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Abstract
A fluorescence immunochromatographic strip using quantum dot nanobeads (QDNBs)-monoclonal antibody (McAb) conju-
gates was developed to rapidly detecting okadaic acid (OA) in shellfish. Under optimal conditions, the linear working range 
was 0.62–20 ng·mL−1, and the full competitive limit of detection (LOD) was 20 ng·mL−1, corresponding to 160 μg·kg−1 
per shellfish, meeting the regulatory limit of European Conformity (EC). The strips could show results in 20 min, had high 
reproducibility, and were effective within 6 months when stored sealed at 4 °C and 25 °C. Moreover, the strips successfully 
detected OA in spiked shellfish samples. The reliability of the test strips was further confirmed by enzyme-linked immu-
nosorbent assay (ELISA) which was consistent well with Abraxis imported ELISA (R2 = 0.988). The strips are sensitive, 
specific, replicable, and ideal for rapidly detecting OA, providing a potential tool that can be further developed to detect OA 
and other marine toxins in shellfish.
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Abbreviations
LFIC  lateral flow immunochromatographic
ELISA  enzyme-linked immunosorbent assay
HPLC–MS  high-performance liquid chromatography-

tandem mass spectrometry
SPR  surface plasmon resonance
QDNBs  quantum dot nanobeads
QDs  quantum dots
MNPs  magnetic nanoparticles
AuNPs  gold nanoparticles
McAb  monoclonal antibody
OA  okadaic acid
DSP  diarrheic shellfish poisoning
PPI  protein phosphatase inhibition
PP1  protein phosphatases of type 1

PP2A  protein phosphatases of type 2A
LOD  limit of detection
EC  European Conformity
BSA  bovine serum albumin
NHS  N-hydroxysuccinimide
DCC  N,N-dicyclohexylcarbodiimide
EDC  N-(3-dimethylaminopropyle)-N-ethyl-car-

bodiimide hydrochloride
N,N-DMF  N,N-dimethylformamide
HEPES  4-(2-hydroxyerhyl) piperazine-1-erhanesul-

fonic acid
PEG 20 000  polyethylene glycol 20 000
NC  nitrocellulose
PBS  phosphate-buffered saline
PB  phosphate buffered
TEM  transmission electron microscope

Introduction

Okadaic acid (OA) is a form of lipophilic marine algal toxin 
with a low-molecular weight of approximately 805 Da, and 
it can accumulate in the internal organs of shellfish that 
accidently ingest toxin-producing dinoflagellates (Hu et al. 
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1992; Morton et al. 1998). Because of the high-temperature 
resistance, the toxicity of OA cannot be eliminated by cook-
ing (T. An et al. 2010; Lee et al. 1989; Reguera et al. 2012). 
So, if contaminated seafood was ingested by humans, OA 
is able to inhibit serine/threonine protein phosphatases of 
type 1 (PP1) and 2A (PP2A) by binding to the receptor site; 
this results in the overphosphorylation of protein in cells 
(L. Q. Hu et al. 2013; Zhou et al. 2016), causing diarrheic 
shellfish poisoning (DSP) including diarrhea and vomiting 
(Prassopoulou et al. 2009; Sassolas et al. 2013). In order to 
guarantee the safety of seafood, the European Conformity 
(EC) put forward a specific regulation 853/2004/EC stat-
ing that the maximum permitted level was 160 μg of OA 
equivalents  kg−1 (Anon 2004; European Food Safety 2008). 
Therefore, it is necessary to develop fast, sensitive, and reli-
able methods to detect OA.

