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Abstract
The discolorations or abnormal colors in meat and meat products during processing and storage have negative effects on 
their commercial value. In this study, myoglobin content (MetMb and OxyMb) in Tan mutton was rapidly detected using 
near-infrared hyperspectral imaging (NIR-HSI) system (900–1700 nm), and built predictive models with full wavebands 
(FW) based on partial least squares regression (PLSR), least-squares support vector machines (LSSVM), and back propaga-
tion neuron network (BP). To reduce the computational complexity of calibration models, feature bands were obtained by 
bootstrapping soft shrinkage (BOSS), variable combination population analysis coupled with iteratively retains informative 
variables (VCPA-IRIV), and competitive adaptive reweighted sampling (CARS), respectively. The optimized BP model based 
on feature wavebands with BOSS method selection displayed the best capability for predicting MetMb level (R2

C = 0.8340, 
R2

P = 0.8253 RMSEC = 3.1592, RMSEP = 3.2918). In addition, the simplified VCPA-IRIV-BP model was significant in 
predicting OxyMb content with R2

C, R2
P, RMSEC, and RMSEP values of 0.8024, 0.8680, 3.4676, and 2.7605, respectively. 

Results provided a theoretical reference for rapid evaluation of myoglobin content in other animal products via NIR-HSI.

Keywords  Tan mutton · Quantitative detection · Near-infrared hyperspectral imaging · Myoglobin content · Variable 
selection · Back propagation neuron network

Introduction

Besides its commercial value, mutton is a wealth source 
of protein, vitamins, and minerals (Yu et al. 2021a). Tan 
sheep, an important local sheep breed in Ningxia, China, 
is famous for its high-quality mutton. With the improve-
ment of consumers’ awareness of food safety, there is a high 
demand for the quality of meat products. As a traditional 
meat-preservation method, low-temperature storage delays 

the deterioration of meat and thus prolongs shelf life and 
maintains meat quality (Coombs et al. 2017). Although 
activities of the microorganism can be restrained by low 
temperature during cold storage, some reactions, such as 
psychrophilic microbial activity and enzymatic hydrolysis 
reaction, are still active (Cheng et al. 2021), which directly 
lead to the discoloration of Tan mutton in the process of 
processing, transportation, and sales. Meat color usually 
influences consumers’ appetites for merchandise; the dis-
coloration or abnormal color in meat and meat products dur-
ing shelf life has negative effects on their commercial value 
(Maria and Luis. 2014; Mancini and Hunt 2005; Mancini 
and Ramanathan 2020).

Meat color is closely related to the relative content of 
three different chemical forms of myoglobin: deoxymyoglo-
bin (DeoMb, amaranth), oxygenated myoglobin (OxyMb, 
bright red), and metmyoglobin (MetMb, grayish brown), 
respectively (Mancini and Hunt 2005; Nguyen et al. 2016, 
2019). In general, DeoMb predominates in meat before 
slaughter (Shin et al. 2021). As meat is exposed to air after 
slaughter, the DeoMb on the meat surface is quickly trans-
formed into OxyMb in the oxygenation process. Besides, 
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oxidation occurs from the interior of the meat, which trans-
forms DeoMb and OxyMb into MetMb (Nguyen et al. 2016). 
Meanwhile, the contents of MetMb and OxyMb have domi-
nant position after slaughter. The myoglobin redox state for 
the surface of postmortem muscle is shown in Fig. 1.

