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Abstract
For the purpose of implementing low-cost, field-deployable analytical techniques to ensure the authenticity and traceability 
of argan oil, a comprehensive approach that combined mid-infrared spectroscopy data with discriminant and modeling clas-
sification methods—including principal component analysis (PCA), soft independent modeling of class analogy (SIMCA), 
and data-driven soft independent modeling of class analogy (DD-SIMCA)—was applied to classify and check the authenticity 
of 78 argan oil samples according to their geographical origins and distinguish them from two sets of 24 argan oil samples 
that contained 5–100% w/w soya or sunflower oil. Optimal models were selected as combinations of many wavelength ranges 
and data pre-processing methods, thus leading to maximum efficiency for cross-validation. The discrimination approach 
provided satisfactory classification results with good efficiency for determining argan oil authenticity and detecting adultera-
tion. In addition, an adulteration quantification study was performed with the help of partial least square (PLS) regression of 
binary mixture, with this demonstrating good linear regression for actual values against predicted ones. The coefficient of 
determination  (R2) was 0.999, while the root mean square errors of calibration (RMSEC) were low at 0.389% and 0.685% 
w/w and the root mean square errors of validation (RMSEV) were 0.639 and 0.863% w/w for soya and sunflower adultera-
tion, respectively. Moreover, the PLS models best predicted adulterant content, with the  R2 and root mean square error of 
prediction (RMSEP) being 0.998 and 1.067% (w/w), respectively, for soya and 0.997 and 1.199% (w/w) for sunflower.
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Introduction

Argan oil is extracted from the fruits of Argania spinosa, a 
tree endemic to a specific area of   southwestern Morocco. 
During recent decades, the specific characteristics of argan 
oil and its beneficial effects on human health have attracted 
intensive, rigorous scientific, and marketing efforts. It is 
now widely recognized as one of the most expensive edi-
ble and cosmetic oils in international markets. Its compo-
sition has been extensively studied in numerous studies, 

with them reporting that it is especially rich in long-chain 
monounsaturated fatty acids—principally oleic (49%) and 
linoleic acid (36%)—and natural antioxidants, such as ster-
ols, polyphenols, and tocopherols (Madawala et al. 2012; 
Sour et al. 2012, 2015; Aabd et al. 2013; Lopez et al. 2013; 
Kharbach et al. 2018; Maleš et al. 2018; Miklavčič et al. 
2020; Gharby and Charrouf 2021; Simões et al. 2021). Its 
high nutritional value and biochemical properties have led 
to it being believed to have therapeutic value for treating 
and preventing several diseases (Drissi et al. 2004; Cherki 
et al. 2006; Charrouf and Guillaume 2008; El Monfalouti 
et al. 2010; Guillaume and Charrouf 2011; Sour et al. 2015). 
While the growing demand and soaring prices for Moroc-
can argan oil present economic and social opportunities, it 
is unfortunately also tempting for fraudsters and dishonest 
traders to make quick financial gains by mislabeling and/or 
adulterating products.