A number of methods have been used to determine OA 
concentrations in shellfish, including mouse bioassays, 
HPLC techniques, protein phosphatase inhibition (PPI) 
assays, and immunological methods (S. Y. Lu et al. 2012a, 
b). While proven to be useful, these techniques still need 
a complex instrument, consume time, and also have ethi-
cal issues. Currently, immunoassays have become one of 
the most popular methods due to their high sensitivities, 
simplicity, and the small sample volumes required (L. Q. 
Hu et al. 2013). Among them, an immunochromatographic 
strip based on colloidal gold is commonly used because of 
the simplicity, rapid, low cost, and visualized result. How-
ever, the insufficient brightness makes the sensitivities low 
(Shen, et al. 2017a, b). In order to improve sensitivity, a 
series of materials and methods have been tested, including 
enzymes, fluorescent materials, thermal contrast readouts, 
and magnetic microspheres (Ren et al. 2016; Shen, et al. 
2017a, b; Wang et al. 2016; Y. Yao et al. 2016). It is found 
that fluorescence materials producing highly sensitive fluo-
rescence signals are more effective than the traditional col-
loidal gold (AuNPs) and magnetic nanoparticles (MNPs) 
that produce colorimetric signals (Guo et al. 2019). Among 
them, upconversion nanoparticles (UCNPs) can produce 
strong luminescence and have unique optical properties 
such as low toxicity, narrow emission spectra, chemical sta-
bility, and no self-fluorescence background compared with 
fluorescent dyes, but have low quantum yield (Liang et al. 
2019); europium microspheres (EuNPs) have broad excita-
tion spectrum, narrow emission peak, long fluorescence life-
time, high quantum yield, large stokes shift, high resolution, 
low environmental interference, and no photobleaching (H. 
Chen et al. 2020).

Meanwhile, quantum dots (QDs) as nanoscale fluores-
cent labels attracted significant interest for biological and 
medical detection (Li et al. 2014) because of excellent 
optical properties, high quantum yields, tunable band-
gaps, high efficiency, a broad absorption cross-section, 

and narrow emission bandwidth (Alivisatos 1996; F. P. 
An et al. 2015; Duan et al. 2017; Guo et al. 2019; Huang 
et al. 2016). But, they also have the problem of insuffi-
cient sensitivity caused by instability after phase-transfer 
procedures (T. Zhang et al. 2006). Therefore, QD beads 
were encapsulated into quantum dot nanobeads (QDNBs) 
as signal amplification label to gain stability (Dubertret 
et al. 2002). By now, the conjugation of QDNBs and mon-
oclonal antibodies (McAbs) has become common prac-
tice for immunoassays (Ouyang et al. 2017). For instance, 
Zhang et al. developed a dot-blot immunoassay that the 
fluorescent signal of QDNBs could be amplified in just one 
step (P. F. Zhang et al. 2014). Yao et al. developed immu-
noassays based on a dual-signal system that combined 
QDNBs and fluorescent nanoparticles (S. Yao et al. 2019). 
In another study, Shen et al. developed a fluorescence-
quenching immunochromatographic strip with QDNBs 
and AuNPs (Shen, et al. 2017a, b).

Considering that previous methods involving QDNBs 
have yet to be used to detect OA, in this study, we used 
carboxy-modified QDNBs as signal density reporters to 
label McAb and developed a fluorescence immunochro-
matographic strip for the rapid determination of OA in 
seafood samples.

Materials and Methods

Reagents and Materials

OA was purchased from Express Technology. 
Bovine serum albumin (BSA), N-hydroxysuccinim-
ide (NHS), N, N-dicyclohexylcarbodiimide (DCC), 
N-(3-dimethylaminopropyle)-N-ethyl-carbodiimide hydro-
chloride (EDC), and N,N-dimethylformamide (N, N-DMF) 
were purchased from Sigma. Tween-20, polyethylene gly-
col 20 000 (PEG 20 000), D ( +)-sucrose, and 4-(2-hydrox-
yerhyl) piperazine-1-erhan esulfonic acid (HEPES) were 
purchased from Beijing Dingguo Changsheng Biotech. 
Goat anti-mouse immunoglobulin G (IgG) antibody was 
purchased from Boster. The anti-OA monoclonal antibody 
(McAb) (IgG1 subclass) was produced and preserved by 
our laboratory (S.-Y. Lu et al. 2012a, b; S. Y. Lu et al. 
2012a, b). Quantum dots nanobeads (QDNBs) were pur-
chased from Kundao Biotech. MicroAmp 96-well reaction 
plate was purchased from ThermoFisher. Sample pad was 
purchased from Shanghai Kinbio Tech. Absorption pad, 
nitrocellulose (NC) membranes, plastic backing, desiccant, 
and aluminum foil bag were purchased from Shanghai 
Jiening Biotech. Other reagents were of analytical purity, 
and doubly distilled water was used throughout all of the 
experiments.
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Apparatus

