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Abstract
With portable capacitative sensors, a universal method has been established to analyze different organic compounds from real 
samples. Firstly, the object compounds serve as templates in the preparation of molecularly imprinted polymers (MIPs). The 
resulted polymers are promising materials to fabricate highly sensitive and highly selective sensors for the templates. Low 
mass transfer resistance in the cryogenically synthesized MIPs makes it very convenient to remove interfering substances, 
just by rinsing the chromatographic column-like sensors with an eluant. Five food additives were selected to testify the 
portable detection platform. Good linear ranges are obtained for sunset yellow (8.60 ×  10−10–3.11 ×  10−4 mg), sodium cycla-
mate (9.10 ×  10−10–5.61 ×  10−4 mg), citric acid (3.40 ×  10−10–1.12 ×  10−3 mg), benzoic acid (5.50 ×  10−11–3.56 ×  10−5 mg), 
and glyceryl monostearate (2.35 ×  10−8–6.56 ×  10−3 mg). In turn the detection limits are 4.79 ×  10−10 mg, 2.63 ×  10−10 mg, 
1.34 ×  10−10 mg, 3.24 ×  10−11 mg, and 3.71 ×  10−9 mg respectively. Finally “interference-free” analysis has been accomplished 
for the additives in various food samples from local markets.
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Introduction

Food additives are natural or synthetic substances widely 
used in modern food industry during processing, packag-
ing, and transportation. They can improve food quality, sta-
bility, and durability, or adjust the color, smell, and flavor 
(Wang et al. 2020; Wu et al. 2021; Cox et al. 2021). Suitable 
amounts of additives are essential; however, excessive addi-
tives usually pose negative impacts on food quality, poten-
tially affect human health (Obaidi et al. 2018), and worsen 
the stability of economic and social development (Tajik et al. 
2021). Therefore, the analysis of food additives is of great 
importance and has attracted great attention (Li et al. 2020, 
2021). Authoritative methods have been designated for those 
purposes and the standardizations never stop changing with 
technical progress.

To date, food additives are widely analyzed by gas chro-
matography (GC) (Azzouz et al. 2020), high-performance 

liquid chromatography (HPLC) (Liu et al. 2020), fluores-
cence detection (Coloma et al. 2021), HPLC-tandem mass 
spectrometry (MS/MS) (Kasperkowiak et al. 2021), capil-
lary electrophoresis (CE) (Szigeti et al. 2021), spectropho-
tometry (Zhang et al. 2019), and so forth. It reveals that 
chromatographic methods (GC, HPLC, CE, and analogues) 
are predominant, obviously because of the ability to concur-
rently achieve separation and detection.

It is always valuable to seek reliable, convenient, and 
cost-effective techniques and exploit potential substitutabil-
ity for the conventional methods (Carneiro et al. 2021; Xu 
et al. 2019; Chu and Guo 2018). The research of molecularly 
imprinted polymers (MIPs) blossoms continuously, marked 
by countless polymers with specific affinity to different 
templates (Yang et al. 2018, 2019a, 2017, 2016). Materials 
have been designed and prepared with customized properties 
(Yang et al. 2019b; Han et al. 2020; Sun et al. 2021), playing 
an important role in both the fields of science (Huynh et al. 
2016) and industry including food additive analysis (Xiao 
et al. 2018).

In this study, we introduce a convenient method to make 
portable sensors, and carried out simultaneous analysis of 
different food additives. The sensors are based on imprinted 
cryogels possessing strong affinities with five exemplified 
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additives namely sunset yellow, sodium cyclamate, citric 
acid, benzoic acid, and glyceryl monostearate. When molec-
ular recognition occurs between the templates and MIPs, 
they create evident capacitance alterations. Because interfer-
ing substances have been previously removed by an eluant, 
detection signals are solely generated from the additive-MIP 
bindings. As a result, these chromatographic column-like 
capacitive sensors facilitate selective, sensitive, and fast 
analysis of food additives from various real samples.

Materials and Methods

Instruments and Reagents

Diallylamine was purchased from Haopeng Chemical Plant 
(Jinan, Shandong, China). N,N-methylenebisacrylamide 
(BisAM), acrylamide (AM), sodium hydrogen sulfite (SHS), 
ammonium peroxydisulfate (APS), and sodium chloride 
were purchased from Sinopharm Chemical Reagents Co., 
Ltd. (Shanghai, China). Sunset yellow (SY), sodium cycla-
mate (SC), citric acid (CA), benzoic acid (BA), glyceryl 
monostearate (GMS), dimethyl diallyl ammonium chloride 
(DMDAAC), tween 80, ammonium acetate, phosphoric acid, 
methanol, and ethanol were purchased from Adamas Rea-
gent Co., Ltd. (Shanghai, China). All chemicals and reagents 
were of analytical grade and were used as purchased with no 
further purification unless otherwise stated. Real food sam-
ples were purchased from a local market. They are all sup-
plied by mainstream manufacturers in China, and declared 
being produced according to national or industrial standards.

