption that measurements of each class are identically 
distributed. This technique utilizes quadratic decision sur-
faces for performing classification (Fig. 12). This technique 
works for binary classification. It can be used for multi-class 
classification using one vs rest technique. This technique 
works by computing the likelihood ratio and comparing it 
against some threshold value t ; based on the comparison the 
prediction is made. Let �0 and �1 be the means associated 
with both classes and Σ0 and Σ1 be the covariance matrices 
associated with both the classes. Then the likelihood ratio lr 
is computed as follows,

(19)l =
∑

k=1

(
ykln

(
pk
)
+
(
1 − yk

)
ln
(
1 − pk

))

(20)lr =

√
2�||Σ1

||
−1
exp

(
−

1

2

(
x − �1

)T
Σ−1
1

(
x − �1

))

√
2�||Σ0

||
−1
exp

(
−

1

2

(
x − �0

)T
Σ−1
0

(
x − �0

))

The decision boundary we get when thresholding lr is 
quadratic in nature. Hence, we call it quadratic discriminant 
analysis.

Classification Performance Evaluation

Different classifiers are trained on 70% of the total data using 
threefold cross-validation. Then the classifiers are evaluated 
on the remaining 30% test data and metrics like accuracy, 
precision, recall, F1 score, Cohen’s kappa (κ), Matthew’s cor-
relation coefficient (MCC), and ROC-AUC score (receiver 
operator characteristic curve – area under the curve score) are 
computed.

The above-mentioned metrics are computed using the for-
mulas presented below, where TP denotes the number of true 
positive predictions, TN is the number of true negative predic-
tions, FN is the number false negative predictions (i.e., type 
II error), FP is the number false positive predictions (i.e., type 
I error), P is the total number of positive tuples, and N is the 
total number of negative tuples. As we are dealing with multi-
class classification one vs rest technique is utilized, i.e., the 
one particular class is treated as positive class and remaining 
classes are treated as negative class. This is done consider-
ing every class as a positive class and the final metrics are 
computed by averaging over metrics computed by treating one 
class as positive class or by a natural generalization.

(21)Accuracy =
TP + TN

TP + TN + FN + FP
=

TP + TN

P + N

(22)Precision =
TP

TP + FP

Fig. 7   K nearest neighbors classifier (KNN)
Fig. 8   Ridge classifier
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The ROC curve plots the false positive rate (FPR) 
against the true positive rate (TPR) as the classification 
threshold is varied, where true positive rate is the same as 

(23)Recall =
TP

TP + FN
=

TP

P

(24)F1Score =
2TP

2TP + FP + FN

(25)

� =
2 × (TP × TN − FN × FP)

(TP + FP) × (FP + TN) + (TP + FN) × (FN + TN)

(26)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

recall and FPR is defined below. The area under this curve 
is the AUC score.

Regression Techniques

Different regression models are trained to predict the 
percentage of chilli powder present in the given obser-
vation. Once again, instead of using the image directly 
the extracted features from the image are used for this 
purpose.

Ada Boost Regressor  Ada boost regressor (Drucker 1997) 
uses a technique called adaptive boosting for ensembling 
several decision stumps (weak-learners) into one strong 

(27)FPR =
FP

N
=

FP

FP + TN

Fig. 9   Support vector machine (SVM) classifier

Fig. 10   Adaboost classifier

Fig. 11   Logistic regression classifier
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learner. A decision tree with one depth is known as a 
decision stump. It uses ensemble-based learning tech-
nique named as Boosting to create an ensemble of well 
chosen strong and diverse models by combining all weak 
learners. An implementation by scikit-learn library is 
utilized (Pedregosa et al. 2011).

Gradient Boosting Regressor  Gradient boosting regression 
algorithm (Friedman 2001) starts by making a single leaf, 
instead of a tree or stump. This leaf represents an initial 
guess for the target feature values of all of the sample. When 
we predict a continuous value, the first guess is the average 
value. Then, Gradient Boosting algorithm builds a tree. Like 
AdaBoost, this tree is based on the errors made by the previ-
ous tree. But unlike Adaboost, this tree is usually larger than 
a stump. Gradient Boost still restricts the size of the tree. 
Thus, like AdaBoost, gradient boost builds fixed sized trees 
based on the previous tree’s errors. Also, it scales all trees by 
the same amount. An implementation by scikit-learn library 
is utilized (Pedregosa et al. 2011).

Light Gradient Boosting Machine Regressor  This is an 
enhancement of the gradient boosting regressor algo-
rithm. LightGBM Regressor is fast, distributed, high 
performance gradient boosting-based model that uses 
gradient-based one side sampling and exclusive feature 
bundling for better performance (Ke et al. 2017). It splits 
the tree leaf wise (best first) (Fig. 6). Like XGBoost, there 
are various hyper parameters that can be optimized. It can 
lead to overfitting which can be minimized by defining 
the depth for splitting. The LightGBM library is used for 
implementing this algorithm.

Extreme Gradient Boosting Regressor  Extreme gradient 
boosting (Chen and He 2017) is a technique similar to gradi-
ent boosting regression algorithm but it utilizes a second-order 

Taylor approximation making it behave more like Newton–
Raphson method rather than gradient descent in function 
space. It splits the tree level wise (depth wise) (Fig. 5). There 
are various hyper parameters that can be optimized. XGBoost 
library is used for implementing this classifier.

Random Forest Regressor  Random forest regressor (Breiman 
2001) is a model based on an ensemble of decision trees. It 
uses bagging technique for creating the ensemble. In bagging 
technique, we have various base learners. Similarly, random 
forest consists of various decision trees as base learners. We 
pick some sample of rows (known as row sampling) and fea-
tures (known as feature sampling) from the dataset various 
times with replacement to train various decision trees (known 
as base learners). Then, we use the majority vote on decision 
trees inference to calculate the prediction and accuracy of 
radom forest algorithm. An implementation by the scikit-
learn (Pedregosa et al. 2011) library is used by us. The work-
ing of random forest regressor has been shown in Fig. 4.

Extra Trees Regressor  Extra Trees regressor (Geurts et al. 
2006) is a variant of the random forest regressor which 
also shows low variance. Unlike random forest it uses 
entire dataset instead of subsampling with replacement. 
It also sometimes uses random splits instead of always 
picking locally optimum splits like random forest regres-
sor. An implementation of this algorithm is provided by 
the scikit-learn (Pedregosa et al. 2011) library.

Cat Boost Regressor  Cat boost regressor (Dorogush et al. 
2017) is a a open-source gradient boosted regression 
method by Yandex. It is highly scalable making it suit-
able for big data applications. It is also one of the best-
known algorithms for performing regression on tabular 
data. This algorithm is implemented using the Cat Boost 
library. Cat Boost regressor name consist of two words 
which are “Category” and “Boosting.” It works well 
with the various type of categorical data such as text, 
image, and audio. It uses ensemble-based learning tech-
nique named as Boosting to create an ensemble of well 
chosen strong and diverse models by combining all weak 
learners. It automatically converts categorical data into 
numerical data using various statistics on combination 
of categorical and numerical features without using any 
explicit pre-processing technique.