The most common form of such fraud is combining argan 
oil with cheaper oils, such as soya, sunflower, or hazelnut 
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oil. Furthermore, the introduction of strict quality standards 
for argan oil as a product with protected designation of ori-
gin as an additional assurance of quality and authenticity 
has increased consumer interest in learning about the geo-
graphical origin and/or variety of argan oil that they buy. 
However, authenticating the varietal or geographical ori-
gin, as well as detecting adulterants, often represents a real 
analytical challenge. Thus, in order to monitor and control 
the authenticity of argan oil, several research studies have 
recently tried using various physicochemical determina-
tions associated with chemometrics data processing (Rueda 
et al. 2014; Kharbach et al. 2017, 2018, 2019; Farres et al. 
2019; Gunning et al. 2020; Mohammed et al. 2020; Elgadi 
et al. 2021). Among these, Gonzálvez et al. (2010) obtained 
better classification rates for edible oils (i.e., argan, sun-
flower, olive, seed, and soya oils) from their elemental con-
tent based on the type or variety using inductively coupled 
plasma atomic emission spectrometry (ICP-AES) combined 
with different chemometric approaches. What is more, new 
approaches have been developed to detect the adulteration 
of argan oil with vegetable oils through new techniques and 
instruments (Hilali et al. 2007; Ourracha et al. 2012; Ous-
sama et al. 2012; Mohammed et al. 2013; Addou et al. 2016; 
Stokes et al. 2018; Çelik et al. 2019; Farres et al. 2019; Joshi 
et al. 2019). For instance, Salghi et al. (2014) used high-per-
formance liquid chromatography coupled with evaporative 
light scattering to evaluate the authenticity of argan oil—as 
well as detect adulteration with vegetable oils such as sun-
flower, soya, and olive oils up to the 5% level—by studying 
the triacylglycerol profiles of argan oil. However, despite the 
high resolution and reliability of these methods, some are 
impractical for widespread use due to various reasons, such 
as the time and cost required, the need for skilled operators, 
the generation of hazardous chemical waste, sample prepara-
tion, preprocessing, and various technological parameters, 
such as the harvest conditions and the extraction, preserva-
tion, storage, and transport of the oil.

Today, the most established technique in this area is based 
on infrared spectroscopy, which is now widely used in food 
studies. It has become a particularly powerful analytical tool 
for studying the authenticity of edible oils and detecting any 
adulteration, especially when combined with techniques 
from chemometrics (Basri et al. 2017; Vanstone et al. 2018; 
Yuan et al. 2020; Bragolusi et al. 2021; Du et al. 2021; Sota-
Uba et al. 2021). Economically speaking, infrared spectros-
copy technology is rapid, inexpensive, and sensitive, and 
it can be used for high-throughput analysis of food-based 
components with real-time measurement at all stages of pro-
duction without requiring specially skilled operators (Prieto 
et al. 2017).

In this paper, the infrared spectra of pure and adulterated 
argan oils were determined using Fourier transformed IR 
(FTIR) spectroscopy. New multivariate statistical analyses 

were then applied for the obtained chemical data, such as the 
principal component analysis (PCA) exploratory method for 
unsupervised pattern recognition and supervised classifica-
tion methods like the soft independent modeling class anal-
ogy (SIMCA) and the data-driven soft independent mod-
elling of class analogy (DD-SIMCA), in order to classify 
different argan oil samples according to their geographical 
origins and detect any adulteration with soya and sunflower 
oils. In addition, the degree of any adulteration was quan-
tified using the most commonly used regression methods, 
namely partial least square (PLS) and principal component 
regression (PCR).

Materials and Methods

Sample Collection

A total of 78 argan kernel samples from five Moroccan 
argan forest regions (Agadir, Essaouira, Chtouka Aitbaha, 
Taroudant, and Tiznite) were collected by visiting produc-
ers, cooperatives, markets, and industries (Fig.  1). The 
provenance and quality grade of all the samples had been 
guaranteed by the suppliers. Argan oil was then mechani-
cally extracted from unroasted kernels using an automatic oil 
press machine in the laboratory. The oils were then filtered 
and preserved in 250-mL dark-glass bottles in a refrigera-
tor at + 4 °C. These had been filled with nitrogen to avoid 

Fig. 1  Moroccan regions from the where argan kernel samples were 
obtained
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oxidation until the day of analysis. Prior to analysis, the oils 
were left to stand at room temperature for at least 24 h.

Sample Preparation

Soya and sunflower oils were procured from the local super-
market as adulterants. Binary mixtures of argan–soya and 
argan–sunflower oils were prepared by combining an indi-
vidual authentic argan oil with varying proportions of adulter-
ant oil (i.e., 0%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 
80%, 90%, and 100% weight/weight). The resulting 24 mix-
tures were used as a calibration set to construct the regression 
models. Next, in order to evaluate the prediction performance 
of the regression models, 10 further mixtures of soya and 
sunflower oil with argan oil at 3%, 12%, 23%, 31%, 42%, 49%, 
55%, 66%, 74%, and 83% proportions were prepared.