Fourier-transform infrared (FT-IR) spectrometric experi-
ments were carried out on a 670-IR spectrometer (Varian, 
USA) using KBr pellets.

HPLC was carried out on a GI-3000 instrument (General 
Instrument Co., Ltd., Shenzhen, Guangdong, China) with a 
Shimazu WondaCract ODS-2 column (5 μm, 4.6 × 150 mm).

The capacitance variations were acquired by an LCR 
meter (M-4070, Jingyan Scientific Corp. Ltd., Dongguan, 
China) with a liquid crystal display read out and a com-
puter I/O interface. It is powered by a 3.7-V lithium ion 
battery and its frequency can be adapted to the maximum of 
500 kHz. It can realize the detection of inductance (0–100 
H), capacitance (0–100 mF), and resistance (0–10,000 MΩ).

Synthesis of Molecularly Imprinted Cryogels

The synthesis of the MIPs with different templates followed 
a similar protocol. Each cryogel was made from a 20.0 mL 
deionized water with the same amount of AM, BisAM, SHS, 
and APS, but different templates and modifiers (Table 1). 
Briefly all the reagents except APS were dissolved in water. 
After the addition of APS, 30-s ultrasonic degassing was 

performed. The solutions were then transferred to a refriger-
ator to realize the polymerization at low temperature of − 20 
◦C for 24 h.

The molecularly imprinted cryogels of different templates 
were thawed in a water bath at 50 ◦C for 2 h. Unreacted mon-
omers and inorganic salts were directly washed and removed 
with deionized water. Finally, the polymers were dried in an 
oven at 60 ◦C for 3 h and then ground into powder.

As a contrast, non-imprinted polymers (NIPs) were syn-
thesized in the same way, just without templates.

Sensor Fabrication

Plastic pipette tips were cut to 2.8 cm in length. The inner 
diameters are 0.8 cm at the big end and 0.5 cm at the small 
end. Two polyimide enameled copper wires (both 1 m in 
length and 0.31 mm outer diameter) were axially coiled 
around the wall of the plastic tube, acting as the electrodes 
of a capacitor (Fig. 1a).

For each sensor, 1.5 g dried MIP powder (evenly mixed 
0.2 g glass wool) was put in a pipette tip to fill 80–90% of 
the volume (Fig. 1b). With an LCR meter, a sensor makes 
up a portable detecting platform of the template (Fig. 1c).

Sample Analysis

All the food additives (SY, SC, CA, BA, and GMS) were 
weighed to prepare stock solutions of 1.000 g  L−1 in water 
(10% tween 80). Linear ranges and detection limits were 
determined with stepwise diluted solutions from the stocks.

For the selected solid samples, 0.15 g of each was ground 
into small particles, and soaked in 2 mL water (10% tween 
80). After 15 min, it was filtered to give about 1 mL filtrate. 
The procedure was repeated 5 times and the filtrates were 
merged and transferred into a 10.0 mL volumetric flask. The 
liquid sample was directly filtered for three times. A filtrate 

Table 1  Composition of the polymerization system

CA, citric acid; BA, benzoic acid; GMS, glyceryl monostearate; SY, 
sunset yellow; SC, sodium cyclamate; AM, acrylamide; BisAM, N;N-
methylenebisacrylamide; DMDAAC , dimethyl diallyl ammonium 
chloride; SHS, sodium hydrogen sulfite; APS, ammonium peroxy-
disulfate

CA BA GMS SY SC

Diallylamine/g 0.04 0
DMDAAC/g 0 0.07
AM/g 0.50
BisAM/g 0.30
Template/g 0.10
SHS/g 0.02
APS/g 0.08
H2O/mL 20.0
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of 2.00 mL was diluted with water and put in a 10.0 mL 
volumetric flask.

A universal procedure was followed to analyze all the 
samples. It can be demonstrated as “equilibration → load-
ing → washing → detection.” After a sensor was equilibrated 
with the eluant, a volume (for example 2.0 mL) of sam-
ples was loaded on, and let them interact with the MIPs for 
3 min. The capacitance was recorded after the sensor had 
been washed with 10 mL eluant.