Traditional analytical methods for assessing myoglobin 
in meat include sensory evaluation and chemical determina-
tion (Mancini 2013). However, the disadvantages of these 
methods are that they require cumbersome pre-processing, 
complicated operation, copious consumption of reagents, 
destructive detection for samples, and so forth, failing to 
meet the rapid, accurate, and nondestructive requirements 
of modern food industry. Moreover, the different levels of 
experiment proficiency may cause errors in measurement 
(Kuswandi and Nurfawaidi 2017; Shin et al. 2021). In recent 
years, hyperspectral imaging (HSI) technology has been 
widely applied in agricultural product detection because of 
its fast and non-destructive characteristics, and has become 
promising in evaluating and monitoring food quality (Ma 
and Sun 2020). HSI could simultaneously acquire spectral 
and spatial information at each pixel of an object. Spectral 
images are three-dimensional (3-D) in nature, with two spa-
tial dimensions and one spectral dimension [hypercubes (x, 
y, λ)] (Qin 2013). The most important application of HSI in 
meat is line-scanning, which is significant for fundamental 
food research owing to its high resolutions and rapid scan-
ning speed (Ma et al. 2019). Recently, HSI has been utilized 
to measure the parameters related to the internal and external 
qualities of meat, such as pH (Barbin et al. 2012), fat content 
(Lohumi et al. 2016), thiobarbituric acid reactive substances 
(TBARS) (Cheng et al. 2019), meat tenderness (Knight et al. 
2019), total volatile basic-nitrogen (TVB-N) (Baek et al., 
2021), bacterial food-borne pathogens (Bonah et al. 2020), 
and fatty acid (Wang et al. 2020a). The detection of meat 

color by using hyperspectral imaging was mainly focused 
on L*, a*, and b* values (ElMasry et al. 2012; Jiang et al. 
2018; Kamruzzaman et al. 2016; Wu et al. 2012). Regard-
ing the content of myoglobin, Yuan et al. (2020) and Cheng 
et al. (2021) found that Vis/NIR and NIR hyperspectral 
imaging could be employed to detect myoglobin. Wan et al. 
(2020) used the HSI (900–1700 nm) for a non-destructive 
detection of the contents of DeoMb, OxyMb, and MetMb 
in nitrite-cured mutton during refrigerated storage. It could 
be inferred from these studies that although hyperspectral 
imaging has shown the potential for myoglobin prediction, 
the predictability of MetMb content by Yuan et al. (2020) 
was obtained with R2

P = 0.7654 and RMSEP = 2.9306, the 
model performances are still inadequate and much improve-
ment is required. It could also be drawn from the studies 
mentioned above that this modality needs to further develop 
robust algorithms for the analysis of aberrations from desir-
able characteristics and improving computational strategies 
of predictive model before application to meat products. For 
instance, Wan et al. (2020) found that a total of 36 and 33 
feature wavelengths for OxyMb and MetMb were selected 
by CARS, respectively. Nevertheless, it is still necessary to 
reduce the dimensionality of band and improve the band 
selection performance by BOSS and VCPA-IRIV algorithm.

Therefore, the aims of the current study were to (a) eval-
uate the effectiveness of different pre-processing methods 
and select the optimal method; (b) perform BOSS, VCPA-
IRIV, and CARS as reference technologies to identify and 
extract key wavebands that were closely related to the myo-
globin of Tan mutton to simplify predictive models; and 
(c) analyze and optimize quantitative strategies (such as 
PLSR, LSSVM, and BP) to predict the content of myoglo-
bin (MetMb and OxyMb) based on key wavebands and full 
wavebands. Figure 2 presents the schematic description of 

Fig. 1   Myoglobin redox state 
for the surface of postmortem 
muscle
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Fig. 2   The schematic description of the HSI method depicting the whole experimental processes
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the HSI detection method toward myoglobin content of Tan 
mutton during cold storage.

Materials and Methods

Sample Preparation

The experiment was conducted in the laboratory of agricul-
tural products non-destructive testing, School of Food & 
Wine, Ningxia University. Samples from the longissimus 
dorsi of Tan sheep were purchased from a local marketplace 
in Ningxia, China. All these carcasses were individually 
placed in a portable refrigerated incubator covered with ice, 
which was similar to the storage conditions of the refrigera-
tor and then transported to our lab within 2 h and stored at 
4℃. After the chilling and aging of the carcasses, samples 
were removed of fat and connective tissue, and then cut 
into a size of 40 × 40 × 10 mm; finally, 200 pieces obtained 
were collected for investigation. All samples were randomly 
divided into 10 groups, individually packaged by a poly-
thene bag, labeled, and stored in a refrigerator at 4℃. During 
experiment, each mutton sample was wiped off the surface 
moisture to obtain its spectral image and then to measure the 
myoglobin contents during different storage times (1, 4, 7, 
10, 13, 16, 19, 22, 25, and 28 days). The spectral and experi-
mental measurements were conducted at a room temperature 
of 21℃ during winter.