The apparatus was used as follows: the AKTA purifier 
100 was purchased from General Electric Company (GE, 
USA); the T-Green transilluminator (OSE-470/470L) was 
purchased from Tiangen Biotech (Tiangen, Beijing); the 
fluorescence immunoassay analyzer (MD-100) was pur-
chased from microdetection (MD, Nanjing); the XYZ 3060 
platform and CM 4000 cutting system were purchased from 
Biodot (Biodot, China); the H-7650 transmission electron 
microscope (TEM) was purchased from Hitachi (Hitachi, 
Japan); the 200 PRO multifunction microplate reader was 
purchased from Tecan Infinite (Tecan, Switzerland); the 
microplate spectrophotometer epoch was purchased from 
Bio-Tek Instruments (Bio-Tek, USA); the nanodrop 2000 
ultra-micro spectrophotometer was purchased from Thermo 
Fisher (Thermo, USA).

Preparation of Coating Antigen

OA-BSA was prepared according to the established meth-
odology with some modifications (Lin et al. 2014). OA 
(0.5 mg), NHS (0.08 mg), and DCC (0.15 mg) were added 
into 60 μL of N,N-DMF and reacted for 2 h at 20–25 °C. 
Then, the mixture was transferred in 50 μL of  NaHCO3 
(0.1 M) containing 2.0 mg of BSA and reacted for 2 h at 
20–25 °C. The mixture was purified by centrifugal ultra-
filtration. Finally, OA-BSA was diluted to 1 mg·mL−1 with 
phosphate-buffered saline (PBS, 0.01 M, pH 7.4) and then 
was preserved at − 20 °C.

Preparation of QDNBs‑McAb

The QDNBs-McAb were generated in two steps: activation 
of carboxyl groups on the surface of QDNBs and conjugation 
of activated QDNBs and McAb. First, QDNBs (1 mg) and 
EDC (0.0742 mg) were added to 500 μL of HEPES buffer 
(0.03 M, pH 6.75). The solution was blended for 30 min at 
20–25 °C and was washed three times (11 000 rpm, 15 min) 
with 500 μL of HEPES buffer. Subsequently, McAb (100 μg) 
was added and blended for 30 min at 20–25 °C. Then, the 
washed solution was resuspended in 500 μL of blocking 
buffer (0.03 M HEPES, 0.07 M BSA, pH 6.75) for 30 min 
at 20–25 °C. Finally, the washed solution was resuspended 
in 1 mL of preservation solution (0.03 M HEPES, 50 mM 
Tris, 0.154 M NaCl, 13.8 mM NaN3, 36.8 mM BSA, pH 
7.25) and was stored at 4 °C.

Performance of QDNBs‑McAb

Direct ELISA and direct competitive ELISA were used 
to confirm whether the QDNBs and McAb were success-
fully conjugated. The OA-BSA diluted to 1 μg·mL−1 with 

bicarbonate buffer (pH 9.6) was immobilized on micro-well 
plates and incubated at 4 °C overnight. The QDNBs-McAb 
was diluted with different concentrations (10, 5, 2.5, 1.25, 
0.62, 0.31, 0.15 μg·mL−1 of QDNBs) for direct ELISA. 
The QDNBs-McAb diluted to 5 μg·mL−1 of QDNBs was 
mixed with an equal volume of different concentrations of 
OA (100, 50, 25, 12.5, 6.25, 3.12, 1.56 ng·mL−1) for direct 
competitive ELISA. The dilutions were added into coated 
microplates and incubated for 1 h at 37 °C. Then, the fluo-
rescence intensity of each well was detected repeatedly by 
a microplate reader, and the average readings were used for 
calculation and graphing.