Results and Discussion

Universal Imprint Protocol for Different Templates

Five food additives (Fig. 2) are picked out to testify the broad 
adaptability of the analytical method. Among them SY and 
SC are strong electrolytes (sulfonate). CA and BA are par-
tially ionizable organic acid, and GMS is a non-electrolyte 
with poor solubility in aqueous media. They have all been 
imprinted with similar solutions containing the same amount 
of monomer (AM) and cross-linker (BisAM) (Table 1).

Because of drastically suppressed solvent effects during 
the polymerization, specific recognition sites are built in the 
MIPs with outstanding selectivity and affinity with the tem-
plate, ensuring the accuracy and precision of the sensor. To 
further strengthen the template-MIP interactions, 2 chemi-
cals were added to modify the polymers. Diallylamine reacts 
with both CA and BA, generating ionic bonds. In addition 
to weak interactions (hydrogen bonding etc.), this greatly 
increases the MIP affinities. Although no ionic bond was 
created between GMS and diallylamine, hydrogen bonding 
is inevitable and it also reinforces the recognizing power of 
the imprinted sites. With regard to SY and SC, the quater-
nary ammonium salt (DMDAAC) was used to produce “ion 
pairs” to enhance the template-MIP interactions. Through 
self-assembly, these interactions are built between the 
templates and the monomers/crosslinkers/modifiers in the 
solutions. Therewith the interactions are inherited and main-
tained in the template-MIP systems, establishing strong and 
exclusive molecular recognitions.

The FT-IR spectra of the MIPs are shown in Fig. 3, 
highly alike to each other. Few differences can be seen for 
the imprinted cryogels of the different food additives. It indi-
cates that the same chemical groups can be applied to con-
struct distinct microstructures for the recognition of various 
template molecules.

Molecular Recognition Procedures and Sensor 
Features

Capacitance generally changes along with the interaction of 
an MIP-template system. It is the theoretical foundation of 
an MIP-based capacitive sensor.

a 

b

MIP  

c 

LCR meter 

Sensor 
MIP inside 

Fig. 1  a Sensor fabrication, (b) picture of the portable sensor, and (c) 
device layout for detection
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As abovementioned, acidic templates (citric and benzoic 
acid) reacted with diallylamine in the prepolymerizing solu-
tions. Afterwards the reactions also take place between the 
templates and the MIPs:

(1)

where HN < is the amino group tethered on the polymers. It 
significantly strengthens the MIP-template interaction (Fig. 4) 
and sensor selectivity. Reaction (1) creates both anions and 
cations. Therefore, the capacitance increases as either BA or 
CA rebinds to the imprinted sites of its MIP. However, the 
space shapes of the MIPs are different from each other, for 
instance the imprinted site for benzoic acid in Fig. 4. It guar-
antees the selectivity of a designated MIP.

In the same way, the recognition of SY or SC by its MIPs 
can be expressed as.

There is an inorganic salt (NaCl) and a less ionizable pol-
ymer-sulfo “ion pair” compound formed in reaction (2). As a 
whole, capacitance elevations can be observed in the sensors.

Because GMS is a neutral compound, no ionization occurs 
when it is recognized by the MIP. However, the formation of 
hydrogen bond could occupy polar groups from both GMS 
and the MIP. The total polarity of the MIP-template system 
declines and that leads to capacitance reduction.

Linear Ranges and Detection Limits

Herein detection was carried out by adding small amount 
of samples in the sensors, rather than immersing the 

(2)

Fig. 2  Structural formula of 
(a) sunset yellow, (b) sodium 
cyclamate, (c) citric acid, (d) 
benzoic acid, and (e) glyceryl 
monostearate

a b

c d 

e 

Fig. 3  The FT-IR of (a) sunset yellow, (b) sodium cyclamate, (c) cit-
ric acid, (d) benzoic acid, and (e) glyceryl monostearate
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sensors in sample solutions. It is proved that the capaci-
tance increase or decrease is correlated to the total mass of 
the template recognized in the sensor. There is a linearity 
between the capacitance variation (C) and the logarithmic 
template mass (log m):

As indicated in “Molecular Recognition Proce-
dures and Sensor Features,” the capacitance increases 
along with the amounts (here the related loga-
rithms) of SY, SC, CA, and BA. The linear ranges of 
these compounds are 8.60 ×  10−10–3.11 ×  10−4  mg, 
9.10 ×  10−10–5.61 ×  10−4 mg, 3.40 ×  10−10–1.12 ×  10−3 mg, 
and 5.50 ×  10−11–3.56 ×  10−5 mg respectively (Fig. 5 a, b, 
c, and d). Different from this, the sensor signal decreases 
as GMS is continuously added. Meanwhile a narrower 
linearity (2.35 ×  10−8–6.56 ×  10−3 mg) is obtained for the 
neutral template (Fig. 5e).