K Nearest Neighbors Regressor  This technique utilizes a 
lazy regressor that predicts the mean (or weighted mean 
in weighted nearest neighbors) of the k nearest neighbors 
(Song et al. 2017). It has higher prediction power as com-
pare to linear regression as it takes care of the non-linearity. 
Implementation from scikit-learn of the KNN regressor 
algorithm is used in this study.

Fig. 12   Quadratic discriminant analysis (quadratic classifier)
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Linear Regressor  This regression technique works by fitting 
a line of best fit to the data. It uses the mean squared error 
function as the loss function (Schneider et al. 2010). The 
mean squared error loss (L) is defined as follows,

where N is the total number of training points, yi and ŷi are 
the actual output and the estimated output.

Huber Regressor  This regressor is similar to a linear 
regressor however it uses Huber loss instead of stand-
ard loss of mean squared error making it more robust 
when dealing with outliers (Huber and Ronchetti 2009). 
Scikit-learn-based implementation is used in this study. 
The Huber loss function on residual a with parameter � is 
defined as follows:

Bayesian Ridge Regressor  This technique adds to the basic 
linear regressor model an additional L2-regularization term 
in the loss function (MacKay 1992). It also uses Bayesian 
techniques for determining priors and hyperparameter selec-
tion. Scikit-learn-based Bayesian ridge regression imple-
mentation is used in this study. L2-regularization term is 
mathematically defined as follows,

where wi  denotes the weight of the ith input parameter out 
of N total input parameters.

Lasso Regressor  This technique adds an L1-regularization 
term to the loss function of basic linear regression (Ran-
stam and Cook 2018). This gives it the capability making 
the contributions of certain terms zero. Scikit-learn-based 
Lasso regression implementation is used in this study. The 
L1-regularization term is defined similarly to the L2-regu-
larization term as follows,

Elastic Net Regressor  This technique utilizes both L1 and L2 
regularization with the basic linear regression model (Hans 
2012). This gives it capabilities of Lasso and Ridge regres-
sion to some degree. Scikit-learn-based elastic net regression 
is used in this study.

Lasso Least Angle Regressor  This technique utilizes the 
least angle regressor algorithm in lasso mode (Janu-
aviani et al. 2019). This provides some guarantees on 

(28)L =
1

N

∑N

i

(
yi − ŷ

)2

(29)L�(a) =

{
a2

2
for|a| ≤ �, � ×

(
|a| − �

2

)
otherwise.

}

(30)L2 =
∑N

i
w2

i

(31)L1 =
∑N

i
||wi

||

convergence and is usually preferred over least angle 
regressor. Scikit-learn-based Lasso least angle regres-
sor is used in this study.

Least Angle Regressor  Least angle regressor (LAR) algorithm 
is a forward-stepwise algorithm for regression related to Lasso 
regression (Efron et al. 2004). This algorithm works stage-
wise and does not provide any guarantees on convergence. 
Scikit-learn-based least angle regressor is used in this study.

Dummy Regressor  This regressor predicts the arithmetic mean 
of the target class. This technique is used only as a baseline.

Regression Performance Evaluation

Different regressors are trained on 70% of the total data 
using threefold cross-validation. Then the regressors are 
evaluated on the remaining 30% test data and metrics like 
MAE (mean absolute error), MAPE (mean absolute per-
centage error), MSE (mean squared Error), R2 score (Pear-
son correlation coefficient R squared), RMSE (root mean 
squared error), and RMSLE (root mean squared logarithmic 
error) are computed.

The above-mentioned metrics are defined below, where N 
is the number of predictions, y ̄is the mean of actual values, 
yi is the ith actual value and ŷ is the ith predicted value.
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Model Development Process

To create the machine learning-based models, first we cre-
ated the dataset by capturing the high-quality Images of red 
chilli powder adulteration with red brick powder at different 
proportions. We constructed 12 classes consist of 0%, 5%, 
10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, and 100% 
adulterant. The dataset contains 240 images (20 images per 
class) spread across 12 classes. We split each 4 × zoom 
image into 4 segments and applied various image color 
space filters (RGB, HSV, Lab, and YCbCr). Then, extracted 
features using mean and histogram feature extraction tech-
niques. We used various classification models to classify the 
adulteration percentage class. We trained Extra Trees Clas-
sifier, CatBoost Classifier, Random Forest Classifier, Light 
Gradient Boosting Machine, Gradient Boosting Classifier, 
K Neighbors Classifier, Naive Bayes, Decision Tree Classi-
fier, Ridge Classifier, SVM—Linear Kernel, Linear Discri-
minant Analysis, Logistic Regression, Ada Boost Classifier, 
Quadratic Discriminant Analysis, Dummy Classifier, and 
Extreme Gradient Boosting Classifier. Then, we evaluated 
all the classification models by computing various classifica-
tion model performance metrics.

We also used regression models to predict the percentage 
of adulteration in an image. We trained extra trees regres-
sor, K neighbors regressor, CatBoost regressor, random for-
est regressor, gradient boosting regressor, extreme gradient 
boosting, light gradient boosting machine, AdaBoost regres-
sor, least angle regression, Bayesian ridge, ridge regression, 
linear regression, lasso regression, elastic net, Huber regres-
sor, decision tree regressor, orthogonal matching pursuit, 
Lasso least angle regression, dummy regressor, and passive 
aggressive regressor to determine the percentage of red brick 
powder adulteration in red chilli powder using an image. 
Then, we evaluated all the regression models by computing 
various regression model performance metrics. We used var-
ious python libraries for implementing these machine learn-
ing models including scikit-learn, pandas, NumPy, scikit-
image, XGBoost, LGBMBoost, CatBoost, and PyCaret. We 
used GoogleColab to train all the machine learning models. 
Also, threefold cross-validation was used during training 
process for the model to generalize better and prevent over-
fitting. The results of this process are presented and dis-
cussed in the following section. The work flow adopted to 
detect adulterated chilli powder and quantification of adul-
teration has been shown in Fig. 13. We have modeled our 
dataset for performing adulteration quantification. The link 
to the dataset for adulterated red chilli powder with brick 
powder is https://​doi.​org/​10.​17632/​cpm7y​44746.1. The code 
which was used for performing adulteration quantification 
is available at https://​github.​com/​arun5​309/​chilli_​adult​erati​
on_​quant​ifica​tion.

Result and Discussion

The overall experimental results indicate that the combina-
tion of color space, feature extraction and prediction tech-
niques adopted in this study yield good results and they do 
not take too much time to train or make predictions. The 
experimental results are discussed in detail in the remaining 
part of this section.

From the outcomes of the experiments carried out sum-
marized in Tables 2–17 one can see that histogram feature 
extraction technique consistently outperformed mean feature 
extraction techniques in majority of cases. With approxi-
mately a difference of 0.08–0.3 in term of R2 score for 
regression and by around 30% difference in classification 
accuracy. Also, regression techniques yield better and more 
useful prediction than classification techniques. This being 
due to classification techniques treating all classes repre-
senting adulteration ratio as independent and unrelated, in 
contrast to regression treating it on a spectrum. This is why 
classification models have a prediction accuracy around 90% 
and regression models can explain about 98% of the variance 
as inferred from the R2 score.