Preparation of QDNB Strips

The test strips were prepared as follows: The goat anti-
mouse IgG and OA-BSA were immobilized on NC mem-
brane as control (C) line and test (T) line with 7-mm inter-
val. Then, the sample pad, NC membrane, and absorbent 
pad were laminated and pasted on a PVC plate and cut into 
3-mm-wide and 60-mm-long strips by strip cutter.

Immunochromatographic (Strip) Assays for Okadaic 
Acid (OA)

Forty microliters of sample buffer was mixed with 2.5 μL of 
QDNBs-McAb and 37.5 μL of loading buffer (0.2 mM PEG 
20 000, 0.196 M BSA, and 0.01 PB); then, the mixture was 
loaded on the sample pad. Results could be observed with a 
T-Green transilluminator and calculated by a fluorescence 
reader.

Reproducibility and Stability of QDNB Strips

To test the reproducibility, three concentrations of stand-
ard OA solutions were prepared (0, 10, and 20 ng·mL−1), 
and each concentration was tested with three test strips. To 
test the stability, the strips made from the same bunch were 
sealed and preserved separately at 4 °C and 25 °C, and then 
were used to detect OA every month for the next 6 months.

Detection of Okadaic Acid (OA) in Spiked Samples

First, the composition of the sample extracting solution was 
optimized. Two types of OA-free shellfish sample (Rapana 
venosa and Argopecten irradians) were screened by ELISA, 
and each type was used to prepare spiked (20 ng·mL−1) and 
non-spiked (0 ng·mL−1) groups. Also, two types of sample 
extracting solution were prepared: solution 1 consisted of 
methanol and water (8:2) and solution 2 consisted of metha-
nol, water, and acetic acid (80:19:1). Then, each group was 
extracted by two types of extracting solution as follows: 
1 g of homogenized tissue was mixed with 2 mL of sample 
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extract, sonicated for 10 min, and centrifuged at 10 000 rpm 
for 10 min. Then, the supernatant was diluted four times as 
a sample solution and tested by the test strip.

In spiking study, three types of OA-free shellfish (Glos-
saulax didyma, Rapana venosa, and Haliotis discus hannai) 
were spiked at 20, 80, and 160 ng·mL−1 and detected with 
QDNB strips. Results were confirmed by ELISA developed 
earlier by our group (S.-Y. Lu et al. 2012a, b).

Results and Discussion

Confirmation of QDNBs‑McAb

QDNBs and QDNBs-McAb were scanned by TEM; results 
showed that the diameter of QDNB was about 80  nm 
(Fig. 1a); this represented an appropriate size to conjugate 
with antibodies. The absorbance spectrum of QDNBs, 
McAb, and QDNBs-McAb were shown in Fig. 1b; QDNBs 
had no absorption peak at 280-nm; McAb showed an absorp-
tion peak appeared at 283-nm and shifted to 277-nm after 

conjugating with QDNBs. In direct ELISA, the fluorescence 
density changed with the dilution factor and was clearly dif-
ferent from the blank, thus indicating that after conjugating 
with QDNBs, McAb still was capable of binding to coated 
OA-BSA (Fig. 1c); in direct competitive ELISA, the more 
free OA existed, the less QDNBs-McAb bound to the coated 
OA-BSA, this indicated that competitive immunoreactions 
were successfully conducted between free and coated OA to 
bind to QDNBs-McAb (Fig. 1d). Collectively, the QDNBs-
McAb had been prepared successfully.

