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Abstract
The identification of bio-polyphenols from jambolan fruit is of great interest and requires extraction conditions that preserve 
their bioactivities. This study aimed to optimize a solvent system for the extraction of polyphenols from jambolan fruit pulp 
using a simplex-centroid design with axial points. We evaluated various proportions of water, ethanol, and acetone to quan-
tify the total polyphenol content and determine antioxidant activity. Polyphenols in the optimized extracts were identified 
using high-efficiency liquid chromatography and mass spectrometry. The optimal yield was obtained with a binary mixture 
of water and acetone (0.5:0.5, v/v), which produced more than 90% of the maximum multi-response values. The identifica-
tion of bio-polyphenols showed that gallic, quinic, and protocatechuic acids; glycosylated anthocyanins; myricetin isomers; 
and proanthocyanidins as epigallocatechin trimers were the main compounds responsible for the antioxidant activity of 
jambolan. In conclusion, a binary mixture of water and acetone in equal proportions was effective in extracting polyphenols 
with antioxidant activity, thus establishing jambolan as a potential source of bioactive compounds.
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Introduction

Scientific evidence has shown that the consumption of 
food sources rich in bioactive compounds reduces oxida-
tive stress and significantly decreases the incidence of non-
communicable chronic diseases. In this context, jambolan 
(Syzygium cumini (L.) Skeels) is an important source of 
polyphenols, mainly anthocyanins, which are responsible 
for its antioxidant and other pharmacological properties 
(Tavares et al. 2017).

Various solvents, such as absolute organic solvents or 
their aqueous mixtures, have been employed for the extrac-
tion of polyphenols from jambolan. However, to maximize 
yield, the solvent and extraction method must allow total 
separation of the compounds of interest from a complex 
matrix without changing their chemical structures. Fur-
thermore, at this stage, several factors that determine the 
type and efficiency of their biological activity, as well as 
the medium and cell structure in which these compounds 
can act, must be considered (Mussi et al. 2015).

Despite the efforts employed by researchers worldwide, 
the Association of Official Analytical Chemists (AOAC) 
has not been successful in establishing an official method/
solvent to extract the bioactive compounds. This is due to 
the large number and structural complexity of these com-
pounds. Thus, the need for the development, validation, 
and optimization of new polyphenol extraction methods is 
important as it is a step prior to their characterization in an 
accurate and reliable manner (Azmir et al. 2013).

Several studies have assessed different extraction pro-
cesses, with emphases on mass-solvent and solvent–sol-
vent ratios, extraction time, temperature, and pressure, as 
well as ways to optimize the extraction of phenols from 
jambolan pulp (Maran et al. 2014; Migliato et al. 2011). 
However, they were not able to establish a suitable solvent 
system for the concomitant extraction of several polyphe-
nol classes from the fruit.

Thus, multivariate statistical techniques for the optimi-
zation of mixtures, such as simplex-centroid design (SCD) 
with axial points, have been employed to analyze differ-
ent proportions with a reduced number of experiments, 
and examine possible synergistic or antagonistic interac-
tions between variables (Bochi et al. 2014). This tool can 
provide the appropriate solvent system for extracting and 
characterizing polyphenols from the jambolan fruit.

The aim of this study was to optimize the solvent system 
for extracting bio-polyphenols from jambolan pulp and to 
obtain the maximum response efficiency of their antioxidant 
activities using a multivariate simplex-centroid experimental 
design. We emphasize that, to our knowledge, this is the first 
scientific study to optimize the extraction of various poly-
phenolic classes from this fruit using this statistical model.

Material and Methods

Sampling and Sample Preparation

Ripe jambolan fruits (15.20 Brix) were collected in 
November 2014 in the city of Teresina, northeast of Bra-
zil (5° 03′ 17.2″ S; 42° 47′ 28.0″ W). The plant material 
was deposited at the Graziela Barroso Herbarium of the 
Federal University of Piauí, under voucher 30.573. The 
fruits were sanitized with 100-ppm sodium hypochlorite 
for 10 min. The edible parts (flesh and skin) were sepa-
rated manually from the seed while still frozen (− 20 °C) 
to minimize enzymatic degradation and loss of juice. The 
pulps were lyophilized (30 ×  10−3 mmHg; − 50 °C; 72 h), 
crushed in an ultra-food processor, sieved with a 50 Tyler 
mesh for 10 min, wrapped in laminated plastic packag-
ing, sealed, and stored at − 20 °C until sample preparation 
for extracting bioactive compounds by simplex-centroid 
design. This experimental design provided analysis of ten 
samples in duplicate, with three repetitions each.