Myoglobin was extracted from Tan mutton by following 
the method of Krzywicke (1982) with minor modifications. 
Firstly, 5-g Tan mutton samples were chopped in 25 mL 
phosphate buffer (0.04 mol/L, pH 6.8), evenly mixed, and 
then homogenized at 10,000 r/min for 25 s by an ultrafine 
homogenizer. Secondly, the homogenized solution was 
stored at 4℃ for 1 h in the dark, centrifuged at 6000 g at 
4℃ for 15 min, and the supernatant was filtered. Finally, 
the absorbance of the filtrate was read at 525, 545, 565, and 
572 nm using a UV-2401PC spectrophotometer (Shimadzu 
Inc., Columbia, MD, USA) with phosphate buffer as blank, 
respectively. The contents of MetMb and OxyMb were cal-
culated as follows:

Here, Ra, Rb, and Rc were absorbance ratios of A572 nm/
A525 nm, A565 nm/A525 nm, and A545 nm/A525 nm, respectively.

Hyperspectral Acquisition

Hyperspectral data was obtained by InGaAs camera (Models 
XC-130 100 Hz, Ophir Optronics Solutions Ltd., Jerusalem, 

[MetMb] = (−2.514Ra + 0.777Rb + 0.800Rc + 1.098) × 100

[

OxyMb
]

= (0.882Ra + 1.267Rb + 0.809Rc − 0.361) × 100

Israel) with a spectral range from 900 to 1700 nm and four 
35 W halogen lamps (ViP V-light, Lowel Light Inc., NY, 
HSIA-LS-TDIF, Zolix instruments Co., Ltd., Beijing, China) 
in a dark box. Each mutton sample was placed on a mobile 
platform and scanned with a linear array push-scan (ImSpec-
tor N17E, Specim, Spectral Imaging Co., Ltd., Oulu, Fin-
land). HSI system was preheated for 30 min before image 
acquisition (Cheng et al. 2021). The spectral images of sam-
ples were collected by SpectraCube software.

To reduce noises and invalid information caused by dark 
current and uneven illumination in the InGaAs device of 
HSI system, it was necessary to calibrate with dark (RD) 
and white (RW) references before getting the hyperspectral 
images (Liu et al., 2019). The bright and dark currents were 
corrected before measurement. The correction formula was 
as follows:

R is the relative spectral reflectance after correction, and 
RO, RD, and RW are the experimental spectral reflectance, 
dark current spectral reflectance, and bright current spectral 
reflectance, respectively (Wu et al., 2013).

Spectral Data Analysis

Pre‑processing of Spectral Data

The spectral reflectance of each mutton sample was extracted 
via ENVI 4.8 software, and the region of interest (ROI) was 
used to manually operate and extract the average spectrum 
of the target region.

Original spectral data may be affected by the signal noise 
from the uneven surface of Tan mutton samples, as well as 
the baseline drift, scattered light, and other factors during 
the hyperspectral image collection. Therefore, it is neces-
sary to perform the spectral pre-processing on hyperspectral 
images for increasing computation speed and improving the 
stability and robustness of model. In the present study, some 
pre-processing methods of spectral data including baseline 
(Yang et al. 2021), normalize (Feng et al., 2019), Gaussian 
filter (GF) (Yuan et al. 2021), moving average (MA) (Tao 
and Peng 2015), Savitzky-Golay (SG) (Chen et al. 2011), 
and combinations thereof were used to improve model pre-
diction performance.

Feature Waveband Selection

Hyperspectral data contain a large amount of information 
(e.g. spectral bands), causing the analysis to be time-con-
suming. Additionally, most bands are independent of the 
final prediction. Therefore, feature waveband selection is a 

R =
RO − RD

RW − RD

× 100%
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core procedure to reduce the dimension of calibration data 
and complexity of calibration model for improving calcu-
lation speed (Lorente et al. 2012). In this study, competi-
tive adaptive reweighted sampling (CARS), bootstrapping 
soft shrinkage (BOSS), and variable combination popula-
tion analysis coupled with iteratively retaining informative 
variables (VCPA-IRIV) were employed to select feature 
wavebands.