To predict the percentage of adulteration, we found that 
Extra Tree regressor was best performing with an R2 score 
of 0.9812 and 0.9837 for YCbCr and Lab color spaces histo-
gram features respectively. The YCbCr and Lab color spaces 
have similar performance characteristics in case of regres-
sion for histogram features, with around 0.98 R2 score as 
seen from Tables 11 and Table 13. The HSV and RGB color 
spaces perform slightly worse in regression when using 
histogram feature extraction technique. Around, 0.97 and 
0.96 R2 respectively as seen from Tables 15 and Table 17. 
Performance of RGB and YCbCr color space is somewhat 
worse than Lab for channel mean value-based features. With 
R2 scores of 0.87, 0.86, and 0.9 respectively as seen from 
Tables 16, 10, and 12. However, HSV perform significantly 
worse than other color spaces for regression using channel 
mean value features. With an R2 of 0.61 as seen in Table 14 
R2 score of regression methods with different color spaces 
for grading chilli powder images is reported in Fig. 14.

To classify the adulteration class, we found that Cat 
Boost classifier was best performing with an Accuracy of 
0.9049 and 0.908 for YCbCr and HSV color spaces his-
togram features respectively. Also, YCbCr and Lab have 
similar performance characteristics. With a classification 
accuracy score of around 60% for channel mean value 
features and 90% score for histogram-based features as 
seen from Tables 2, 3, 4, and 5. HSV has similar perfor-
mance Charteristics to YCbCr and Lab when it comes to 
histogram features (accuracy score of around 90%) but it 
performs significantly worse when it comes to channel 
mean value features (accuracy score of 44%) as seen from 

https://doi.org/10.17632/cpm7y44746.1
https://github.com/arun5309/chilli_adulteration_quantification
https://github.com/arun5309/chilli_adulteration_quantification
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Table 6 and Table 7. RGB performs somewhat worse than 
other color spaces when histogram features (around 87% 
classification accuracy from Table 8) are used but surpris-
ingly outperforms YCbCr and Lab color spaces by a small 
margin (approximately 63% classification accuracy from 
Table 9) when channel mean value features are used. Clas-
sification accuracy of classifiers with different color spaces 
for grading chilli powder images is reported in Fig. 15. 
Figure 16 shows the confusion matrix related to the image 
grading of red chilli powder adulteration with red brick 
powder. Most of the images are predicted correctly by the 
classifier, and a few images were misclassified, with a dif-
ference of 5% adulteration in actual and predicted classes.

One can infer from Tables 10, 11, 12, 13, 14, 15, 16, and 
17 the tree-based algorithms and KNN are the regressors with 
the best performance across color space and feature extraction 
methods. There are only minor variations in their performance 
characteristics and achieving best scores on all the regression 
experiments. Other regressors perform somewhat or signifi-
cantly worse than the regressors mentioned previously.

Once again, the tree-based algorithms perform well in classifica-
tion algorithms as seen from Tables 2 to Table 9. With Ada boost 
being a notable exception, which performs slightly worse than SVM. 
These results aren’t surprising as these algorithms have great success 
when dealing with tabular data. KNN, SVM, logistic regression and 
naive Bayes algorithms lag slightly behind the tree-based algorithms 
in terms of performance. Quadratic and linear discriminant analysis 
classifiers had a good success when it came to classification based 
on channel mean value-based features often outperforming the clas-
sifiers (including tree-based ones) mentioned earlier.

Most of these algorithms are fast to train and can be trained in 
a few seconds on datasets of this size and hardware configuration 
used in this study as seen from Tables 2–17. This indicates that these 
algorithms can be deployed on low-end devices in real-time sce-
narios and these would still yield decent results. However, CatBoost, 
LightGBM, and gradient boosted trees took much longer to train 
than other algorithms. These anomalies can be explained by stat-
ing that these three algorithms do not utilize hardware acceleration 
(which they were designed to take advantage of) in our benchmarks 
rather than having inefficiencies in the design of these algorithms.

The methods employed in this study perform nearly as 
well as other methods employed in the literature (Jahan-
bakhshi et al. 2021b), while consuming little computational 
resources for both training and inferencing. This show cases 
the practicality and utility of the methods employed in 
this study especially in situations with low computational 
resources and lack of advanced scientific equipment. For 
example, performing adulteration quantification of chilli 
powder using a low end smartphone.

Tree-based techniques outperformed most other tech-
niques in both regression and classification. KNN closely 
followed the tree-based techniques in terms of perfor-
mance in both regression and classification. SVM, logistic 

regression, naive Bayes classifier, and linear and quadratic 
discriminant analysis had good performance in case of 
classification, although discriminant analysis-based meth-
ods were only successful when using channel mean value-
based features for classification.

We also saw that regression-based techniques were 
more successful than classification-based techniques for 
solving this problem. The reason being strictly grouping 
percentage of classification into bins isn’t a very good 
idea in practice and for this particular application small 
amounts of errors are acceptable in practice. This is clear 
when we compare Tables 10–17 with Tables 2–9.

The Lab and YCbCr color spaces had a good performance 
overall and produced stable results. The RGB color space had 
moderate performance and stability although it produced a few 
surprisingly good results. The HSV had performance com-
parable to that of Lab and YCbCr but it was the most unsta-
ble among the four color spaces and had a few performance 

Fig. 13   The work flow adopted to detect adulterated chilli powder 
and quantification of adulteration
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dips. This clearly highlights that the choice of color space is 
extremely important when performing analysis on chilli pow-
der. As the distinction between chilli powder and brick powder 
is made primarily based on color.

Overall, from the results of extensive experimentation 
carried out in this study one can infer that histogram-based 
feature technique outperforms channel mean value-based 
feature extraction, YCbCr and Lab color spaces outper-
form HSV and RGB, tree-based algorithms have best per-
formance characteristics across the board and training time 
isn’t a significant factor for datasets of this size with mod-
ern computational resources. It is also clear that regression 
techniques are more suitable than classification for quanti-
fying amount of adulteration in red chilli powder. It is clear 
from these results that the approach taken in this study is 
a promising one for adulteration quantification. However, 
further research is needed to extend this result into adultera-
tion quantification problems on other foods.