Reagents and Standards

The chemical compounds (S)-(-)-6-hydroxy-2,5,7,8-tetra-
methylchroman-2-carboxylic acid (Trolox®), 2,2'-azino-
bis(3-ethylbenzothiazoline-6-sulphonic salt (ABTS), 
2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric chloride, 
Folin-Ciocalteu reagent, gallic acid, potassium persul-
fate, catechin, cyanidin chloride, p-dimethylaminocin-
namaldehyde (DMACA), 2,4,6-Tris(2-pyridyl)-s-triazine 
(TPTZ), 3-O-β-D-glucoside, cyanidin-3-O-glucoside, peo-
nidin-3-O-glucoside, and malvidin-3-O-glucoside chlo-
rides were purchased from Sigma-Aldrich® (St. Louis, 
MO, USA), and HPLC grade reagents were purchased 
from Merck® (Darmstadt, Germany).

Simplex‑Centroid Design for Extraction of Bioactive 
Compounds

A simplex-centroid experimental design was applied to 
discover the optimal conditions for the extraction of bioac-
tive compounds from jambolan, maintaining their bioac-
tivities. In this experimental design, the extracting solvents 
acetone, water, and ethanol, as well as their mixtures, were 
evaluated. Thus, this experimental design involved three 
pure solvents (x1 = water, x2 = acetone, and x3 = ethanol) 
on the vertex, three binary mixtures (1:1) at the center of 
the edges, one ternary mixture (1:1:1) on the overall center 
point, and three axial points (2/3 of each solvent and 1/6 of 
the other) on the triangular face, providing ten treatments 
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(samples), as shown in Fig. 1 (Calado and Montgomery 
2003). This experimental design was carried out in dupli-
cate, with three repetitions each.

The extraction of bioactive compounds from jambolan 
was based on the protocol developed by Bochi et al. (2014), 
with some modifications. The lyophilized powder of the fruit 
pulp (0.5 g) was mixed with the extraction solvent (25 mL) 
determined by the experimental design, homogenized with 
a magnetic stirrer (25 °C, 60 min), sonicated (80 kHz/20 W, 
20 min), centrifuged (1200 × g, 15 min, room temperature), 
vacuum-filtered, and re-extracted under the same conditions. 
The supernatants were collected using the same extraction 
solvent to a final volume of 50 mL, reaching a proportion of 
1:100 (m·v−1). Then, the extracts obtained were subjected to 
laboratory analysis.

The responses measured were the total content of polyphe-
nols (Y1), flavonoids (Y2), flavanols (Y3), monomeric anthocya-
nins (Y4), and proanthocyanidins (Y5), as well as the results of 
the DPPH (Y6), ABTS (Y7), and FRAP (Y8) assays. Based on 
these results, an optimized solvent system was validated. The 
optimized extract was concentrated using a rotary evapora-
tor (40 °C, 25 min), lyophilized (30 ×  10−3 mmHg, − 50 °C, 
24 h), and subjected to identification of the compounds via 
HPLC–MS.

Analysis of Bioactive Compounds

Total Polyphenol Content

Total polyphenol content was analyzed using the Folin-
Ciocalteu method in alkaline medium, measured at 720 nm 
in a UV–VIS spectrophotometer, and expressed as mil-
ligrams of gallic acid/gram of sample (Swain and Hills 
1959). The total phenolic content was calculated from the 
linear regression equation of a standard curve of gallic 
acid (y = 0.0047x − 0.004; r = 0.9998), which was prepared 
at concentrations of 5–180 μg·mL−1 as a function of the 
optical density for these concentrations.

Total Flavonoid Content

Total flavonoid content was quantified using the alu-
minum trichloride  (AlCl3) method, measured at 510 nm 
in a UV–VIS spectrophotometer, and expressed as mil-
ligrams of sample/gram of catechin (Zhishen et al. 1999). 
The total content of flavonoids was calculated from the 
linear regression equation of a standard catechin curve 
(y = 3.575x − 0.0079; r = 0.9983), prepared at concentra-
tions of 0.02–0.12 mg·mL−1 as a function of the optical 
density for these concentrations.

Total Content of Flavanols

Total flavanols were analyzed using 0.1% DMACA in 
1 N HCl in methanol, measured at 640 nm in a UV–VIS 
spectrophotometer, and expressed as milligrams of cat-
echin equivalent/gram of sample (Arnous et al. 2002). 
The total flavanol content was calculated from the lin-
ear regression equation of a standard catechin curve 
(y = 0.0731x + 0.0708; r = 0.999) prepared at concentra-
tions of 2–12 μg·mL−1, as a function of the optical density 
at these concentrations.

Total Content of Monomeric Anthocyanins

The monomeric anthocyanins were quantified using the pH 
difference method and measured at 510 nm and 700 nm on 
a UV–VIS spectrophotometer in buffers with pH 1.0 and 
4.5 (Giusti and Wrolstad 2001). The total absorbance of 
the dilutions was calculated using Eq. 1.