BOSS algorithm is used to generate random combination 
of variables and construct sub-models by combined boot-
strap sampling (BBS) and weight bootstrap sampling (WBS) 
techniques (Jiang et al. 2021). Model population analysis 
(MPA) is adopted to extract variable information from sub-
models (Deng et al. 2016). CARS is a variable selection 
method which simulates the “survival of the fittest” prin-
ciple of Darwin’s evolution theory. The bands with larger 
absolute value of regression coefficient are selected from 
partial least squares (PLS) model by adaptive reweighted 
sampling (ARS) technique in an iterative and competi-
tive manner (Shao et al. 2021). N subsets of variables are 
screened out through N samplings, and the subset with the 
lowest RMSECV value is referred to optimal feature bands 
(Wang et al. 2020b). VCPA-IRIV is used to minimize the 
variable space and maintain a specific number of variables 
for further computation of IRIV (Yun et al. 2019). IRIV 
is implemental to optimize the variable space created by 
VCPA. A mixed-methods approach of VCPA utilizes its 
advantages in constantly lessening the variable space and 
retaining significant variables to overcome the disadvantages 
of IRIV in calculation with a large number of variables (Yu 
et al. 2021b).

Model Development

In this study, partial least squares regression (PLSR), back 
propagation neuron network (BP), and least-squares support 
vector machines (LSSVM) were employed to build quantita-
tive models to predict the myoglobin content in Tan mutton 
after slaughter.

As a linear multivariate regression method, PLSR has 
been widely used to construct the relationships among spec-
tral measurements, including correlation variables, chemical 
composition determination indexes and so on. In this study, 
the model was utilized to predict the content of myoglobin 
in Tan mutton. Latent variables (LVs) were extracted, and 
the calibration model was validated by leave-one-out cross-
validation to avoid overfitting or underfitting and to achieve 
good performances (Feng et al. 2018a). LSSVM algorithm 
is an extension of the support vector machine (SVM), which 
can be used in approximate nonlinear systems with higher 
accuracy. There are two major parameters that determine the 
accuracy of model on LSSVM: kernel function parameter 
(σ2) and regularization parameter (γ). The generalization 

capacity of the model augments with the reduction of the γ, 
but the training error increases, and the smaller the σ2, the 
higher the complexity of the model and the larger the σ2, 
which can easily lead to under-learning (Mo et al. 2020). 
There are three layers in a BP model called the input layer, 
the hidden layer, and the output layer (Ma et al. 2019). The 
model is trained by comparing the differences between the 
network output and the reference property and by minimiz-
ing their error with changing the linkage weights (ElMasry 
et al. 2009). Then, the BP is built with acceptable errors by 
continuously adjusting the weights.

Model Evaluation

Some statistical parameters including the coefficients of 
determination in calibration (R2

C), prediction (R2
P), full 

cross-validation (R2
CV), the root mean square errors in cali-

bration (RMSEC), prediction (RMSEP), and cross-valida-
tion (RMSECV) (Cascant et al. 2016) were used to evaluate 
model performance. While R2 between 0.66 and 0.81 was 
acceptable, values between 0.82 and 0.90 and above 0.90 
represented good and excellent results (Karoui et al. 2006). 
RMSE was calculated between predictive and observed val-
ues (Feng et al. 2018b). Therefore, a good model has low 
values of RMSEC and RMSEP, the differences between these 
two values are extremely small, and high values of R2c, R2cv, 
and R2p (Feng et al. 2019). The formulas for R2 and RMSE 
were as follows:

where yj and ŷj are the practical measured value and predic-
tive estimated value, respectively; ӯj is the mean of reference 
measurement; and n is the number of samples.

Software

PLSR and pre-processing methods were implemented via 
Unscrambler X10.4 software (Version 10.4, CAMO, Oslo, 
Norway). The procedures of SPXY, CARS, BOSS, VCPA-
IRIV LSSVM, and BP were executed via MATLAB R2019a 
software (The Mathworks Inc., Natick, MA, USA). Identifi-
cations of a region of interest (ROI) and extraction of spec-
tral data were achieved via ENVI 4.8 software (ITT Visual 
Information Solutions, Boulder, Co., Ltd., USA).