FTIR Spectra Acquisition

All the argan oil samples, both authentic and adulterated mix-
tures, were subjected to FTIR spectral measurements using 
a PerkinElmer Spectrum Two equipped with a UATR. All 
spectra were recorded from 4000 to 400  cm−l at a resolution 
of 1  cm−l. Using a Pasteur pipette, approximately 0.25 mL of 
each sample was placed in direct contact with single bounce-
attenuated total reflectance using the Smart ARK accessory. 
The diamond ATR crystal was cleaned between samples using 
laboratory tissue and a small amount of hexane. Each FTIR 
spectrum was subsequently subtracted using reference spectra 
(air) as background. The sample spectra were measured for 
three replicates and displayed as an average spectrum.

Multivariate Analysis

Raw spectral files were exported from the spectrometer acqui-
sition software to The Unscrambler (v 7.6; CAMO A/S, Oslo, 
Norway) software for data analysis. The original spectra data 
were scrutinized for unusual or outlying samples through 
principal component analysis. Next, a preliminary analysis 
of the data set for natural groupings was performed through 
PCA, while classification was done using single-category 
SIMCA (Wold and Sjöström 1977; De Maesschalck et al. 
1999; Bevilacqua et al. 2014; Oliveri et al. 2021). The latter 
is a popular pattern-recognition technique that is based on 
principal component analysis, which is currently considered 
the most commonly used method for class modeling classifi-
cation in chemometrics contexts. It involves first constructing 
an appropriate PCA model for each class in the training sam-
ples and calculating the residual variance of each model. The 
residual variances are then calculated for the unknown sam-
ples in the prediction sample set and compared to those of 

the developed PCA class models to determine which classes 
of the calibration sample set to assign. A full cross-validation 
and nonlinear iterative partial least square (NIPALS) algo-
rithm was used to develop the PCA models. Samples were 
assigned to either a calibration or prediction set based on 
their positions in the main spectral file. More specifically, 
even-numbered samples were used for model development, 
while odd-numbered samples were used for model evalua-
tion. In order to estimate similarity, samples were assigned or 
refused based on their reduced distance from the class space 
(d) in the class-model, which was calculated by taking into 
account the Mahalanobis distance of samples from the center 
of the score space and their orthogonal distance from their 
bilinear projection. Classification model quality was evalu-
ated by calculating the models’ sensitivity and specificity 
based on true and false class assignments. Sensitivity refers 
to the proportion of positive cases captured, whereas speci-
ficity refers to the proportion of negatives that are correctly 
identified. These statistical parameters were calculated using 
the equations below:

where, TP is the true positive (the number of target samples 
correctly attributed as positive) and FN is the false nega-
tive (the number of target samples incorrectly attributed as 
negative).

where, TN is the true negative (the number of non-target 
samples correctly attributed as negative) and FP is the false 
positive (the number of non-target samples incorrectly 
attributed as positive).

Unless otherwise stated, all classification results are given 
at the 95% confidence level.

In order to extend the application range of the chemo-
metric tools, the data were exported to a modified version 
of the SIMCA method, namely DD-SIMCA (Pomerantsev 
and Rodionova 2014), to establish a rapid identification 
model. In the present study, calculations were performed 
using standard Excel functions and a chemometric add-in 
for Microsoft Excel (SIMCA template.xlsb) (Pomerantsev 
2014). The parameter α (0 < α < 1) was used to manage the 
size of the acceptance area, which corresponded to the green 
boundary line. A lower α means a wider acceptance area, 
so samples are more likely to be accepted. Meanwhile, the 
parameter γ (0 < γ < 1) was used to manage the size of the 
outlier area corresponding to the red boundary line. A lower 
γ means a wider area, so fewer outliers will be discovered. 
The samples are colored according to their status, such that 
regular objects (green dots) belong to the acceptance area, 

sensitivity =
TP

TP + FN

specif icity =
TN

TN + FP
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outliers (red squares) were outside the outlier area, and 
extreme samples (yellow diamonds) were located in between 
these. In DD-SIMCA classification, sensitivity is calculated 
for both calibration and validation sets, whereas the specific-
ity is only determined from prediction set.