Conclusion

Many models and features extraction techniques have been 
compared and it is clear that these techniques can be used for 
efficiently in the detecting and quantifying the percentage of 
brick powder present in given chilli powder sample. Utilizing 
feature extraction techniques instead of utilizing the entire 
image makes our method suitable for large-scale and mobile 
application. The use of simple statistical machine learn-
ing algorithms instead of deep learning algorithms makes 
the model size smaller as well. In this study many image 

processing and ML techniques were employed and compared 
for performing adulteration quantification of chilli powder. 
To classify the adulteration class, we found that Cat Boost 
classifier was best performing with an accuracy of 0.9049 and 
0.908 for YCbCr and HSV color spaces histogram features 
respectively. To predict the percentage of adulteration, we 
found that Extra Tree regressor was best performing with 
an R2 score of 0.9812 and 0.9837 for YCbCr and Lab color 
spaces histogram features respectively. The results achieved 
were comparable to that of other results found in the literature 
employing DL (deep learning) methods. Evidencing that the 
methodology adopted in this study is viable, efficient, and 
especially suited for use in low resource and mobile environ-
ments. In the future a mobile application can be made for 
utilizing this technology in a more accessible manner.
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Table 2   Evaluation of classifiers in terms of accuracy, AUC score, recall, precision, F1 score, Kappa, MCC, and TT (Sec) with YCbCr mean 
features in the testing phase

Model Accuracy AUC​ Recall Prec F1 Kappa MCC TT (Sec)

Quadratic discriminant analysis 0.6043 0.9389 0.5994 0.5981 0.5927 0.568 0.5697 0.03
Linear discriminant analysis 0.5859 0.9252 0.5733 0.5841 0.5726 0.5472 0.5495 0.0233
Extra trees classifier 0.5583 0.8966 0.5531 0.5535 0.5484 0.5177 0.5191 0.6067
CatBoost classifier 0.5445 0.9197 0.539 0.5401 0.5345 0.5027 0.5043 9.3333
Logistic regression 0.5414 0.9101 0.5303 0.5666 0.5289 0.4986 0.5014 1.71
Random forest classifier 0.5276 0.8985 0.5223 0.5156 0.5131 0.4842 0.4858 0.6467
Light gradient boosting machine 0.5138 0.8887 0.5077 0.525 0.5118 0.4691 0.4703 0.6467
K neighbors classifier 0.4985 0.8613 0.4933 0.5007 0.4875 0.4524 0.4546 0.1667
Extreme gradient boosting 0.4985 0.8825 0.4921 0.4996 0.4816 0.4515 0.4529 0.7621
Decision TREE CLASSIFIER 0.4969 0.7257 0.4921 0.4963 0.4933 0.4509 0.4517 0.0267
Gradient boosting classifier 0.4801 0.8825 0.4708 0.4786 0.4756 0.4321 0.433 1.3933
Naive Bayes 0.3712 0.814 0.3688 0.3713 0.3276 0.314 0.3216 0.0233
Ridge classifier 0.3205 0.0 0.3068 0.1739 0.2029 0.2555 0.2748 0.0267
Ada Boost classifier 0.2117 0.6577 0.204 0.1827 0.1415 0.1366 0.1689 0.1333
SVM—linear kernel 0.1596 0.0 0.157 0.1313 0.0738 0.0822 0.1103 0.0833
Dummy classifier 0.0874 0.5 0.0833 0.0076 0.0141 0.0 0.0 0.02



739Food Analytical Methods (2023) 16:721–748	

1 3

Table 3   Evaluation of classifiers in terms of accuracy, AUC score, recall, precision, F1 score, kappa, MCC, and TT (Sec) with YCbCr histogram 
features in the testing phase

Model Accuracy AUC​ Recall Prec F1 Kappa MCC TT (Sec)

Extra trees classifier 0.9049 0.9933 0.9031 0.9106 0.904 0.8962 0.8968 0.6567
CatBoost classifier 0.9049 0.9943 0.9034 0.9106 0.9044 0.8962 0.8967 613.72
Random forest classifier 0.8957 0.9912 0.8939 0.9006 0.895 0.8861 0.8866 0.8633
Light gradient boosting machine 0.8681 0.9904 0.8662 0.8764 0.8675 0.856 0.8569 8.1033
Extreme gradient boosting 0.8481 0.988 0.8347 0.8576 0.8465 0.8378 0.8321 10.2476
Gradient boosting classifier 0.8237 0.982 0.8219 0.8327 0.8235 0.8075 0.8083 36.3733
K neighbors classifier 0.822 0.9742 0.8193 0.8288 0.8194 0.8057 0.8068 0.2967
Naive Bayes 0.7638 0.9593 0.7643 0.7725 0.7627 0.7422 0.7433 0.07
Decision tree classifier 0.7424 0.8595 0.741 0.7538 0.7406 0.7188 0.72 0.16
Ridge classifier 0.5429 0.0 0.5249 0.6535 0.4903 0.4993 0.5151 0.0467
SVM—linear kernel 0.4998 0.0 0.4972 0.4815 0.4262 0.454 0.4868 0.23
Linear discriminant analysis 0.4478 0.8165 0.4438 0.4594 0.4463 0.3974 0.3989 0.21
Logistic regression 0.4295 0.9165 0.4012 0.3889 0.3296 0.3729 0.4044 1.31
Ada Boost classifier 0.293 0.708 0.2768 0.2331 0.2246 0.2216 0.319 0.85
Quadratic discriminant analysis 0.2807 0.6071 0.2751 0.2804 0.2648 0.2139 0.2173 0.13
Dummy classifier 0.092 0.5 0.0833 0.0085 0.0155 0.0 0.0 0.0733

Table 4   Evaluation of classifiers in terms of accuracy, AUC score, recall, precision, F1 score, kappa, MCC, and TT (Sec) with Lab mean fea-
tures in the testing phase

Model Accuracy AUC​ Recall Prec F1 Kappa MCC TT (Sec)

Quadratic discriminant analysis 0.5951 0.9417 0.5887 0.6016 0.5854 0.5579 0.5599 0.03
extra trees classifier 0.5951 0.9103 0.591 0.6056 0.5933 0.558 0.5593 0.6033
Linear discriminant analysis 0.5844 0.925 0.5751 0.6033 0.5781 0.546 0.5485 0.02
CatBoost classifier 0.5691 0.9168 0.5655 0.5852 0.5712 0.5297 0.5308 8.06
Extreme gradient boosting 0.5643 0.9088 0.556 0.5714 0.5674 0.5261 0.523 0.7412
Random forest classifier 0.5537 0.9051 0.5497 0.5694 0.5534 0.5128 0.514 0.6333
K neighbors classifier 0.5506 0.8798 0.5454 0.5565 0.5417 0.5095 0.5114 0.16
Light gradient boosting machine 0.5261 0.885 0.5213 0.5391 0.5271 0.4828 0.4839 0.6267
Gradient boosting classifier 0.4893 0.8784 0.4859 0.5032 0.4902 0.4427 0.4437 1.23
Decision tree classifier 0.4601 0.7056 0.4583 0.469 0.4596 0.4109 0.4118 0.02
Naive Bayes 0.4003 0.81 0.3917 0.4328 0.3582 0.3449 0.3532 0.0233
Ada Boost classifier 0.2807 0.6927 0.2738 0.2711 0.2253 0.2132 0.2347 0.1233
SVM—linear kernel 0.2745 0.0 0.2711 0.2149 0.1943 0.2096 0.2553 0.0833
Ridge classifier 0.2669 0.0 0.2569 0.2012 0.175 0.1967 0.229 0.02
Logistic regression 0.227 0.7788 0.2137 0.1039 0.1158 0.152 0.1832 0.98
Dummy classifier 0.0874 0.5 0.0833 0.0076 0.0141 0.0 0.0 0.0167
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Table 5   Evaluation of classifiers in terms of accuracy, AUC score, recall, precision, F1 score, kappa, MCC, and TT (Sec) with Lab histogram 
features in the testing phase