Principle of QDNB Strips

First, the conjugation of McAb and QDNBs was shown 
in Fig. 2a. Then, OA-BSA and goat anti-mouse IgG were 
immobilized separately in the T and C regions. When 
the sample solution was free of OA, QDNBs-McAb 
would bind to the immobilized OA-BSA and goat anti-
mouse IgG (Fig. 2b). Thus, fluorescence signals could be 
observed in both T and C regions due to the accumulation 
of QDNBs-McAb. Conversely, when free OA existed, it 

Fig. 1  Confirmation of QDNBs-McAb. a TEM image of QDNBs. b Absorbance spectrum of QDNBs and QDNBs-McAb. c Direct ELISA 
results of QDNBs-McAb (the measured value represented relative fluorescence intensity). d Standard curve of direct competitive ELISA
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would combine with a limited number of QDNBs-McAb 
(Fig. 2c). The more free OA existed, the less QDNBs-
McAb combined with immobilized OA-BSA, thus dimin-
ishing the fluorescence intensity of the test line (T-line). 
Therefore, a negative result could be judged when T-line 
had the same fluorescence density as the control line 
(C-line); a weakly positive result could be judged when 
the fluorescence density of T-line was weaker; a positive 
result could be judged when only C-line left. The result 
was worthless when no C line existed.

Optimization of Parameters

In optimization, parameters were selected when T-line and 
C-line were clear enough and showed similar and sufficient 
fluorescence intensity for observation. Results were shown 
in Fig. 3. The transilluminator capable of emitting light at 
470-nm wavelength were shown in Fig. 3a. The optimal 
concentrations of Tween-20 and sucrose in the loading 
buffer were 0.10 and 5 % (Fig. 3b, c). The optimal volume 
of QDNBs-McAb (1 mg·mL−1 of QDNBs) was 0.25 μL 
(Fig. 3d). The optimal concentrations of immobilized OA-
BSA and goat anti-mouse IgG on T and C regions were 0.2 

Fig. 2  Principle of QDNB strips. a QDNBs-McAb probe. b Negative 
reaction. When a negative sample (without OA) was tested, T-line 
would have the same fluorescence density as C-line. c Positive reac-

tion. When a positive sample (OA present) was tested, the fluores-
cence density of the T-line would weaken or disappear

Fig. 3  Optimization of parameters. a T-Green Transilluminator 
(OSE-470/470L). b Optimal concentration of Tween-20. c Optimal 
concentration of D ( +)-sucrose. d Optimal volume of QDNBs-McAb 
(1  mg·mL−1 of QDNBs). e Optimal concentration of immobilized 

OA-BSA. f Optimal concentration of immobilized goat anti-mouse 
IgG (H + L). g Optimal type of absorption pad. h Optimal type of 
sample pad. i Optimal type of NC membrane. j Chromatography time 
of QDNB strips
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and 0.4 mg·mL−1 (Fig. 3e, f); this enable C-line to show 
the same fluorescence density as T-line. The appropriate 
material type for absorbent pad, sample pad, and NC mem-
brane were H-7, SB06, and CN 95, respectively (Fig. 3g, h, 
i). Moreover, the chromatography time was within 20 min 
(Fig. 3j).

LOD of the QDNB Strips

Different concentrations of standard OA were tested. In 
semi-quantitative assays (Fig. 4a), when testing OA at 5, 
10, and 20 ng·mL−1, QDNBs strips showed negative, weakly 
positive and positive results. Therefore, the full competitive 

LOD was 20 ng·mL−1 in the sample solution, corresponding 
to 160 μg·kg−1 in the shellfish sample, which was exactly 
European Conformity (EC) edible safety limit.

In quantitative assays, with 0.8 μL of QDNBs probe 
(0.1 mg·mL−1 of QDNBs), the results of strips were shown 
in Fig. 4b, and the standard curve was established based on 
machine measurement results as shown in Fig. 4c, indicating 
the linear working range of 0.62–20 ng·mL−1. The more OA 
existed in sample solution, the lower and higher fluorescence 
density T- and C-lines had, the more obvious the variation 
was. Moreover, the sum of fluorescence intensities of T- and 
C-lines always remained in an approximate range (data not 
shown). It might be because the amount of QDNBs had not 