Quantitative spectral decomposition techniques—such as 
PLS and PCR, which are typically used for predictive linear 
modeling—were used to build models to determine the con-
centration of soy or sunflower oil in adulterated argan oil. 
No outliers were removed during calibration. The root mean 
square error of calibration (RMSEC), leave-one-out cross 
validation (RMSECV), and prediction (RMSEP) were used 
to assess the predictive ability of the models.

Results and Discussion

FTIR Spectral Analysis

The typical spectra for pure argan, soya, and sunflower 
oils are shown in Fig. 2, and it is readily apparent that no 
significant visible differences exist among these spectra. 
The specific frequency of a given vibration mode depends 
upon the specific arrangement of the carbonyl groups and 
the lipid hydrocarbon backbone, while the intensity of 
the specific vibration mode depends on the relative con-
centration of the related functional group. Argan oil and 
the soya/sunflower adulterated oils differ in composition 
principally in their linoleic and oleic acid contents. Thus, 

transmittance minima are clearly evident at 2922, 2853, 
1744, and 1161  cm−1, together with smaller transmittance 
bands at 1464, 1377, 1109, 1097, and 723  cm−1. From 
the literature (Guillen and Cabo 1997), it can be surmised 
that the bands occurring in the region between 1744 and 
2922  cm−1 are due to stretching vibrations of the = C-H 
group, while the band at 1300 and 1465  cm−1 is due to 
the bending vibration of the C-H bonds that are present 
in triglyceride molecules, and the band at 1097   cm−1 
relates to the stretching vibrations of -C-O groups. The 

Fig. 2  Plot of spectra for different pure argan, soya, and sunflower oil samples

Table 1  Functional groups and modes of vibration in the spectra with 
the assigned functional group, the mode of vibration, and the inten-
sity (Guillen and Cabo 1997)

a w, weak; m, medium; st, strong; vst, very strong

Frequency 
 (cm−1)

Functional group Mode of vibration Intensitya

3006 ≡C‒H(cis-) Stretching m
2924 ‒C‒H  (CH2) Stretching (asym) vst
2853 ‒C‒H  (CH2) Stretching (sym) vst
1746 ‒C = O (ester) Stretching vst
1465 ‒C‒H  (CH2,  CH3) Bending (scissoring) m
1377 ‒C‒H  (CH3) Bending (sym) m
1163 ‒C = O‒CH2‒ Stretching, Bending st
1097 ‒C‒O Stretching m
723 ‒(CH2)n‒, ‒

HC = CH‒(cis)
Bending (rocking) m
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band at 723  cm−1 is connected with the bending vibration 
of -HC = CH- groups. Table 1 summarizes the infrared 
band assignments that were reported for the considered 
edible oils. The prominent features in the spectrum include 
the bands in the region of 2922  cm−1 due to the –CH- 
stretch of the hydrocarbon chains and those in the region 
of 1744  cm−1, which are due to the carbonyl groups in the 
triglyceride.