The concentrations of monomeric anthocyanins were 
expressed as milligrams of cyanidin-3-glucoside per gram 
of the sample. The molecular weight (MW) and molar 
absorptivity (ε) of cyanidin-3-glucoside used were 449.2 

(1)A =
(

A510 − A700

)

pH 1.0
−
(

A510 − A700

)

pH 4.5

Fig. 1  Simplex-centroid mixture design for the extractor solvent 
selection of bioactives compounds in jambolan
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and 26,900, respectively (Eq. 2). For greater reliability of 
the result, the appropriate dilution factor of each sample 
(DF) was used in the determination total content of mono-
meric anthocyanins (Giusti and Wrolstad 2001).

Total Content of Proanthocyanidins

The total proanthocyanidin content in the acid-butanol assay 
was measured at 550 nm using a UV–VIS spectrophotometer 
and expressed as milligrams of cyanidin chloride per gram 
of sample (Porter et al. 1986). The total proanthocyanidin 
content was calculated from the linear regression equation 
of a standard cyanidin chloride curve (y = 0.0139x + 0.0262; 
r = 0.9999) prepared at concentrations of 5–50 μg·mL−1, as a 
function of the optical density at these concentrations.

Evaluation of the Antioxidant Activity

DPPH· Radical Scavenger Activity

The study of antioxidant capacity through the sequestration 
of DPPH radicals was carried out according to Kim et al. 
(2002). Antioxidant capacity was measured at 517 nm using 
a UV–VIS spectrophotometer, 30 min after the beginning 
of the reaction, and calculated from the linear regression 
equation of a standard Trolox curve (y = 0.0007x − 0.0031; 
r = 0.9999), prepared at concentrations of 40–800 μmol·L−1, 
as a function of the optical density for these concentrations. 
The results were expressed in TEAC as micromole Trolox/
gram.

ABTS•+ Radical Scavenger Activity

Antioxidant activity was also determined through the 
sequestration of  ABTS•+ radicals according to method by 
Re et al. (1999). The antioxidant activity was measured at 
734 nm using a UV–VIS spectrophotometer 6 min after 
beginning the reaction. The antioxidant activity was cal-
culated from the linear regression equation of a standard 
Trolox curve (y = 0.0009x—0.0722; r = 0.9985), prepared 
at concentrations of 25–700 μmol·L−1, as a function of the 
optical density at these concentrations. The results were 
expressed in TEAC as micromole Trolox/gram.

Fe3+ Reduction Potential (FRAP)

The iron-reducing capacity was evaluated according to 
the method proposed by Arnous et al. (2002). Samples 
were reacted for 30 min with an iron (III) chloride solu-
tion (3 mM) in a water bath at 37 °C. The acid solution 

(2)Monomeric anthocyanins(mg.L−1) = (A ×MW × DF × 1000)(� × 1)−1

TPTZ was added, and the optical density was subsequently 
measured at 620 nm in a UV–VIS spectrophotometer after 
10 min. The reduction potential was calculated from the 
linear regression equation of a standard Trolox curve 

(y = 0.0023x + 0.1699; r = 0.9999), prepared at concentra-
tions of 30–625 μmol·L−1 as a function of the optical den-
sity for these concentrations. The results were expressed 
in TEAC as micromole Trolox/gram of the sample.

Determination of Polyphenols by High‑Performance Liquid 
Chromatography Coupled to Mass Spectrometry (HPLC–
MS)

The separation of polyphenols using high-performance 
liquid chromatography (HPLC) was performed accord-
ing to the procedures described by De-Melo et al. (2018) 
and Martínez-Villalba et al. (2013), with modifications. 
A reverse phase LiChroCART C18 column (250 × 4 mm, 
4.5  μm; Merck, Darmstadt, Germany) maintained at 
25 °C was used. A Shimadzu Prominence chromatograph 
(model LC-20ADX, Kyoto, Japan) (Software LabSolu-
tions), equipped with two high-pressure pumps and a 
diode detector (model SPD-M20A) and thermostat (model 
CTO-20A) coupled to the mass spectrometer, was also 
used. The mobile phase was composed of water (solvent 
A) and methanol (solvent B) that were both acidified with 
0.1% formic acid, filtered using a 0.45-µm nylon filter 
(Whatman, Maidstone, UK), and degassed in a sonicator 
for 10 min. The mobile phase flow rate was 1 mL.min−1, 
and the elution in the gradient mode occurred as follows: 
0 min, 15% B in A; 20 min, 30% B in A; 40 min, 45% B in 
A; 45 min, 50% B in A; 50 min, 55% B in A; 65 min, 70% 
B in A; and 75–80 min, 100% B. Then, the system returned 
to the initial conditions to stabilize the column.