Based on 3 times the values of the sensor noises, detec-
tion limits have been calculated. They are 4.79 ×  10−10 mg 
for SY, 2.63 ×  10−10 mg for SC, 1.34 ×  10−10 mg for CA, 
3.24 ×  10−11 mg for BA, and 3.71 ×  10−9 mg for GMS.

Detection of Food Additives in Real Samples

Some standard analytical methods of the exemplified food 
additives are listed in Table 2. They are quoted from the 
technical specifications of the international organization for 
the standardization (ISO), the state standard of China (GB), 
and some industrial standards. Besides 1 enzymatic and 
few spectrometric methods, chromatography (gas or liquid) 
dominates the authoritative detection protocols. More than 
80% of the total (19 out of 23) are GC, HPLC, or IC (ion 
chromatography), being used to determine the additives in 
diverse foods including breads, biscuits, candy, ice cream, 
drinks, fruits, juice, vegetables, and others. Synchronous 
implementation of separation and detection can be the out-
standing advantage of chromatographic techniques. This is 
also the best reason that chromatography surpasses other 
methods when subjected to the analysis of complex samples.

(3)c = a + blogm

Currently it is costly and laborious to perform chroma-
tography. To whether GC or HPLC, it is prerequisite to 
prepare a complete set of expensive devices such as pump, 
injector, column, detector, and so on. For the most com-
monly used UV–Vis detector in HPLC, many compounds 
are undetectable for lack of suitable chromophores. On the 
contrary, portable capacitive sensors operate based on very 
simple devices. Because permittivity differences between 
chemical substances are ubiquitous, a capacitance analy-
sis method can always work to analyze almost all organic 
compounds existing in aqueous solutions.

Herein the 5 capacitive sensors all act like chroma-
tographic columns (Fig. 1 a and b). When a real sam-
ple is loaded on the sensor, the analyte and interfering 
substances are inevitably introduced at the same time. 
Because an analyte is the template used to synthesize the 
MIP, there are specific interaction sites for it in the poly-
mer. It makes the adsorption of the analyte stronger than 
that of other species, ensuring an “interference-free” status 
to detect the analyte. Taking benzoic acid as an example, 
the interfering substances are removed after washed with 
10 mL eluant (Fig. 6a). Benzoic acid itself is eluted from 
23 to 50 mL. As the capacitance changes are read and 
recorded from 10 to 23 mL, benzoic acid is the unique 
molecule detained in the sensor. As a result, the detec-
tion signals are solely caused by the analyte-MIP binding, 
without any interfering species in the sensor.

By comparison, benzoic acid is eluted from an NIP 
column by 15 mL eluate, exhibiting negligible retention. 
According to the ratio of the retention factors (kMIP/kNIP), 
the imprinting factor is calculated to be about 3.0. Likely 
higher imprinting factors (4.1–5.6) are obtained for other 
additives. Theoretically a template can be exclusively 
detected if the imprinting factor is more than 1.5. The 
efficient imprints guarantee all the food additives can be 
analyzed in an “interference-free” status.

As a structural analogue, salicylic acid is very similar to 
benzoic acid. However, its retention volume is just 12 mL, 
far from that of benzoic acid and close to that of the inter-
fering substances (Fig. 6b). Thereout even very analogous 
compounds show inferior retention to the template, and 

Fig. 4  Schematic diagram of the 
imprinted site of benzoic acid
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can be removed along with the dissimilar substances, giv-
ing ignorable interference to the sensor.

A simple sampling protocol was followed in this study. 
Seven additive-rich foods, especially snacks and drinks, 
were directly extracted with 10% tween 80 to make experi-
ment samples. At the same time, a similar “equilibrate-load-
wash” process was carried out to determine all the analytes. 
The results are shown in Table 3, showing recoveries from 
94.2 to 105.4% for the standard compounds added in the 
real samples. Good selectivity is ensured when the sen-
sors respond to the analytes in complex samples. Relative 
standard deviations (RSDs) are calculated based on 5 times 

of repeated detections, giving values from 3.0 to 6.5% and 
showing good precision of the method.