R2 =

n
∑

j=1

�

yj − yj
�2

−
n
∑

j=1

�

yj − ŷj
�2

n
∑

j=1

�

yj − yj
�2

RMSE =

√

√

√

√

1

n

n
∑

j=1

(yj − yj)
2
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Results and Discussion

NIR Spectral Features of Samples

The original and mean reflectance spectra extracted from 
Tan mutton samples in the range of 900–1700 nm were 
depicted in Fig. 3. Figure 3b shows the differences in the 
reflectance of the curves in the visible region. Samples of 
reflectance in the range of 910 to 1400 nm differed in the 
magnitude of reflectance but not in trends. Generally, the 
peaks were observed in the NIR region of meat components 
broad bands arising from highly overlapping bands of the 
chemical bonds C-H, O–H, and N–H groups (Kamruzzaman 
2012; Osborne 2000). In the NIR band, the major absorp-
tion bands were observed in 1005, 1241, and 1443 nm. 
The absorption wavelengths near 1200 nm (1241 nm) and 
1600–1700 nm were due to C-H stretching the 1st and 2nd 
overtone, respectively (Wang et al. 2020a), while those 
near 1400–1660 nm (1443 nm) were due to the 1st overtone 
of O–H and the 2nd overtone of N–H stretching modes of 
water-bonded groups (Pu et al. 2015).

Outliers

Samples that affected model performance were examined 
as abnormal samples. Based on the distributions of means 
and standard deviation (SD) of prediction errors for MetMb 
and OxyMb in each sample, Monte Carlo outlier method 
(Zhang 2017) was used to detect anomalous samples. The 
outlier values were removed from the original data, and the 
remaining data were used to build PLSR detection model. 
The overall performance of model was improved for the 
detection of MetMb and OxyMb upon the removal of out-
liers, with the R2c increased from 0.7993 to 0.8164 and 
0.7785 to 0.8183, respectively, and the RMSECV decreased 
from 5.2565 to 4.9425 and 4.4732 to 3.9735, respectively. 
As shown in Table 1, calibration set and prediction set were 
divided by SPXY algorithm, and the means and SD for the 
calibration and prediction set were compared, which signi-
fied an analogous sample spread between those two sets. 
The advantage of SPXY can effectively bestow the multi-
dimensional vector space and thus enhance the robustness 
of the model (Wei et al., 2020).
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Fig. 3   Spectral curves of samples with different storage periods. a Original spectral curves; b mean spectral curves

Table 1   Statistics of relative MetMb and OxyMb contents of samples

Subsets Calibration set Prediction set

N Max Min Mean SD CV(%) N Max Min Mean SD CV(%)

MetMb 145 54.0224 16.3248 33.4178 9.5920 28.70 49 50.6423 17.8136 36.5319 9.4420 25.85
OxyMb 142 53.8122 24.0138 38.4713 7.7360 20.11 47 50.6403 24.7749 35.5443 7.5919 21.36
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Pre‑processing of Spectral Data

The original spectra can be rectified by pre-processing 
method to enhance the resolution of overlapping data and 
reduce the instrument drift scattering and system noise. 
Figure 4 shows the results of performance of full wave-
length model with references MetMb and OxyMb values 
based on different pre-processing methods. MA-SG pre-
processing displayed the highest accuracy for prediction. 
The R2

p values of the optimal models for the contents of 
MetMb and OxyMb were 0.7217 and 0.7911, respectively, 
which were higher than the bound with raw data. And 
the R2

C = 0.8355, 0.8152, RMSEC = 3.8906, 3.3256, and 
RMSEP = 5.2304, 4.3763, respectively. Therefore, the most 
appropriate pre-processing method of predicting the MetMb 
and OxyMb contents of the mutton samples was MA-SG. 
Compared with original spectra, the results were improved 
by the MA-SG pre-processing, which might be explained 
by decreased scattering effects or eliminating signal noises. 
To reduce interference information, MA and SG have been 
widely used in HSI research (Vaiphasa 2006). Weng (2020) 
and Tao and Peng (2015) found that SG and MA obtained 
good results in hyperspectral scattering imaging.