Mass spectrometry (MS) was used to identify the com-
pounds. We used a Bruker Amazon Speed model mass 
spectrometer (Billerica, MA, USA) with an ion trap ana-
lyzer and electrospray ionization source (ESI) in nega-
tive and positive mode, controlled by HyStar software, 
according to the following conditions: the temperature and 
voltage of the ionization capillary were set at 230 °C and 
3.5 kV, respectively, and the desolvation gas flow  (N2) 
was 360 L·h−1. The spectra were captured in the range 
of 100–1000 mass/charge (m/z) ratio. The samples were 
injected in triplicate, and the phenolic compounds were 
identified by comparing their molecular ions (m/z) and 
major fragments with commercial standards or published 
data in the literature.
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Statistical Analysis

All experiments were performed in a random order and rep-
licated to minimize systematic errors. The simplex-centroid 
experimental design allows linear (β1, β2, and β3), quadratic 
(β12, β13, and β23), and special cubic (β123) assessments 
(Eq. 3) for each response under this study (Calado and Mont-
gomery 2003).

The mathematical models were subjected to analysis of 
variance (ANOVA) and regression, using Statistica software 
13.5 (StatSoft, Tulsa, OK, USA). The simultaneous optimi-
zation of the response variables was based on the maximum 
desired response for all variables. The models were validated 
using Student’s t test (α = 0.05; 95% confidence interval), 
in which the average of the experimental values (n = 3) was 
compared with the estimated responses (n = 3) of the model.

Results and Discussion

Effects of the System Solvent on the Total Content 
of Bioactive Compounds and Their Antioxidant 
Activity

The results obtained from the experiments on solvent sys-
tem optimization by SCD are shown in Table 1. The models 
displayed a coefficient of determination (R2) from 53 to 99% 

(3)Y = β1X1 + β2X2 + β3X3 + β12X1X2 + β13X1X3 + β23X2X3 + β123X1X2X3

and an adjusted model R2 from 77 to 98% (Online Resource 
1).

As shown in Table 1, low yields of bioactive compounds 
were obtained using pure solvents or binary mixtures with-
out water. Extraction with water was more efficient than with 
pure ethanol and acetone, a result attributed to the formation 
of hydrogen bonds with the polyphenols and the presence of 
sugars in the chemical structure of these compounds, which 

improve their solubility (Maran et al. 2014). Pure acetone, a 
polar aprotic solvent, was not able to form hydrogen bonds, 
which reduced the solubility of polyphenols, and, therefore, 
was the least efficient solvent to extract these compounds 
(Bhebhe et al. 2016). However, the extraction of polyphe-
nols and flavanols with acetone and water in a 0.5:0.5 (v/v) 
binary mixture produced highest efficiency. In contrast, in 
the total content of flavonoids, monomeric anthocyanins, 
and proanthocyanidins, the ternary mixture of water–ace-
tone-ethanol (0.33:0.33:0.33, v/v/v) yielded the best result 
for these polyphenolic classes. These findings were contrary 
to those obtained by Chanda and Kaneria (2012).

Based on these results, it was evident that the efficient 
extraction of a high content of bioactive compounds results 
from the increase in the polarity index and dielectric con-
stant of the organic solvents, with a subsequent reduction of 
water parameters. The greater polarity of the solvent system 
increases the dissolution of polyphenols, including those of 
medium polarity, such as flavonoids bound to methyl and 

Table 1  Proportions of solvent extractors of polyphenols of jambolan (S. cumini (L.) Skeels) in accordance with SCD and responses observed

*x1 water,  x2 acetone,  x3 ethanol
Means ± standard (n = 2; three repetitions each). Results were expressed in milligrams of gallic acid equivalent.g−1 of the lyophilized sample for 
total polyphenols (TP); milligrams of catechin equivalent.g−1 of the lyophilized sample for total flavonoids (TF); milligrams of catechin equiva-
lent.g−1 of the lyophilized sample to total flavanols (TFl); milligrams equivalent of cianidina-3-glucoside.g−1 of the lyophilized sample for mon-
omeric anthocyanins (MA); milligrams equivalent of cyanidin chloride.g−1 of the lyophilized sample for proanthocyanidins (TPr); micromole of 
Trolox equivalent.g−1 of the lyophilized sample for DPPH, ABTS, and FRAP