Discriminant Analysis

The similarity among the spectra reflects the similarities in 
the chemical compositions of the oils. Although the FTIR 
spectra of all the argan oil samples are similar in appear-
ance, minor differences manifest in a more detailed analysis 
through small band shifts and small corresponding changes 
in their relative intensity (Fig. 2). The authentic argan oil 
samples were split into a calibration (60%) and a valida-
tion set (40%), with these being randomly selected from 
each region (Table 2). In order to achieve a good classi-
fication for authentic argan oil, different spectral pre-pro-
cessing methods were tested in different spectral regions in 
combination with the PCA technique, with the best results 
being obtained using mean centering of the combined raw 
spectral data from 3044–2943, 2904–2870, 1423–1212, 
1130–1001, and 913–853  cm−1. The PCA results for the 
calibration and validation datasets are illustrated in Fig. 3. 
The two-dimensional score plot of the two first PCs (PC1 
and PC2), which describe 100% of the total variance, reveals 
that most of the authentic argan oils are clearly separated in 
the space, with samples generally being grouped according 
to their geographical origins for the five classes both in the 
calibration and the validation set. All validation samples are 
clearly plotted close to their proper classes. However, the 
closeness that can observed between the oils from Agadir 
and Essaouira—as well as among the oils from Chtouka, 
Taroudant, and Tiznite—can be explained by the fact that 
these regions neighbor each other and therefore have simi-
lar climates, as well as by the fact that a limited number 

of representative samples were selected in certain regions. 
More specifically, Agadir and Essaouira are oceanic coastal 
regions with a hot, humid, and arid bioclimate, while 
Chtouka and Tiznite are sub-Saharan regions with climatic 
conditions that are geographically close to arid Mediterra-
nean. The Taroudant region, meanwhile, is surrounded by 
two mountain ranges (High Atlas and Anti-Atlas) and has a 
hot, semi-arid bioclimate.

In order to obtain a classification rule for the set of n 
known groups of argan oil, such that new samples can be 
assigned, the soft independent modeling of class anal-
ogy (SIMCA) technique was applied. When constructing 
the model with SIMCA, the similarities between samples 
with defined categories were addressed, and a PCA was 
performed individually for each class, resulting in its own 
class model. As SIMCA is based on PCA, the individual 
PCA model for each group was created using data from the 
training set (Table 2). In the SIMCA model, the optimal 
numbers of PCs were retained for each class based on the 
explained variance and the predicted residual error sum of 
squares (PRESS). The classification results are summarized 
in Table 3 in terms of the sensitivity and specificity rates 
for the calibration and validation sets from the five regions. 
For the SIMCA models constructed from the Agadir and 
Essaouira calibration and validation sets, it can be seen that 
no target samples were assigned wrongly, with them show-
ing excellent prediction performance with both a sensitivity 
and specificity of 100%, meaning that the samples were cor-
rectly distributed in their respective predefined groups. For 
the Chtouka, Taroudant, and Tiznite calibration and valida-
tion sets, the constructed SIMCA models gave very satisfac-
tory results, with the sensitivity varying between 73 and 92% 
because some target samples were assigned to more than 
one group or assigned as non-target samples. In addition, 
the classification results for these groups show that some 
non-target samples were not correctly rejected by the model 
and instead wrongly assigned as target samples, resulting in 
specificity between 90 and 96%.

Another experiment for geographic discrimination was 
carried out using DD-SIMCA chemometric analysis of the 
authentic samples from the different regions in order to build 
models capable of determining whether the samples from 
other regions can be excluded as aliens. Taking into account 
the optimal number of PCAs used in SIMCA for each region 
(Table 3), a one-class target classification model was devel-
oped using the authentic samples from a particular region 
and applying mean-centering preprocessing methods to the 
entire set of available spectra. The sizes of the acceptance 
and outlier areas were set at α = 0.01 and γ = 0.05 for all 
cases. The results of the DD-SIMCA classification mod-
els are illustrated in Fig. 4a–e, while their results in terms 
of sensitivity and specificity are summarized in Table 4. 
Since only target samples were used in the calibration and 

Table 2  Geographical origins of the samples and their occurrence in 
the different data sets

Geographical origin Number of 
samples

Calibration Validation

Agadir 10 7 3
Chtouka 14 8 6
Essaouira 15 9 6
Taroudant 14 9 5
Tiznite 25 14 11
Total 78 47 31
% 100% 60% 40%
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validation step (i.e., objects of the modeled class were not 
used for building the model), the sensitivity rate was the 
only parameter that could be calculated. For the calibration 
sets, all target samples fell correctly in line for all models, 

resulting in sensitivity rates of 100%. For the validation 
sets, the Agadir and Essaouira models demonstrated 100% 
sensitivity, indicating that all target samples were correctly 
identified. However, the Chtouka, Taroudant, and Tiznite 