Feature Waveband Selection

After being pre-processed by MA-SG, a total of 256 
wavebands for MetMb and OxyMb were obtained in the 
NIR range (900–1700 nm). To decrease the dimensional-
ity of spectral data and computation time, CARS, VCPA-
IRIV, and BOSS were employed to select feature wave-
bands from the full spectra range. Each variable selection 
method had randomness in the operation process and 
influenced the reliability of the prediction model. Each 

of the above algorithms was calculated 50 times. Finally, 
the minimum value of RMSECV was selected as the final 
feature wavelength selection result of each variable selec-
tion method. RMSECV values reduced with the deletion 
of irrelevant bands. When RMSECV reached its minimal 
value, the optimal bands were obtained (Shao et al. 2021; 
Xu et al. 2019).

Figure 5 presents the extraction of feature wavelengths 
by using CARS algorithm; the CARS weight peaks or val-
leys for reflectance were mainly in the spectral range from 
1050 to 1150 nm or from 1300 to 1670 nm for MetMb 
(900 to 1250 nm or from 1350 to 1600 nm for OxyMb), 
indicating that this algorithm could explicate most of the 
damage information (Fig. 5a). The peaks or valleys of 
1050 to 1250 nm were assigned smaller weights than 1350 
to 1650 nm, but they still contained some valid infor-
mation (Fig. 5b), so some effective information of the 
these bands were extracted. According to the mean weight 
of every wavelength, 22 and 20 characteristic variables 
were selected for MetMb and OxyMb (Table 2) account-
ing for 8.6% and 7.8% of the total wavelengths, respec-
tively. The positions of feature variables are shown in 
Fig. 5c. Figure 6 depicts the distribution of feature bands 
selected by BOSS algorithm. WBS is applied to generate 
the submodel by weight and MPA is used to analyze the 
submodel to update the weights of features (Deng et al. 
2016). The procedure of optimization feature by BOSS, 
in which less important variables are not eliminated 
directly but are assigned smaller weights. There were 15 
and 21 feature bands for MetMb and OxyMb, respectively, 
accounting for 5.9% and 8.2% of the total bands. Fig-
ure 7 shows the selection of feature wavelengths by using 
VCPA-IRIV algorithm; Fig. 7 a and c show that when 
the number of sampling runs was 49 and 39, RMSECV 

Fig. 4   Performances of full wavelength model based on different pre-processing methods of a MetMb and b OxyMb
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attained the lowest value of 4.0123 and 3.5706 for MetMb 
and OxyMb, respectively. As presented in Fig. 7 b and 
d, a total of 23 and 18 feature wavelengths for MetMb 

and OxyMb were selected by VCPA-IRIV from full wave-
lengths, respectively, accounting for 9.0% and 7.0% of 
the total wavebands. Those feature wavebands selected 
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Fig. 5   Running process of selecting optimal variables by CARS algorithm for: mean weight of CARS runs for reflectance (a 900–1700 nm; b 
900–1350 nm); c optimal characteristic wavelengths

Table 2   Feature waveband selection based on different algorithms

Category Methods Number Wavelengths (nm)

MetMb CARS 22 1082, 1115, 1118, 1121, 1151, 1154, 1303, 1323, 1359, 1389, 1392, 1401, 1431, 1437, 1544, 1568, 
1571, 1574, 1577, 1601, 1645, 1663

BOSS 15 981, 996, 1016, 1076, 1079, 1085, 1118, 1136, 1145, 1165, 1195, 1395, 1574, 1642, 1678
VCPA-IRIV 23 1079, 1085, 1112, 1118, 1142, 1148, 1189, 1192, 1377, 1380, 1386, 1389, 1401, 1425, 1490, 1526, 

1538, 1541, 1547, 1562, 1571, 1589, 1642
OxyMb CARS 20 921, 930, 1097, 1112, 1118, 1148, 1192, 1204, 1356, 1371, 1389, 1398, 1401, 1404, 1428, 1431, 

1493, 1496, 1568, 1678
BOSS 21 918, 921, 927, 930, 933, 978, 981, 990, 993, 996, 1022, 1049, 1061, 1076, 1145, 1195, 1291, 1294, 

1380, 1675, 1678
VCPA-IRIV 18 981, 984, 996, 1040, 1061, 1076, 1118, 1198, 1374, 1398, 1401, 1493, 1496, 1577, 1580, 1672, 

1675, 1678
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Fig. 6   Running process of selecting optimal variables by BOSS algorithm for MetMb and OxyMb: each feature weight value and optimal char-
acteristic spectrum (a for MetMb, b for OxyMb)
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by VCPA-IRIV, CARS, and BOSS algorithms are shown 
in Table 2.