Races Independent variables* Response

 × 1  × 2  × 3 TP TF TFl MA TPr DPPH ABTS FRAP

1 1.00 0.00 0.00 6.01 ± 0.05 0.76 ± 0.01 0.00 ± 0.00 2.40 ± 0.04 0.89 ± 0.01 48.56 ± 0.07 27.78 ± 0.16 10.39 ± 0.15
2 0.00 1.00 0.00 3.31 ± 0.02 0.90 ± 0.01 0.00 ± 0.00 0.39 ± 0.02 0.38 ± 0.01 31.41 ± 0.28 14.76 ± 0.11 2.54 ± 0.13
3 0.00 0.00 1.00 4.86 ± 0.02 1.28 ± 0.04 0.00 ± 0.00 1.85 ± 0.00 1.13 ± 0.01 41.96 ± 0.14 23.31 ± 0.22 0.61 ± 0.04
4 0.50 0.50 0.00 11.65 ± 0.02 1.61 ± 0.03 0.29 ± 0.02 2.82 ± 0.03 1.92 ± 0.00 80.28 ± 0.07 53.97 ± 0.61 22.32 ± 0.06
5 0.50 0.00 0.50 8.78 ± 0.03 1.33 ± 0.08 0.09 ± 0.00 2.70 ± 0.01 1.72 ± 0.00 64.23 ± 0.35 42.81 ± 0.17 4.36 ± 0.17
6 0.00 0.50 0.50 5.95 ± 0.01 1.37 ± 0.07 0.00 ± 0.00 2.12 ± 0.02 1.38 ± 0.00 48.56 ± 0.35 25.80 ± 0.16 1.51 ± 0.13
7 0.33 0.33 0.33 7.84 ± 0.01 1.82 ± 0.03 0.23 ± 0.02 3.11 ± 0.03 2.04 ± 0.01 76.58 ± 0.07 48.02 ± 0.16 10.18 ± 0.32
8 0.67 0.17 0.17 9.47 ± 0.04 1.50 ± 0.04 0.16 ± 0.01 2.82 ± 0.04 1.10 ± 0.01 70.09 ± 0.28 48.04 ± 0.44 13.46 ± 0.26
9 0.17 0.67 0.17 9.77 ± 0.01 1.60 ± 0.03 0.17 ± 0.01 2.86 ± 0.01 1.53 ± 0.02 70.06 ± 0.14 42.78 ± 2.48 9.28 ± 0.84
10 0.17 0.17 0.67 7.70 ± 0.02 1.46 ± 0.03 0.06 ± 0.00 2.78 ± 0.03 1.74 ± 0.01 59.27 ± 0.21 36.99 ± 0.38 1.55 ± 0.04
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acetyl radicals. For the same reason, aqueous acetone solu-
tions have a higher extraction yield than hydroethanolic 
solutions (Bravo et al. 2012).

Regarding the antioxidant action of the extracting sol-
vents, the study showed that the aqueous acetone solution 
(0.5:0.5, v/v) also provided the best results. The antioxidant 
action measured by the DPPH and ABTS assays is attributed 
to polyphenols with a high degree of hydroxylation, such as 
flavonoids, flavanols, anthocyanins, and proanthocyanidins, 
which by donating hydrogen atoms can stabilize the free rad-
icals formed. All these compounds showed a strong positive 
correlation in both tests (Online Resource 2). In the FRAP 
assay, the compounds that showed highest possible correla-
tion were flavanols (rflavanols = 0.81; p < 0.05). Anthocyanins, 
proanthocyanidins, and other flavonoids showed a low cor-
relation (ranthocyanins = 0.48; p < 0.05; rproanthocyanidins = 0.33; 
p > 0.05; rflavonoids = 0.33; p > 0.05), suggesting that the 
reduction of ferric ion  (Fe3+) is independent of the concen-
tration of these compounds. These results agree with the 
results obtained by Slatnar et al. (2012), who attributed the 
higher antioxidant activity to flavanols due to their molecu-
lar structures because of the presence of the O-dihydroxy 
structure in the B ring, unsaturation in the C ring, and groups 
3-OH and 5-OH with 4-oxo function in rings A and C, which 
are required for the maximum elimination of radicals/ions.

For the successful extraction of polyphenols from differ-
ent plant matrices, the effect of solvent polarity was qualita-
tively considered. However, it is important to note that the 
extraction procedure is also affected by solute/solvent and 
solvent/solvent interactions. The study of the interactions 
between organic solvents and the studied responses demon-
strated that the extraction solvents that showed a significant 
synergistic effect in all interactions were water and acetone, 
showing no need in using more than two solvents in extract-
ing polyphenols from the fruit (Online Resource 3). This 
evidence agrees with the results presented in this study.

Based on these results, joint optimization of the phenolic 
compound content and antioxidant activity of the lyophilized 
jambolan pulp was performed (Fig. 2). This optimization 
indicated that the maximum response could be estimated 
using the water–acetone-ethanol (0.5:0.5:0, v/v/v) solution. 
The choice of solvent system arose from the results obtained, 
which exceeded 90% of the maximum values of the multi-
response. Thus, we adopted this model to validate the tested 
methods and characterize their phenolic profiles. This model 
was considered satisfactory, as it presented experimental 
values that did not differ significantly (p > 0.05) from the 
estimated values, as shown in Table 2.