Fig. 3  PCA score plot of the mid-infrared spectra for authentic argan oils (PC1 vs. PC2) for calibration and validation sets

Table 3  Results of the SIMCA 
classification models when 
using the near-infrared data for 
the argan oil samples

Cal, calibration; Val, validation, Pred, prediction; TP, true positive; FN, false negative; TN, true negative; 
FP, false positive

Argan oil origin Data set TP FN TN FP Sensitivity (%) Specificity (%) Num-
ber of 
PCs

Agadir Cal 7 0 46 0 100 100 2
Val 3 0 25 0 100 100

Chtouka Cal 8 3 39 2 73 95 4
Val 4 1 24 1 80 96

Essaouira Cal 9 0 38 0 100 100 2
Val 6 0 22 0 100 100

Taroudante Cal 9 2 38 4 82 90 3
Val 5 1 23 2 83 92

Tiznite Cal 11 1 33 0 92 100 2
Val 10 1 18 0 91 100
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models sometimes assigned a target sample as a non-target, 
resulting in 83%, 80%, and 91% sensitivity, respectively. For 
the prediction sets, a 100% specificity rate was evident for 
all classes, indicating that the samples that did not belong 

to the relevant region were correctly rejected by the models, 
as evidenced by how they are plotted outside the threshold 
line. Despite the overall sample set being limited in size, 
the relatively high sensitivity/specificity rates (90–100%) 

Fig. 4  Results of DD-SIMCA for authentic argan oils from a targeted geographical region vs. other regions: a Agadir, b Chtouka, c Essaouira, d 
Taroudante, e Tiznite

Table 4  Sensitivity/specificity 
achieved by the DD-SIMCA 
models when applied to pure 
argan oils from different 
geographical regions

Cal, calibration; Val, validation, Pred, prediction; TP, true positive; FN, false negative; TN, true negative; 
FP, false positive

Argan Oil Data set TP FN TN FP Sensitivity (%) Specificity (%) Number of 
PCs

Agadir Cal 7 0 - - 100 - 2
Val 3 0 - - 100 -
Pred 0 0 68 0 - 100

Chtouka Cal 8 0 - - 100 - 3
Val 5 1 - - 83 -
Pred 0 0 64 0 - 100

Essaouira Cal 9 0 - - 100 - 2
Val 6 0 - - 100 -
Pred 0 0 63 0 - 100

Taroudante Cal 9 0 - - 100 - 4
Val 4 1 - - 80 -
Pred 0 0 64 0 - 100

Tiznite Cal 14 0 - - 100 - 2
Val 10 1 - - 91 -
Pred 0 0 53 0 - 100
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obtained for certain regions demonstrate the potential for 
using near-infrared spectroscopy and DD-SIMCA to classify 
argan oils according to their geographic origin.

Detecting and Quantifying Adulteration by Soya 
and Sunflower Oils in Argan Oil

Detecting Adulteration

In this section, the IR spectra of the binary mixtures were 
investigated as a means for detecting the adulteration of argan 
oil by allowing low levels of adulteration to be more easily 
detected through multivariate calibrations. To classify the 
oil IR spectra and quantify the discrepancy between pure 
and adulterated oil, the multivariate statistical PCA was 
performed after applying Savitsky–Golay smoothing, a sec-
ond-order derivative and mean-centering pre-treatment pro-
cedure, at the combined frequency regions of 3044–2943, 
2904–2870, 1423–1212, 1130–1001, and 913–853  cm−1. 
As shown in Fig. 5, 92% of the variability in the data was 
explained by PC1 and 6% was explained by PC2. The pure 
argan, soya, and sunflower oils were located in well-separated 
regions in the PCA distribution, with the binary mixtures 
occupying intermediate positions depending on the particular 
adulterant and the percentage adulterant content in the argan 
oil. Indeed, the distance from the pure argan oil increases 
with increasing adulterant content from 10 to 100%. From 
these data, it is evident that the adopted spectral parameters 
depend on the soya or sunflower oil present in the oil mixture, 
with there being a linear correlation between the proportion 
of adulterant oil and the PCA score. This confirms that FTIR 

spectroscopy can be successfully used to detect the presence 
of soya and sunflower oils in argan oil samples.