Fig. 4  Characteristics of QDNBs strip. a Semi-quantitative assays. 
The full competitive LOD was 20  ng·mL−1. b Quantitative assays. 
c Standard curve. The minimum LOD was 0.62 ng·mL−1. d Repro-
ducibility. QDNB strips had high reproducibility and consistent char-
acteristics. e Stability. QDNB strips could remain valid for at least 
6  months, and the test results could also remain stable for at least 
5  months. f Optimization of sample extracting composition. The 

extraction results using sample extract 1 (80% methanol and 20% 
water) and 2 (80% methanol, 19% water, and 1% acetic acid) were 
respectively shown in strips 1, 2 and 3, 4. Results of spiked and non-
spiked groups were shown in strips 1, 3 and 2, 4. T and C-lines of 
strips 1 and 2 had high fluorescence density and clear boundary. In 
contrast, T and C-lines of strips 3 and 4 had significantly weaker fluo-
rescence density and blurred boundary
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reached the saturation value, making all the added QDNB 
probes binding to T- or C-lines and the sum of fluorescence 
intensities of T- and C-lines always in an approximate range 
so the fluorescence intensity of C-line no longer remained 
stable, but varied according to the number of bound QDNBs 
probes; therefore, when OA in sample solution decreased, 
the QDNBs on T-line increased and the QDNBs on C-line 
decreased, making the fluorescence intensity of T- and 
C-lines increased and decreased.

The LOD of QDNB strips had been improved based on 
the previous period (S. Y. Lu et al. 2012a, b) and was similar 
to that of surface plasmon resonance (SPR) and colloidal 
gold strip method (Le Berre et al. 2015; Ling et al. 2019). 
Although other methods had more sensitive LOD (Hui Chen 
et al. 2019; Pang et al. 2019; Peng et al. 2020), based on 
meeting EC edible safety limit, the QDNB strip had the 
advantages of simplicity, rapid, visualized result, and easi-
ness of field operation, making it a potential mean for rapid 
detection of OA in seafood samples.

Reproducibility and Stability of QDNB Strips

The reproducibility was tested by detecting OA at 0, 10, and 
20 ng·mL−1 with the same bunch of strips. Figure 4d shows 
that QDNB strips had high reproducibility and consistent 
characteristics.

To test the stability, the same batch of strips were sealed 
and stored at 4 and 25 °C, then were used to detect OA 
every month. In the sixth month, all used strips stored at 
4 °C were shown in Fig. 4e: in 6 months, when detecting 
OA at 0 ng·mL−1, the fluorescence density of T- and C-line 
was always maintained at a high level, with clear bounda-
ries that could be readily observed; when detecting OA at 

20 ng·mL−1, only C-line left. Strips stored at 25 °C were also 
stable (results not shown). Therefore, QDNB strips could 
remain valid for at least 6 months, and the test results could 
also remain stable for at least 5 months.

Testing of Spiked Sample

Results of optimal sample extracting composition were 
shown in Fig.  4f. The extraction results using sample 
extracts 1 and 2 were respectively shown in strips 1, 2 and 
3, 4. Results of spiked and non-spiked groups were shown 
in strips 1, 3 and 2, 4. T and C-lines of strips 1 and 2 had 
high fluorescence density and clear boundary. In contrast, 
T and C-lines of strips 3 and 4 had significantly weaker 
fluorescence density and blurred boundary. Although the 
T-lines of strip 3 disappeared, the corresponding extracting 
composition cannot be considered valid. There exists a pos-
sibility that the spiked OA was not fully extracted and the 
free OA in the sample solution did not reach 20 ng·mL−1, the 
T-line should have appeared. However, the decrease in fluo-
rescence intensity prevents the T-line from being observed 
by the naked eye, giving false-positive results. This indicated 
that acetic acid would significantly reduce the fluorescence 
density of QDNBs, rendering the results unfavorable for 
visual observation.