The interactions between the extraction solvents and the 
fruit matrix are comprehensive and complex. This dem-
onstrates that the selection of the most suitable solvent for 
the extraction of bioactive compounds from the jambolan 
depends on the edaphoclimatic conditions (climate, relief, 

lithology, temperature, air humidity, radiation, soil type, 
wind, atmospheric composition, and rainfall) and the cul-
tural management of the plant, as well as on the interac-
tive chemical components, such as the functional group and 
length of the pigment chain, in addition to the nutritional 
composition (Marcheafave et al. 2019). Therefore, no precise 
recommendation can be made for the use of a specific sol-
vent or mixture of solvents for a particular sample, without 
a systematic optimization study.

Polyphenolic Profile

The chromatographic and spectrometric characteristics 
of the polyphenols obtained from the optimized jambolan 
extract (acetone–water, 0.5:0.5, v/v) are presented in 
Tables 3 and 4. Detection via ESI–MS in both negative and 
positive ionization modes was conducted in a complemen-
tary manner. A total of 41 compounds were found in this 
extract, comprising 24 non-anthocyanin polyphenols and 
17 anthocyanins. Among the non-anthocyanin compounds, 
isomers of dihydromyricetin and its methylated forms were 
identified, which accounted for 37.25% of the compounds 
present in the fruit, together with caffeic acid (m/z 179) and 
its derivatives, which represented 34.27% of the compounds 
(Table 3). This study also demonstrated a strong prevalence 
of hydroxycinnamic acids and flavonols in jambolan fruit, 
confirming the results obtained by Tavares et al. (2016) and 
Lestario et al. (2017). The chromatograms obtained for the 
compounds by negative ionization are shown in Fig. 3.

Hydroxycinnamic acid has a C6-C3 structure with a dou-
ble bond in the side chain in cis or trans configuration, caus-
ing the loss of the  CO2 entity [M-H-44] (Heras et al. 2017). 
However, this was not observed in the present study because 
the hydroxycinnamic acids identified were characterized by 
a typical loss of one  H2O molecule (18 u). Caffeic acid and 
quinic acid (m/z 191) released a fragment with m/z ratios of 
161 and 173, respectively. The same activities were observed 
on the derivatives of these acids due to the presence of water 
in the extraction solvent, which enabled the formation of 
inter- and intramolecular hydrogen bonds, facilitating the 
release of these molecules.

The hydroxybenzoic acids found in the optimized jam-
bolan extract were adducts of protocatechuic acid hexoside 
with  H2O (m/z = 333), gallic acid 4-O-hexoside (m/z 331), 
and gallic acid (m/z 169). These acids, while presenting 
a different chemical structure (C6-C1) from hydroxycin-
namic acids, also presented a similar loss [M-H-44]− in 
 MS2 (Quifer-Rada et al. 2015). However, for monoglyco-
sylated gallic acid, this loss occurred only in  MS3, where 
m/z 125 ions were present. This change in the fragmenta-
tion stage was attributed to the initial release of the gly-
cosidic group in  MS2, generating m/z 169 and postponing 
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the release of the  CO2 molecule. These findings are similar 
to those reported by Faria et al. (2011).

In addition to the aforementioned acids, the presence 
of eight flavonols and isomers of dihydromyricetin was 
observed. These isomers are characterized by a loss of 162 
u, which was attributable to the neutral loss of the dehy-
drated hexose. The loss of an entire hexose molecule (180 
u) is only possible if it was bound to position C3 of the 
flavanol C ring, resulting in the formation of a double bond 
between positions C2 and C3 in the ring. In contrast, if the 
hexose is bound to one of the hydroxylic groups of the A 
and B rings of flavonol, the hexose loss is possible only by 
dehydration. Therefore, according to Tavares et al. (2016), 
the detection of the [M-hexose-H]− fragment as the main 
signal in the MS/MS spectrum suggests that the hexoses 
are linked to the C5 and C7 positions of the A ring, or to 
one of the hydroxylic groups of the B ring.

In this study, we further identified the presence of 
quercetin deoxyhexoside (m/z 447) and epigallocatechin 
trimer attached to two molecules of  H2O (m/z 949) based 
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Fig. 2  Profiles of the predicted values of the maximum response as 
a function of the solvent system for the extraction of bioactive com-
pounds and determination of their antioxidant activity. EGA, equiva-

lent of gallic acid. EC, equivalent of catechin. ECi-3-gli, equivalent of 
cyanidin-3-glucoside. ECiCl, equivalent of cyanidin chloride equiva-
lent. µmolT = µmol Trolox equivalent

Table 2  Total contents and antioxidant activities of polyphenols, fla-
vonoids, flavanols, monomeric anthocyanins, and proanthocyanidins 
obtained using the optimal mixture of solvents (50% aqueous acetone)

Results expressed as mean (n = 3) ± standard deviation. Student’s t 
test (p < 0.05)
TP total polyphenols; TF total flavonoids; TFl total flavanols; MA 
monomeric anthocyanins; TPr total proanthocyanidins; DPPH total 
antioxidant activity determined by the DPPH test; ABTS antioxidant 
activity determined by testing  ABTS+; FRAP reducing capacity of 
the ferric ion  Fe3+