Adulterant detection was studied further to demonstrate 
the usefulness of NIR spectral data for discriminating between 
different varieties of argan oil types and soya and sunflower 
oils by using an open-source data-driven soft independent 
modelling of class analogy (DD-SIMCA) chemometrics tool, 
with the data from the 78 authentic argan oil samples listed in 
Table 2 being used to define the target class. The 47 samples 
randomly selected for the calibration set were used to establish 
the model, while the remaining 31 samples were selected for 
the validation set and to evaluate the robustness of the model. 
Finally, the prediction set comprised the 42 adulterated 
samples. The sizes of the acceptance and outlier areas were 
given by α = 0.05 and γ = 0.05. Optimum classification 
with DD-SIMCA was obtained by considering four PCA 
components, with good sensitivity rates being obtained for 
both calibration (94%) and validation (97%). As illustrated 
in Fig. 6, only three samples from the calibration set were 
located outside the acceptance area, but they were considered 
as extremes (orange dots), meaning that all training objects 
were members of the target class as expected. Applying the 
classification model to the validation set resulted in all samples 
(blue dots) being within the acceptance area (i.e., inside the 
green line); thus, they were correctly classified as pure argan 
oil. The classification model was then applied to the entire set 
of adulterated samples (i.e., no target samples), ranging from 3 
to 100% w/w adulteration with soya or sunflower oil. Figure 6 
reveals that these samples (the red dots) are plotted out of 
the acceptance area, so they were identified as impure argan 
samples, thus implying the model has 100% specificity and 
could potentially be used for verifying argan oil authenticity.

Fig. 5  Plot of principal com-
ponent analysis (PCA) scores 
for a single sample of argan 
oil together with adulterated 
mixtures with 10–100% soya or 
sunflower oil
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Quantification

Quantifying the amount of soya or sunflower oil mixed 
into argan oil was performed by applying multivariate cali-
brations, namely partial least square (PLS) and principal 
component regression (PCR), on the spectral data for 11 
binary mixtures of each adulterant.

In the PLS and PCR calibration models, the linearity 
method was evaluated in order to show a proportional rela-
tionship between responses (transmittances) and analyte 
concentrations. The PLS and PCR models were developed 
using the FTIR mean-centered spectra in the frequency 
region of 3030–2860   cm−1, where the variations were 
observed and because of its ability to give the highest 
values of  R2 and the lowest values of RMSEC, relative 
to other frequencies. In order to validate the developed 
model, cross validation using the “leave one out” tech-
nique was achieved by excluding one of the calibration 
samples and then constructing a model for the remaining 
samples. Subsequently, the model was evaluated using the 
previously excluded samples, while the error values for the 
predicted observations were computed. The new samples 
were then excluded from the model set and a new model 
was constructed. This process was repeated until all sam-
ples had been excluded once in the PLS and PCR models 
(Rohman and Che Man 2011). The results obtained from 
the PLS and PCR models in terms of the  R2, RMSEC, 
RMSEV, and RMSEP are presented in Table 5.