Results of testing spiked samples were shown in Table 1. 
In semi-quantitative assays, when the QDNB strip showed 
a negative result, it meant that the OA in the sample was 
0–80  μg·kg−1 (0–10  ng·mL−1 in sample solution), and 
the shellfish sample was safe for consumption; when 
showed a weakly positive result, the OA in the sample was 
80–160 μg·kg−1 (10–20 ng·mL−1 in sample solution), and 
the shellfish sample was edible but still had potential risk; 

Table 1  Detection results for OA in shellfish by LFIC and ELISA

Note: Y represents “yes” when the T-line developed a fluorescence signal at the T region; N represents “no” when no T-line was developed at 
the T region; a minus sign (−) represents a negative result when the fluorescence density of the T-line was the same as that of the C-line; a plus/
minus sign (±) represents a weakly positive result when the fluorescence density of the T-line was weaker than that of the C-line; a plus sign (+) 
represents a positive result when no T-line developed at the T region; results are shown as means ± standard deviations (n = 3)

Shellfish species OA added 
(ng  mL−1)

LFIC (n = 3) ELISA (n = 3)

Showing 
test line

Visual results Found (μg  kg−1) CV (%) Recovery (%) Found (μg  kg−1) CV (%) Recovery (%)

Glossaulax didyma 20 Y  − 16.168 ± 0.853 5.27% 80.84% 17.303 ± 0.981 5.66% 86.52%
80 Y  ± 68.614 ± 3.125 4.55% 85.76% 86.284 ± 4.588 5.32% 107.85%
160 N  + 138.946 ± 9.849 7.09% 86.84% 145.964 ± 9.508 6.52% 91.23%

Rapana venosa 20 Y  − 14.719 ± 0.727 4.93% 73.59% 18.043 ± 0.899 4.99% 90.22%
80 Y  ± 70.930 ± 3.616 5.09% 88.66% 77.934 ± 4.476 5.75% 97.42%
160 N  + 134.639 ± 9.368 6.95% 84.41% 143.714 ± 9.251 6.44% 89.82%

Haliotis discus 
hannai

20 Y  − 15.629 ± 0.814 5.20% 78.14% 18.406 ± 0.912 4.94% 92.03%
80 Y  ± 65.579 ± 2.992 4.56% 81.97% 79.511 ± 4.781 6.01% 99.39%
160 N  + 130.768 ± 9.047 6.91% 81.73% 138.41 ± 9.246 6.68% 86.51%

2476 Food Analytical Methods  (2022) 15:2470–2478



when showed a positive result, the OA in the sample was 
above 160 μg·kg−1 (above 20 ng·mL−1 in sample solution), 
and the shellfish sample was unsafe and unsuitable for con-
suming. In quantitative assays, the recovery was around 
80%, the CV was 5–7 %. Moreover, the ELISA method 
established by our team with proven reliability (Lin et al. 
2015) was used for repeat validation, and the results were 
consistent with QDNB strips. It meant that the QDNB strip 
could be further developed as an effective tool for screening 
OA in seafood samples.

In addition, because heavy metals like cadmium used 
in QDs have biological toxicity and pollution on the envi-
ronment, QDs synthesized from natural materials such as 
saccharides and lipids with high photostability, biocompat-
ibility, low toxicity, and easy tunability for physicochemi-
cal properties (Ahuja et al. 2022) will be considered in the 
future to establish detection methods.

Conclusion

A new fluorescence immunochromatographic strip was 
developed for the rapid detection of OA. It was developed 
based on previous research (S. Y. Lu et al. 2012a, b), and 
using QDNBs instead of AuNPs. The full competitive LOD 
had been improved to 20 ng·mL−1, which could meet the 
requirement of the EU edible safety limit, and the linear 
working range was 0.62–20 ng·mL−1. Also, the strips were 
user-friendly, required no complex equipment, and could 
screen numerous samples within 20 min, gave semi-quanti-
tative and quantitative results with low background and clear 
bands, may be useful as a rapid on-site screening method for 
environmental monitoring when using shaking and filtering 
instead of sonication and centrifugation.
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