Response functions Predicted values Observed values p value

TP (mg EGA.g−1) 11.67 11.88 ± 0.10 0.19
TF (mg EC.g−1) 1.85 1.74 ± 0.04 0.14
TFl (mg EC.g−1) 0.29 0.33 ± 0.02 0.13
MA (mg ECi-3-gly.

g−1)
3.14 2.95 ± 0.05 0.06

TPr (mg ECiCl.g−1) 2.05 1.97 ± 0.01 0.06
DPPH (µmol T.g−1) 80.36 80.76 ± 1.02 0.76
ABTS (µmol T.g−1) 54.57 53.63 ± 0.33 0.13
FRAP (µmol T.g−1) 22.39 22.73 ± 0.61 0.65
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Table 3  Identification of polyphenols in jambolan (binary mixture acetone:water, 0.5:0.5, v/v) by HPLC–MS in negative ionization mode

1 Phenolic compounds were identified by comparing their molecular ions (m/z) and major fragments with commercial standards or published 
data in the literature
2 Calculation performed based on the percentage of the area of the chromatogram

Peak tR (min) MS [M-H]−/[M-H-H2O]− MS2 MS3 Identification 
proposal

Reference1 Relative 
abundance 
(%)2

1 2,8 412 366 203, 179, 142 Caffeic acid 
derivative

Wu et al. 2009 0.94

2 3,2 488 341, 146, 179 179, 161 Coffeoil hexose-
deoxyhexoside

Rivera-Pastrana 
et al. (2010)

0.55

3a 3,3 359 179, 161 161, 119, 142 Caffeic acid dimer Wu et al. 2009 10.89
3b 3,3 341 179, 161 161, 143, 113, 131 Caffeoil hexoside Wu et al. 2009 10.89
3c 3,3 179 161, 143 161, 143, 119, 131 Caffeic acid Standard 10.89
4 3,4 295 179, 133, 161 161, 143, 113, 89 Caffeic acid ester Falcão et al. 2010 0.07
5a 3,6 393 295 179, 133, 161 Caffeic acid 

derivative
Wu et al. 2009 0.04

5b 3,6 333 241, 171, 153 153, 223, 97 Adduct of proto-
catechuic acid 
hexoside with 
 H2O

Lambert et al. 
2015

0.03

6 3,9 289 271, 133 115 Apigenin adduct 
with  H2O

Ferreres et al. 2003 0.66

7a 4,6 405 387, 191 111, 173, 129 Quínic acid deriva-
tive

Bastos et al. 2007 1.84

7b 4,6 191 111, 173 111 Quínic Acid Standard 1.84
8 4,8 331 271, 169 125, 211, 169 Gallic acid 

4-O-hexoside
Heras et al. 2017 3.37

9 4,9 169 125 Gallic acid Standard 0.42
10 6,1 643 463, 481, 355, 505 301, 283, 355, 319, 

337, 256
Dihydromyrice-

tin-1
Tavares et al. 2016 11.15

11 7,2 643 481, 319, 463, 355, 301, 283 319, 301, 355, 329, 
257, 233

Dihydromyrice-
tin-2

Tavares et al. 2016 2.29

12 7,6 657 495, 477, 355 333, 315, 369, 495, 
297, 282, 257

Methyl dihydro-
myricetin-1

Tavares et al. 2016 0.38

13 7,7 657 495, 477, 519, 355 333, 369, 333, 315, 
271

Methyl dihydro-
myricetin-2

Tavares et al. 2016 9.65

14 7,8 657 495, 477, 355, 319 315, 297, 333, 369, 
315, 282

Methyl dihydro-
myricetin-3

Tavares et al. 2016 9.65

15 10,7 671 509 347, 261, 371, 261, 
189

Dimethyl dihydro-
myricetin-1

Tavares et al. 2016 3.27

16 10,8 657 495, 333, 355 333, 369, 167, 193, 
271, 125

Methyl dihydro-
myricetin-4

Tavares et al. 2016 0.65

17 11 671 509 347, 371, 329, 401, 
303, 261, 189

Dimethyl dihydro-
myricetin-2

Tavares et al. 2016 0.21

18 27,3 757 549, 491, 653 491, 329, 531, 387 Malvidin 3,5-diglu-
coside derivative

Lestario et al. 2017 1.55

19 28,8 479 461, 317 271, 287, 179, 244, 
151

Myricetin 3-glu-
coside

Sun et al. 2007 0.32

20 37,5 447 301 179, 151, 271, 229, 
273, 107

Quercetin deox-
yhexoside

Gordon et al. 2011 11.30

21 44,4 949 904 338, 451, 564, 677, 
790, 885

Epigallocatechin 
trimer bound to 
 2H2O

Costa et al. 2016 7.13
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on the characteristic fragments of  MS2, which were m/z 
301 and 904, respectively. The release of m/z 301 in the 
 MS2 of quercetin deoxyhexoside can be confused with 
the release of ellagic acid, but any doubts were clarified 
with the  MS3 fragmentation results. In  MS3 fragmenta-
tion, quercetin releases fragments at m/z 271, 255, 179, 
and 155, while ellagic acid releases only m/z 257 frag-
ments (Gordon et al. 2011; Costa et al. 2016). Therefore, 

the characteristic fragments found in this study are related 
to quercetin. The compounds mentioned are found abun-
dantly in the optimized jambolan extract, and together 
with the other identified compounds, are possibly respon-
sible for the total antioxidant activity of the fruit.