Based on Table 5, we can say that quantifying SO and 
SF adulterants in AO was carried out well due to the high 
coefficient of correlation (R2 = 0.999) for the calibration and 
validation models, both with PLS and PCR. However, when 
compared to PCR, PLS gives a more adequate fit and offers 
the best calibration and validation models. For the soya PLS 
model, a low error of calibration was obtained for the root 
mean square error in calibration (RMSEC = 0.389% w/w), as 
well as a low validation error as expressed by the root mean 
square error of validation (RMSEV = 0.639% w/w) when 
using four factors. Similarly, the presence of SF in AO was 
quantified using the PLS calibration model, which offers the 
best results in terms of the high  R2 values for the calibration 
(0.9994) and validation (0.9993) data and the lowest errors 
both for RMSEC (0.685% w/w) and RMSEV (0.863% w/w) 
when using only two factors. Graphical representations of the 
regressions produced using these models are shown in Fig. 7a 
and b. The PLS calibration model was also used to calculate 
the adulterant content of samples in the prediction set. Plots of 
the relationship between the actual and FTIR-predicted values 
of adulterant content in the prediction samples are shown in 
Fig. 7c and d, with the  R2 and root mean square error of pre-
diction being 0.998 and 1.067% (w/w), respectively, for soya 
and 0.997 and 1.199% (w/w) for sunflower.

In the PLS calibration model, the verification and justi-
fication of the optimum principal component and spectra 
regions retained for each class and used for constructing 
the models were carried out by calculating the difference 

Fig. 6  The DD-SIMCA accept-
ance plot for the calibration, 
validation, and prediction 
samples used for the adultera-
tion model
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between the real and predicted values. The sum of the 
squares of the discrepancies is called the predicted resid-
ual error of sum of squares (PRESS) value, and this was 
calculated for different principal component (PC) values 
(Rohman and Che Man 2011). Figure 8 shows that a stable 
RMSECV value was minimally obtained after four and two 
factors for adulteration by soya and sunflower oil, respec-
tively. Based on these results, we can suggest that the pro-
posed models might be of practical use for detecting and 

quantifying soya and sunflower oil adulteration in argan 
oil at levels as low as 3%.

Conclusions

Using a valuable database of 78 authentic argan oils, this 
study has demonstrated that FTIR spectroscopy combined 
with multivariate analysis—including principal component 

Table 5  Performance of 
the multivariate calibration, 
validation, and prediction for 
analyzing soya and sunflower 
oil content in argan oil

Cal, calibration; Val, validation, Pred, prediction

Analysis Factor Model Equation R2 RMSE (% w/w)

Adulteration with soya oil
  PLS 4 Cal y = 0.9998x + 0.006 0.999 0.389

Val y = 0.998x + 0.100 0.999 0.639
Pred y = 0.980x + 1.478 0.998 1.067

  PCR 2 Cal y = 0.999x + 0.006 0.999 0.393
Val y = 0.998x + 0.101 0.999 0.64
Pred y = 0.980x + 1.478 0.998 1.067

Adulteration with sunflower oil
  PLS 4 Cal y = 0.999x + 0.018 0.999 0.658

Val y = 1.006x − 0.272 0.999 0.863
Pred y = 1.027x − 0.859 0.997 1.199

  PCR 2 Cal y = 0.999x + 0.019 0.999 0.662
Val y = 1.007x − 0.349 0.999 0.894
Pred y = 1.027x − 0.835 0.997 1.205

Fig. 7  The PLS calibration 
and prediction models for the 
relationship between the actual 
and FTIR-predicted values for 
AO adulteration with SO (a and 
c) and SF (b and d)
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analysis (PCA), soft independent modeling of class analogy 
(SIMCA), and data-driven soft independent modelling of 
class analogy (DD-SIMCA)—represents a potentially reli-
able tool for classifying argan oil samples according to their 
geographical origin. In addition, it also appears to be a good 
candidate for rapidly detecting and identifying soya and sun-
flower oil adulterants in argan oil products for quality control 
purposes. Moreover, once adulteration has been detected, 
the degree of adulteration with soya and sunflower oil can 
be quantified through partial least squares regression, which 
gives a good model for calibration, validation, and predic-
tion within acceptable errors. The developed PLS and PCR 
calibration models could be successfully used to accurately 
determine a low concentration of soya or sunflower oil in 
argan oil. Being able to distinguish between argan oils and 
other cheaper oils will help reinforce the quality and com-
mercial value of this plant product.
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