Model Accuracy AUC​ Recall Prec F1 Kappa MCC TT (Sec)

Extra trees classifier 0.9003 0.9942 0.9 0.9054 0.8979 0.8912 0.8921 0.68
CatBoost classifier 0.8988 0.9954 0.8986 0.9044 0.8961 0.8895 0.8905 398.6767
Light gradient boosting machine 0.888 0.9922 0.8877 0.8985 0.8886 0.8778 0.8786 5.5433
Extreme gradient boosting 0.8823 0.9878 0.8812 0.8976 0.8815 0.8739 0.8734 6.9874
Random forest classifier 0.8757 0.9924 0.8747 0.879 0.8733 0.8644 0.8652 0.7867
Gradient boosting classifier 0.8435 0.9843 0.8426 0.8656 0.8459 0.8293 0.8308 25.63
K neighbors classifier 0.8206 0.9697 0.8193 0.8299 0.8185 0.8042 0.8053 0.2967
Linear discriminant analysis 0.8052 0.9762 0.8049 0.8171 0.8016 0.7874 0.7892 0.2167
Naive Bayes 0.7485 0.9598 0.7475 0.7678 0.7455 0.7255 0.7275 0.0967
Decision tree classifier 0.7347 0.8554 0.7337 0.7441 0.7338 0.7105 0.7116 0.1233
Ridge classifier 0.6227 0.0 0.6128 0.6524 0.5881 0.5877 0.5953 0.0867
Logistic regression 0.5645 0.9253 0.5516 0.6 0.5091 0.5235 0.539 1.22
SVM—linear kernel 0.4752 0.0 0.4706 0.5496 0.4396 0.428 0.4726 0.2333
Ada boost classifier 0.2745 0.7175 0.2645 0.2259 0.2011 0.206 0.2911 0.7067
Quadratic discriminant analysis 0.2699 0.6019 0.2682 0.2932 0.2667 0.2036 0.2063 0.1233
Dummy classifier 0.0874 0.5 0.0833 0.0076 0.0141 0.0 0.0 0.07

Table 6   Evaluation of classifiers in terms of accuracy, AUC score, recall, precision, F1 score, kappa, MCC, and TT (Sec) with HSV mean fea-
tures in the testing phase

Model Accuracy AUC​ Recall Prec F1 Kappa MCC TT (Sec)

CatBoost classifier 0.4463 0.8654 0.4516 0.4546 0.4446 0.3957 0.3967 9.0133
Quadratic discriminant analysis 0.4325 0.8918 0.4373 0.444 0.4262 0.3807 0.3832 0.03
k neighbors classifier 0.4279 0.8138 0.4363 0.449 0.4268 0.3762 0.3787 0.16
Random forest classifier 0.4203 0.8435 0.4246 0.4277 0.4187 0.3673 0.3682 0.64
Extreme gradient boosting 0.4174 0.8454 0.4199 0.4142 0.4120 0.3509 0.3549 0.8269
Extra trees classifier 0.4049 0.8503 0.4089 0.4152 0.404 0.3504 0.3514 0.6033
Light gradient boosting machine 0.4018 0.8314 0.4067 0.4141 0.4029 0.3469 0.3477 0.6767
Gradient boosting classifier 0.3972 0.8396 0.4022 0.4091 0.3975 0.3418 0.3428 1.4267
Linear discriminant analysis 0.3743 0.8637 0.3777 0.3782 0.3637 0.3154 0.3184 0.0267
Decision tree classifier 0.3605 0.6508 0.3652 0.3636 0.3583 0.3019 0.3026 0.0233
Naive Bayes 0.3344 0.802 0.3446 0.3807 0.3075 0.2738 0.2824 0.0233
Ada boost classifier 0.2194 0.6514 0.2201 0.1746 0.1651 0.144 0.1757 0.1367
Ridge classifier 0.2162 0.0 0.2118 0.1399 0.1186 0.1387 0.1643 0.0267
Logistic regression 0.1641 0.7032 0.1441 0.1053 0.0727 0.074 0.0983 1.01
SVM—linear kernel 0.1502 0.0 0.1554 0.1194 0.0907 0.0725 0.1018 0.08
Dummy classifier 0.0997 0.5 0.0833 0.0099 0.0181 0.0 0.0 0.02
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Table 7   Evaluation of classifiers in terms of accuracy, AUC score, recall, precision, F1 score, kappa, MCC, and TT (Sec) with HSV histogram 
features in the testing phase

Model Accuracy AUC​ Recall Prec F1 Kappa MCC TT (Sec)

CatBoost classifier 0.908 0.995 0.9095 0.9115 0.9065 0.8995 0.9001 722.9233
Light gradient boosting machine 0.8973 0.993 0.8981 0.9012 0.8968 0.8878 0.8883 10.9167
Extreme gradient boosting 0.8955 0.9908 0.8915 0.9005 0.8845 0.8857 0.8782 11.2163
Extra trees classifier 0.8819 0.9903 0.8825 0.8857 0.8811 0.871 0.8715 0.6867
Random forest classifier 0.8742 0.9899 0.8761 0.8768 0.8732 0.8627 0.8631 0.9233
Gradient boosting classifier 0.8497 0.9851 0.8508 0.857 0.8495 0.8359 0.8366 54.7067
K neighbors classifier 0.8282 0.9825 0.8306 0.8383 0.8245 0.8125 0.8138 0.3833
Decision tree classifier 0.7622 0.8699 0.7643 0.777 0.7587 0.7403 0.7421 0.1967
Naive Bayes 0.7516 0.9492 0.7547 0.7608 0.7474 0.7286 0.7302 0.1067
Linear discriminant analysis 0.7516 0.9657 0.755 0.7632 0.7511 0.7287 0.73 0.2733
Ridge classifier 0.6058 0.0 0.5967 0.6943 0.5632 0.569 0.5806 0.12
SVM—linear kernel 0.5874 0.0 0.5786 0.6567 0.546 0.5493 0.5725 0.27
Logistic regression 0.5153 0.9212 0.4944 0.5078 0.4467 0.4688 0.4886 1.5033
Quadratic discriminant analysis 0.2684 0.6003 0.2662 0.3228 0.2682 0.2007 0.2037 0.1033
Ada Boost classifier 0.2377 0.6356 0.2407 0.1556 0.162 0.1578 0.2928 1.15
Dummy classifier 0.0982 0.5 0.0833 0.0096 0.0176 0.0 0.0 0.0733

Table 8   Evaluation of classifiers in terms of accuracy, AUC score, recall, precision, F1 score, kappa, MCC, and TT (Sec) with RGB mean fea-
tures in the testing phase

Model Accuracy AUC​ Recall Prec F1 Kappa MCC TT (Sec)