For comparison, the samples of SY, CA, and BA were 
also analyzed by HPLC. The results are listed in Table 4, 
indicating good consistence with the data from the sen-
sors. However, derivative reaction is necessary for sodium 
cyclamate prior to HPLC analysis, and it is found to be of 
low efficiency in the real samples. With respect to glyceryl 
monostearate, there is no suitable detection wavelength even 
after derivative reactions. These multifarious and inconven-
ient operations exactly demonstrate the advantages of the 
sensor method.

Fig. 5  Calibration curves of 
(a) sunset yellow, (b) sodium 
cyclamate, (c) citric acid, (d) 
benzoic acid, and (e) glyceryl 
monostearate

a 

b 

c 

d 

e 
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Besides the aforesaid standard curve method, rapid 
analysis can also be done by a standard addition method. 
Because a, b, and  mx are unknown in Eq. (3), standard addi-
tion should be done twice

where ΔCx,ΔC1andΔC2 are the capacitance changes from 
the original determinand and the samples with known addi-
tive amounts  m1,  m2.

Also because the samples are determined without inter-
fering substances, the ternary linear equation group can be 
further simplified

Now it is equivalently an external standard method. 
Two known samples and the unknown sample are tested 
individually. The result is obtained just by resolving the 
ternary linear Eqs. (5).

Conclusions

Molecularly imprinted cryogels are outstanding molecular 
recognition materials to make portable capacitive sensors 
for organic compounds. They are macroporous (> 50 μm) 
materials of low mass transfer resistance, enabling speedy 
equilibriums and fast detection with the chromatographic 
column-like sensors. By washing the sensors with an elu-
ant, all interfering substances are removed prior to the 

(4)

⎧
⎪
⎨
⎪
⎩

ΔCx = a + blgmx

ΔC1 = a + blg(mx + m
1
)

ΔC2 = a + blg(mx + m
2
)

(5)

⎧
⎪
⎨
⎪
⎩

ΔCx = a + blgmx

ΔC1 = a + blgm1

ΔC2 = a + blgm2
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Fig. 6  a An “interference-free” status of the sensor (MIP) and the 
template retention on NIP. b The elution of salicylic acid on the MIP 
as structural analogue of benzoic acid

Table 3  Analytical results of real samples

Analytes Samples Measured (g  kg−1) Added (g  kg−1) Total found (g  kg−1) Recovery (%) RSD (%) 
(n = 5)

SY Hard candy 4.67 ×  10−6 2.24 ×  10−6 6.95 ×  10−6 101.8 3.8
Soft candy 4.59 ×  10−6 3.04 ×  10−6 7.71 ×  10−6 102.6 4.9
Pickled waxberry 2.89 ×  10−6 2.19 ×  10−6 5.02 ×  10−6 97.3 3.6

SC Prune 1.67 ×  10−5 0.69 ×  10−5 2.32 ×  10−5 94.2 5.1
Pickled waxberry 4.71 ×  10−5 3.82 ×  10−5 8.64 ×  10−5 102.9 4.7

CA Hard candy 2.90 ×  10−3 2.02 ×  10−3 5.03 ×  10−3 105.4 6.4
Soft candy 2.99 ×  10−3 2.02 ×  10−3 4.95 ×  10−3 97.0 3.5
Prune 1.95 ×  10−3 0.96 ×  10−3 2.94 ×  10−3 103.1 5.2
Pickled waxberry 6.07 ×  10−3 2.68 ×  10−3 8.72 ×  10−3 98.9 3.0
Cake 5.09 ×  10−3 3.02 ×  10−3 8.16 ×  10−3 101.7 3.9
Drink 7.73 ×  10−3 2.07 ×  10−3 9.74 ×  10−3 97.1 4.2

BA Prune 1.17 ×  10−4 0.92 ×  10−4 2.05 ×  10−4 95.7 4.5
Pickled waxberry 1.15 ×  10−4 1.50 ×  10−4 2.59 ×  10−4 96.0 3.8

GMS Crisp 3.56 ×  10−2 3.51 ×  10−2 7.14 ×  10−2 102.0 5.9
Cake 2.37 ×  10−2 2.72 ×  10−2 5.19 ×  10−2 103.7 6.5
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analytes. This results into an “interference-free” status 
to determine the target compound. Capacitance changing 
signals are solely resulted from the analyte-MIP interac-
tion. Meanwhile a simple and universal pretreatment can 
work regardless of sample complexity. It offers a promis-
ing method with high sensitivity and selectivity, to analyze 
organic compounds in diverse samples.
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