In some cases, the characteristic wavelengths selected in 
the NIR spectral region were directly related to the molec-
ular bonds of C-H, O–H, and N–H. Absorption bands in 
the NIR region were observed at 950 nm and at 1456 nm 
both related to O–H second and first overtones respectively, 
mainly associated with water content (Barlocco et al. 2006). 
The extracted effective wavelengths selected in the range 
of 1100–1400 nm were attributed to combination bands of 
the C-H stretching and deformation modes (Pu et al. 2015). 
The key wavelengths selected between 1400 and 1600 nm 
were related to the first overtones of the O–H and N–H 
stretching modes of water-bonded groups in meat compo-
nents (Wan et al. 2020). In addition, feature wavelengths in 
the 1600–1700 nm were attributed to fat absorption bands 
related to C-H stretching first overtones (Pu et al. 2015).

Prediction Models Based on Characteristic 
Wavelengths

In general, PLSR and LSSVM had achieved good results 
in predicting MetMb and OxyMb contents. As Cheng et al. 
(2020) found that it was feasible to utilize the prediction 

model of PLSR, LSSVM in combination with HSI to evalu-
ate the quality of MetMb and OxyMb contents. Compared 
with PLSR and LSSVM models, BP method was utilized 
to improve accuracy and robustness of prediction model on 
the contents of MetMb and OxyMb. The prediction mod-
els of MetMb and OxyMb contents were performed by 
two nonlinear models (BP & LSSVM) and a linear model 
(PLSR), in which the independent variables of MetMb and 
OxyMb were predicted from full spectral variables and spec-
tral variables selected by CARS, VCPA-IRIV, and BOSS. 
The optimal prediction results in PLSR, LSSVM, and BP 
models for the contents of MetMb and OxyMb in Tan mut-
ton are listed in Table 3. The sequence of model perfor-
mance was BP > LSSVM > PLSR. As shown in Table 3, BP 
model based on BOSS emerged the best capability to pre-
dict MetMb (R2

C = 0.8340, R2
P = 0.8253 RMSEC = 3.1592, 

RMSEP = 3.2918). Besides, the VCPA-IRIV-BP model had 
a better predictive performance with a higher R2

C and R2
P of 

0.8024, 0.8680 and a lower RMSEC and RMSEP of 3.4676 
and 2.7605 for OxyMb, respectively. It is worth mention-
ing that CARS algorithms showed a good performance in 
predicting the contents of MetMb and OxyMb for the selec-
tion of feature wavebands. Nevertheless, the number of key 
wavebands extracted by BOSS and VCPA-IRIV algorithm 

Table 3   Performances of 
feature-wavelength models for 
predicting contents of MetMb 
and OxyMb

Bold entries indicating the best method and corresponding model performance

Category No. of variables Model LVs Calibration set Prediction set

R2c RMSEC R2p RMSEP

MetMb 256 FW-PLSR 11 0.8355 3.8906 0.7217 5.2304
22 CARS-PLSR 17 0.8586 3.6074 0.7240 5.3394
23 VCPA-IRIV-PLSR 13 0.8594 3.5966 0.7591 5.0348
15 BOSS-PLSR 17 0.8358 3.8867 0.7079 5.2945
256 FW-LSSVM / 0.8621 3.5686 0.7315 5.0245
22 CARS-LSSVM / 0.8947 3.1144 0.7230 5.1800
23 VCPA-IRIV-LSSVM / 0.8896 3.1892 0.7642 4.8577
15 BOSS-LSSVM / 0.8631 3.5600 0.7033 5.2140
256 FW-BP / 0.8415 3.8451 0.7503 4.8801
22 CARS-BP / 0.8687 3.4805 0.7502 4.7857
23 VCPA-IRIV-BP / 0.8386 3.8738 0.7697 4.5535
15 BOSS-BP / 0.8340 3.1592 0.8253 3.2918