Quadratic discriminant Analysis 0.6349 0.9483 0.6294 0.6303 0.6256 0.6014 0.6028 0.0267
Linear discriminant analysis 0.5767 0.9272 0.5682 0.598 0.5735 0.5374 0.5396 0.03
CatBoost classifier 0.5429 0.9093 0.5394 0.5465 0.5383 0.5009 0.5021 10.2533
Random forest classifier 0.5322 0.8927 0.5292 0.536 0.5256 0.4892 0.4905 0.6367
Extra trees classifier 0.5306 0.8908 0.5265 0.5326 0.5244 0.4874 0.4887 0.6067
K neighbors classifier 0.5168 0.8692 0.5156 0.5298 0.5076 0.4728 0.4755 0.16
Light gradient boosting machine 0.4969 0.8768 0.4916 0.4941 0.49 0.4506 0.4516 0.66
Extreme gradient boosting 0.4869 0.8755 0.4822 0.5049 0.4889 0.4465 0.4441 0.7216
Gradient boosting classifier 0.48 0.8748 0.4742 0.5008 0.4809 0.4323 0.4336 1.2667
Naive Bayes 0.4064 0.8313 0.3968 0.4262 0.3642 0.3508 0.3585 0.0267
Decision tree classifier 0.3911 0.6679 0.3857 0.3928 0.3858 0.3353 0.3364 0.0233
Ridge classifier 0.2423 0.0 0.2246 0.1275 0.1332 0.1664 0.1962 0.0233
Logistic regression 0.2178 0.7734 0.199 0.1006 0.1075 0.1365 0.1764 1.09
SVM—linear kernel 0.1963 0.0 0.1921 0.1625 0.1261 0.1243 0.1643 0.08
Ada Boost classifier 0.1778 0.6237 0.1669 0.1326 0.1117 0.0952 0.1335 0.1267
Dummy classifier 0.0982 0.5 0.0833 0.0096 0.0176 0.0 0.0 0.0233
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Imaging 22:1089–1099. https://​doi.​org/​10.​1109/​TMI.​2003.​816958

Bianchini D, De Antonellis V, Franceschi N, Melchiori M (2016) PREFer: 
a prescription-based food recommender system. Comput Stand Inter-
faces 54:64–75. https://​doi.​org/​10.​1016/j.​csi.​2016.​10.​010

Boateng AA, Sumaila S, Lartey M et al (2022) Evaluation of chemo-
metric classification and regression models for the detection of 
syrup adulteration in honey. LWT 163:113498. https://​doi.​org/​
10.​1016/j.​lwt.​2022.​113498
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Brighty SPS, Harini GS, Vishal N (2021) Detection of adulteration 
in fruits using machine learning. Chennai, India, In: 2021 Sixth 
Int Conf Wirel Commun, Signal Proc Netw (WiSPNET) 37–40. 
https://​doi.​org/​10.​1109/​WiSPN​ET516​92.​2021.​94194​02
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Table 9   Evaluation of classifiers in terms of accuracy, AUC score, recall, precision, F1 score, kappa, MCC, and TT (Sec) with RGB histogram 
features in the testing phase

Model Accuracy AUC​ Recall Prec F1 Kappa MCC TT (Sec)

CatBoost classifier 0.868 0.9905 0.8659 0.8782 0.8675 0.8558 0.8569 966.5133
Extra trees classifier 0.865 0.9914 0.8622 0.873 0.8648 0.8525 0.8533 0.75
Random forest classifier 0.8512 0.9883 0.8489 0.8596 0.8511 0.8374 0.8383 1.39
Light gradient boosting machine 0.8358 0.9831 0.8343 0.8405 0.8349 0.8207 0.8213 14.1967
Gradient boosting classifier 0.8129 0.9746 0.81 0.8237 0.8132 0.7956 0.7967 69.7867
Extreme gradient boosting 0.8098 0.9737 0.8057 0.8123 0.7962 0.7767 0.7660 17.8931
K neighbors classifier 0.7745 0.972 0.7723 0.7899 0.7718 0.7537 0.7556 0.4867
Linear discriminant analysis 0.75 0.9703 0.7488 0.7598 0.7484 0.7269 0.728 0.2233
Naive Bayes 0.7223 0.9376 0.7182 0.7399 0.7232 0.6966 0.6986 0.1333
Decision tree classifier 0.7086 0.8412 0.7079 0.7183 0.708 0.6819 0.6828 0.3267
Ridge classifier 0.5061 0.0 0.479 0.5443 0.4515 0.4582 0.4706 0.1067
SVM—linear kernel 0.4188 0.0 0.4073 0.5153 0.373 0.3652 0.4231 0.3467
Ada Boost classifier 0.2562 0.6983 0.2352 0.1915 0.1848 0.1807 0.2642 1.35
Logistic regression 0.2561 0.9002 0.228 0.1405 0.1387 0.1772 0.2185 2.09
Quadratic discriminant analysis 0.2039 0.5642 0.1959 0.2131 0.1943 0.1283 0.1306 0.1167
Dummy classifier 0.0997 0.5 0.0833 0.0099 0.0181 0.0 0.0 0.08

Table 10   Evaluation of 
regression models in terms of 
MAE, MSE, RMSE, R2 score, 
RMSLE, MAPE, and TT (Sec) 
with YCbCr mean features in 
the testing phase

Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)

Extra trees regressor 6.1393 81.7625 8.9411 0.8657 0.5224 0.0881 0.495
K neighbors regressor 6.913 103.1967 10.0831 0.8325 0.4829 0.0977 0.077
CatBoost regressor 6.8921 107.5758 10.1721 0.8284 0.629 0.095 1.735
Random forest regressor 7.057 123.4021 10.9495 0.7992 0.6056 0.0945 0.648
Gradient boosting regressor 7.4397 126.5915 11.0774 0.7963 0.6388 0.1009 0.083
Extreme gradient boosting 7.2394 135.7678 11.4281 0.7799 0.5651 0.0974 0.372
Light gradient boosting machine 7.7986 140.5417 11.647 0.7788 0.6574 0.1052 0.108
AdaBoost regressor 10.6193 182.0709 13.383 0.7069 0.703 0.1446 0.073
Least angle regression 11.6622 212.3135 14.5206 0.6665 0.9727 0.1391 0.027
Bayesian Ridge 11.6577 212.3143 14.5206 0.6665 0.9733 0.1389 0.022
Ridge regression 11.6617 212.3127 14.5206 0.6665 0.9727 0.1391 0.022
Linear regression 11.6622 212.3136 14.5206 0.6665 0.9727 0.1391 0.503
Lasso regression 11.6136 212.9138 14.5409 0.6655 0.9795 0.1376 0.025
Elastic Net 11.5862 215.8965 14.6411 0.6609 0.9883 0.1362 0.027
Huber regressor 11.4072 231.0311 15.124 0.6408 1.034 0.1288 0.053
Decision tree regressor 7.9212 239.3625 15.2087 0.6267 0.6161 0.1036 0.026
orthogonal matching pursuit 17.0357 442.2286 20.9664 0.3035 1.0698 0.2085 0.025
Lasso least angle regression 19.1239 660.5793 25.5116  − 0.01 1.2182 0.1933 0.019
Dummy regressor 19.1239 660.5793 25.5116  − 0.01 1.2182 0.1933 0.012
Passive aggressive regressor 27.5446 1303.1353 33.0316  − 0.8683 1.2907 0.3727 0.032
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00000​067
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Table 11   Evaluation of regression models in terms of MAE, MSE, RMSE, R2 score, RMSLE, MAPE, and TT (Sec) with YCbCr histogram fea-
tures in the testing phase

Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)

Extra trees regressor 2.1769 11.6405 3.3825 0.9812 0.1204 0.0348 1.76
CatBoost regressor 2.5993 13.6621 3.6558 0.9778 0.3543 0.037 91.151
Random forest regressor 2.5417 15.2997 3.8891 0.975 0.1602 0.04 5.662
K neighbors regressor 2.5556 19.0567 4.3392 0.9702 0.0653 0.0419 0.105
Light gradient boosting machine 2.4302 22.7591 4.2808 0.965 0.1167 0.0363 1.577
Gradient boosting regressor 2.9527 20.9606 4.3647 0.9631 0.2412 0.0443 3.944
Extreme gradient boosting 2.8861 24.3909 4.5173 0.9544 0.14 0.0436 4.595
AdaBoost regressor 4.4586 29.8909 5.4586 0.9518 0.0821 0.0721 1.614
Decision tree regressor 2.2847 32.3619 5.4586 0.945 0.117 0.0339 0.126
Bayesian ridge 5.1162 45.6186 6.6611 0.9286 0.4707 0.0726 1.432
Huber regressor 5.4408 49.1674 6.9946 0.9211 0.4873 0.079 0.334
Passive aggressive regressor 6.7361 70.5732 8.3542 0.8865 0.5047 0.0994 0.095
Ridge regression 9.5593 127.3591 11.2576 0.7989 0.8578 0.122 0.033
Orthogonal matching pursuit 6.3151 162.3748 10.5511 0.7577 0.6502 0.0753 0.046
Elastic net 19.0872 660.7388 25.5695  − 0.0206 1.2135 0.1919 0.035
Lasso regression 19.09 661.0854 25.5763  − 0.0211 1.2136 0.1919 0.025
Lasso least angle regression 19.09 661.0854 25.5763  − 0.0211 1.2136 0.1919 0.288
Dummy regressor 19.09 661.0854 25.5763  − 0.0211 1.2136 0.1919 0.021
Linear regression 30.6232 80,367.0216 155.2462  − 108.6006 0.9654 0.2551 0.366

Table 12   Evaluation of 
regression models in terms of 
MAE, MSE, RMSE, R2 score, 
RMSLE, MAPE, and TT (Sec) 
with Lab mean features in the 
testing phase

Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)

Extra trees regressor 5.3196 57.7846 7.5571 0.9073 0.315 0.0812 0.4
K neighbors regressor 5.2613 57.4525 7.5409 0.9058 0.2281 0.0813 0.059
Extreme gradient boosting 5.435 67.2599 8.0783 0.8935 0.2662 0.0839 0.359
Gradient boosting regressor 5.9356 69.4454 8.2571 0.8888 0.3318 0.0911 0.076
Random forest regressor 5.5862 71.3658 8.2912 0.888 0.3401 0.0839 0.453
CatBoost regressor 5.8977 73.035 8.4316 0.8817 0.4703 0.086 1.727
Light gradient boosting machine 6.1363 83.3297 9.0554 0.8664 0.4836 0.0889 0.1
Decision tree regressor 5.6389 116.3671 10.4813 0.8175 0.2599 0.0867 0.013
AdaBoost regressor 9.0258 122.617 11.0237 0.7999 0.2221 0.1352 0.07
Bayesian ridge 9.8702 154.8129 12.3958 0.7526 0.8823 0.1208 0.011
Linear regression 9.8714 154.8083 12.3957 0.7525 0.8819 0.1209 0.297
Least angle regression 9.8714 154.8084 12.3957 0.7525 0.8819 0.1209 0.011
Huber regressor 9.791 164.4072 12.7224 0.7447 0.9358 0.1155 0.021
Passive aggressive regressor 11.2917 282.9009 16.3489 0.5818 1.021 0.1244 0.014
Orthogonal matching pursuit 14.3854 324.9412 17.9768 0.4795 0.9077 0.1852 0.012
Ridge regression 15.6169 388.9784 19.6157 0.3933 1.0806 0.1752 0.011
Elastic net 19.1944 656.5993 25.4955  − 0.022 1.1931 0.1963 0.012
Lasso regression 19.2049 657.649 25.5159  − 0.0237 1.1934 0.1964 0.012
Lasso least angle regression 19.2049 657.649 25.5159  − 0.0237 1.1934 0.1964 0.011
Dummy regressor 19.2049 657.649 25.5159  − 0.0237 1.1934 0.1964 0.008
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Table 13   Evaluation of 
regression models in terms of 
MAE, MSE, RMSE, R2 score, 
RMSLE, MAPE, and TT (Sec) 
with Lab histogram features in 
the testing phase

Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)

Extra trees regressor 2.1022 10.5962 3.2301 0.9837 0.0964 0.0336 1.204
CatBoost regressor 2.594 13.4725 3.6386 0.979 0.3461 0.0377 58.849
Light gradient boosting machine 2.4987 14.8814 3.8278 0.9766 0.0887 0.0392 1.069
K neighbors regressor 2.2123 16.4404 4.0253 0.9749 0.0592 0.0353 0.115
Random forest regressor 2.671 16.9829 4.0848 0.9732 0.1838 0.0418 3.643
Gradient boosting regressor 2.9921 18.8418 4.2946 0.9705 0.1919 0.0464 2.538
AdaBoost regressor 4.5683 31.0152 5.5546 0.9516 0.0835 0.0742 1.209
Extreme gradient boosting 3.1433 34.6469 5.4134 0.9416 0.1599 0.0478 3.869
Decision tree regressor 2.4638 36.6451 5.9664 0.9409 0.0851 0.0382 0.09
Bayesian ridge 4.9238 41.4136 6.3669 0.9356 0.5321 0.0681 1.853
Huber regressor 5.312 47.0429 6.8116 0.9274 0.4398 0.0788 0.516
Passive aggressive regressor 6.3274 63.1105 7.8761 0.9032 0.4952 0.0917 0.125
Ridge regression 8.4369 104.8051 10.2153 0.8374 0.7745 0.1138 0.047
Orthogonal matching pursuit 5.5549 119.6985 9.0873 0.8022 0.5999 0.0711 0.051
Elastic net 19.4039 678.5002 25.941  − 0.0124 1.2458 0.1938 0.037
Lasso regression 19.4171 679.9596 25.969  − 0.0146 1.2463 0.1938 0.037
Lasso least angle regression 19.4171 679.9596 25.969  − 0.0146 1.2463 0.1938 0.332
Dummy regressor 19.4171 679.9596 25.969  − 0.0146 1.2463 0.1938 0.023
Linear regression 8.6548 3044.2143 27.5076  − 4.708 0.7234 0.0808 0.525

Table 14   Evaluation of 
regression models in terms of 
MAE, MSE, RMSE, R2 score, 
RMSLE, MAPE, and TT (Sec) 
with HSV mean features in the 
testing phase

Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)

Extra trees regressor 11.7513 264.632 16.2236 0.61 0.6238 0.163 0.499
Gradient boosting regressor 12.411 271.0578 16.3851 0.6045 0.6745 0.1727 0.082
K neighbors regressor 11.9439 271.3831 16.3626 0.604 0.5253 0.1685 0.059
CatBoost regressor 12.2256 273.0489 16.489 0.5967 0.6779 0.1684 1.819
Random forest regressor 11.8235 275.8455 16.5822 0.5949 0.5758 0.166 0.489
Light gradient boosting machine 12.1891 278.7153 16.6531 0.5914 0.6832 0.1681 0.109
Extreme gradient boosting 12.2018 305.6401 17.413 0.551 0.5537 0.1731 0.369
AdaBoost regressor 14.3081 308.7254 17.5566 0.5508 0.8308 0.1915 0.049
Decision tree regressor 13.2411 442.2593 20.9727 0.3485 0.6077 0.1956 0.013
Bayesian ridge 18.6808 486.5106 22.0275 0.2962 1.094 0.2338 0.013
Linear regression 18.6785 486.4666 22.0271 0.2961 1.0918 0.2344 0.315
Least angle regression 18.6785 486.4666 22.0271 0.2961 1.0918 0.2344 0.012
Huber regressor 18.6083 492.2907 22.1627 0.2867 1.0949 0.2307 0.023
Ridge regression 19.1253 558.9239 23.5791 0.1968 1.2187 0.2106 0.012
Orthogonal matching pursuit 19.4624 566.878 23.7459 0.1823 1.1959 0.2239 0.012
Passive aggressive regressor 19.3373 662.6501 25.6501 0.0521 1.2856 0.2007 0.013
elastic Net 19.7661 704.4997 26.4653  − 0.0095 1.2951 0.1933 0.013
Lasso regression 19.7686 704.9996 26.4748  − 0.0102 1.2953 0.1932 0.015
Lasso least angle regression 19.7686 704.9996 26.4748  − 0.0102 1.2953 0.1932 0.012
Dummy regressor 19.7686 704.9996 26.4748  − 0.0102 1.2953 0.1932 0.01

Hans C (2012) Elastic Net regression modeling with the orthant normal 
prior. J Am Stat Assoc 106:1383–1393. https://​doi.​org/​10.​1198/​
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Table 15   Evaluation of regression models in terms of MAE, MSE, RMSE, R2 score, RMSLE, MAPE, and TT (Sec) with HSV histogram fea-
tures in the testing phase

Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)

Extra trees regressor 2.2381 14.1152 3.6526 0.9782 0.2944 0.0319 2.495
K neighbors regressor 1.9757 15.423 3.8429 0.9756 0.1737 0.0295 0.138
CatBoost regressor 2.7265 19.5153 4.2678 0.9691 0.4541 0.0357 117.64
Light gradient boosting machine 2.8227 23.4071 4.7183 0.9653 0.4628 0.0379 2.32
Gradient boosting regressor 3.0338 26.4167 4.9095 0.9604 0.3651 0.0419 5.485
Random forest regressor 2.7994 27.5393 5.104 0.9574 0.4176 0.0375 7.854
AdaBoost regressor 4.8365 36.0875 5.9019 0.9409 0.1221 0.075 2.369
Extreme gradient boosting 3.1642 43.6663 6.1759 0.9376 0.3396 0.0431 5.943
Bayesian ridge 5.0717 49.0621 6.8461 0.9276 0.5146 0.0707 2.585
Huber regressor 5.8692 54.2342 7.3361 0.9162 0.5555 0.0821 0.699
Decision tree regressor 2.4923 59.528 6.7441 0.904 0.2214 0.037 0.165
Passive aggressive regressor 7.7442 101.7538 10.0096 0.8455 0.7437 0.1 0.185
Ridge regression 9.6755 157.2631 12.4519 0.7671 0.9823 0.1092 0.052
Elastic net 19.5026 685.0945 25.9764  − 0.0074 1.2572 0.1933 0.043
Lasso regression 19.5426 688.1162 26.0344  − 0.012 1.2579 0.1937 0.04
Lasso least angle regression 19.5426 688.1162 26.0344  − 0.012 1.2579 0.1937 0.031
Dummy regressor 19.5426 688.1162 26.0344  − 0.012 1.2579 0.1937 0.022
Orthogonal matching pursuit 8.993 2242.1225 29.4821  − 1.6718 0.758 0.0811 0.059
Linear regression 24.7118 5902.9842 60.3507  − 8.6954 1.1621 0.25 0.415
Least angle regression 315,576.3561 28,234,355,243,531.117 1,946,846.6327  − 4,4190,243,518.9504 5.0148 922.3563 0.296

Table 16   Evaluation of 
regression models in terms of 
MAE, MSE, RMSE, R2 score, 
RMSLE, MAPE, and TT (Sec) 
with RGB mean features in the 
testing phase

Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)

K neighbors regressor 6.3821 84.9571 9.1022 0.8738 0.3918 0.0942 0.071
CatBoost regressor 6.8413 94.2953 9.6066 0.8575 0.6046 0.0962 1.9
Extra trees regressor 6.7374 95.1653 9.6534 0.8574 0.5851 0.0939 0.403
Random forest regressor 7.3826 127.053 11.1205 0.8082 0.6268 0.1019 0.608
Light gradient boosting machine 7.9889 134.0316 11.3538 0.7996 0.7119 0.1095 0.115
Gradient boosting regressor 8.2815 131.6208 11.3889 0.7995 0.7447 0.1115 0.081
Extreme gradient boosting 7.4399 143.3294 11.5695 0.7905 0.5888 0.104 0.4
Bayesian ridge 11.6478 209.7266 14.4369 0.6855 0.9803 0.1398 0.021
Linear regression 11.6517 209.7381 14.4378 0.6854 0.9797 0.1399 0.559
Least angle regression 11.6517 209.7382 14.4378 0.6854 0.9797 0.1399 0.024
Decision tree regressor 8.0761 226.0332 14.6747 0.667 0.5547 0.1178 0.034
Huber regressor 11.4172 227.3077 14.9604 0.6661 1.0461 0.1292 0.037
AdaBoost regressor 12.4355 230.0562 15.1221 0.6461 0.6964 0.1706 0.089
Passive aggressive regressor 13.1795 372.2691 19.1274 0.4534 1.1584 0.1371 0.022
Orthogonal matching pursuit 15.4404 430.9389 20.6294 0.36 1.128 0.1742 0.031
Ridge regression 16.5804 451.9826 21.1588 0.3304 1.164 0.1807 0.025
Elastic net 19.547 685.2949 26.0597  − 0.0128 1.2555 0.1944 0.038
Lasso regression 19.558 686.2383 26.0778  − 0.0142 1.2557 0.1945 0.024
Lasso least angle regression 19.558 686.2383 26.0778  − 0.0142 1.2557 0.1945 0.021
Dummy regressor 19.558 686.2383 26.0778  − 0.0142 1.2557 0.1945 0.012
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