OxyMb 256 FW-PLSR 12 0.8152 3.3256 0.7911 4.3763
20 CARS-PLSR 15 0.8267 3.2204 0.7943 3.5383
18 VCPA-IRIV-PLSR 9 0.8041 3.4237 0.7808 3.6093
21 BOSS-PLSR 7 0.8066 3.4023 0.7607 3.7781
256 FW-LSSVM / 0.8216 3.2712 0.7915 3.5315
20 CARS-LSSVM / 0.8606 2.8910 0.8029 4.4269
18 VCPA-IRIV-LSSVM / 0.8118 3.3592 0.8058 3.4324
21 BOSS-LSSVM / 0.8220 3.2744 0.7851 3.6245
256 FW-BP / 0.7811 3.6281 0.8206 3.4194
20 CARS-BP / 0.7665 3.8855 0.8425 3.1071
18 VCPA-IRIV-BP / 0.8024 3.4676 0.8680 2.7605
21 BOSS-BP / 0.8408 3.8475 0.7403 4.8607
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was relatively low for the contents of MetMb and OxyMb, 
respectively. Compared with corresponding full wavelengths 
models, the simplified VCPA-IRIV-BP and BOSS-BP mod-
els indicated better predictive accuracy and robustness. 
Therefore, BP model was more effective in predicting the 
MetMb and OxyMb contents in Tan mutton during cold stor-
age than PLSR and LSSVM models. Thus, the potential of 
NIR-HSI for a quantitative detection of myoglobin content 
of mutton was identified in this study.

The predictability of MetMb content obtained in this 
study was higher than that obtained by Yuan et al. (2020) 
targeting at cooked Tan mutton with R2

P = 0.7654 and 
RMSEP = 2.9306. However, the performances of the OxyMb 
and MetMb prediction models developed were inferior to that 
obtained by Cheng et al. (2020) focusing on Tan mutton with 
R2

P = 0.914 and 0.915 for OxyMb and MetMb, respectively. 
In addition, Wan et al. (2020) found that the optimal mod-
els for OxyMb and MetMb were CARS-PLSR (Rp = 0.9661 
and RMSEP = 2.3762), and CARS-LSSVM (Rp = 0.8931 
and RMSEP = 3.2743) by NIR-HSI system (700–1700 nm), 
respectively. Those differences related to myoglobin predic-
tion might be explained by different spectral ranges, data 
processing methods, sample preparations, and packaging 
methods. Despite the limitation on spectral data processing, 
this study is encouraging to further investigate the processing 
methods of hyperspectral images data. The minima of effec-
tive information are available to improve model efficiency.

Conclusions

In this study, the NIR-HSI system (900–1700 nm) was 
adopted to evaluate the MetMb and OxyMb of Tan mut-
ton during cold storage. PLSR, LSSVM, and BP models 
depended on variable wavelengths which produced superior 
performances in evaluating MetMb and OxyMb. In contrast, 
BP model was more appropriate for predicting the contents 
of MetMb and OxyMb in Tan mutton. CARS, VCPA-IRIV, 
and BOSS were adopted to extract the optimal wavebands 
from FW to simplify calibration models. The number of 
selected characteristic variables was 15 and 23 in BOSS 
and VCPA-IRIV for MetMb and OxyMb, respectively. As a 
result, the optimized BP models from characteristic wave-
lengths were selected by BOSS and VCPA-IRIV for predict-
ing MetMb and OxyMb and exhibited better results than 
other variable selection methods. The simplified BOSS-BP 
model yielded good results in assessing MetMb content (R2

C 
vs. R2

P = 0.8340 vs. 0.8253, RMSEC vs. RMSEP = 3.1592 
vs. 3.2918), and the best predictive VCPA-IRIV-BP model 
showed a better performance with R2

C, R2
P, RMSEC, and 

RMSEP values of 0.8024, 0.8680, 3.4676, and 2.7605 for 
OxyMb. As an emerging and sound technique, HSI can rap-
idly and non-destructively monitor the safety and quality of 

mutton. However, some influential factors such as sample 
types, packaging methods, and storage methods may impact 
experimental results. Future research might be conducted to 
augment sample type from different packaging and storage 
methods by using HSI. Furthermore, analysis methods of 
spectral data in this study still have a gap compared with 
classic methods, and it is significant to further explore the 
spectral data processing and modeling methods to improve 
data analytical efficiency in future.
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