The characterization of anthocyanins in the optimized 
jambolan extract is presented in Table  4. The charac-
terization by positive ionization mode found sixteen 

Table 4  Identification of 
anthocyanins in jambolan 
(binary mixture acetone:water, 
0.5:0.5, v/v) by HPLC–MS in 
positive ionization mode

1 Anthocynins were identified by comparing their molecular ions (m/z) and major fragments with commer-
cial standards or published data in the literature
NI not identified

Compound MS [M] + MS2 Identification proposal Reference1

1 353 335, 317, 232 Petunidine derivative Standard
2 413 301 Peonidin derivative Standard
3 449 287, 278 Cyanidin 3-O-glucoside Flamini et al. (2015)
4 451 436, 357 NI
5 463 425, 301 Peonidine 3-O-glucoside Flamini et al. (2015)
6 465 425, 303 Delphinidin 3-O-glucoside Flamini et al. (2015)
7 479 419, 317 Petunidine 3-O-glucoside Flamini et al. (2015)
8 493 331 Malvidin 3-O-glucoside Flamini et al. (2015)
9 611 355, 285 Cyanidin 3,5-diglucoside Faria et al. (2011)
10 627 465, 457, 303 Delphinidin 3,5-diglucoside Faria et al. (2011)
11 639 301 Peonidin derivative Standard
12 641 597, 479, 317, 301 Petunidine 3,5-diglucoside Faria et al. (2011)
13 655 491, 339, 331 Malvidin 3,5-diglucoside Faria et al. (2011)
14 697 535, 360, 338 Cyanidin malonylglucoside derivative Schutz et al. 2006
15 773 724, 423, 395, 387 NI
16 787 616, 447 NI

Fig. 3  HPLC–MS chromatogram of polyphenols of acetone:water 
extract from jambolan (0.5:0.5, v/v) obtained from 200 to 600  nm, 
negative ionization mode. Peaks: 1: caffeic acid derivative. 2: Cof-
feoil hexose-deoxyhexoside. 3a: Caffeic acid dimer. 3b: Caffeoil 
hexoside. 3c: Caffeic acid. 4: Caffeic acid ester. 5a: Caffeic acid 
derivative. 5b: Adduct of protocatechuic acid hexoside with  H2O. 6: 
Apigenin adduct with  H2O. 7a: Quinic acid derivative. 7b: Quinic 

acid. 8: Gallic acid 4-O-hexoside. 9: Gallic acid. 10: Dihydromyri-
cetin-1. 11: Dihydromyricetin-2. 12: Methyl dihydromyricetin-1. 
13: Methyl dihydromyricetin-2. 14: Methyl dihydromyricetin-3. 15: 
Dimethyl dihydromyricetin-1. 16: Methyl dihydromyricetin-4. 17: 
Dimethyl dihydromyricetin-2. 18: Malvidin 3,5-diglucoside deriva-
tive. 19: Myricetin 3-glucoside. 20: Quercetin deoxyhexoside. 21: 
Epigallocatechin trimer bound to  2H2O
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anthocyanins, of which thirteen were identified, including 
delphinidin (m/z 303), cyanidin (m/z 287), petunidine (m/z 
317), peonidine (m/z 301), and malvidin (m/z 331/329) 
in their mono- or diglycosylated forms and derivatives. 
Glycosylated anthocyanins have also been identified by 
Santiago et al. (2016) and Tavares et al. (2017). However, 
these studies were not able to detect the presence of antho-
cyanins derived from petunidine (m/z 353), peonidine (m/z 
413), and cyanidin (m/z 697) as observed in this study, 
which were confirmed by co-chromatography with the 
respective standards.

The extraction of aglycones in their free forms has been 
previously reported (Santos et al. 2013). However, they were 
not detected in this study. It is important to note that many 
bio-polyphenols can be complex with macromolecules pre-
sent in the cell membrane such as lipids, polysaccharides, 
and structural proteins (Shahidi and Yeo 2016). To allow the 
release of the anthocyanin aglycones, the hydrolysis of these 
glycosides must occur under drastic conditions with high  H+ 
concentration, heat, and extraction time or through fermenta-
tion via gastrointestinal digestion, cleaving covalent bonds, 
hydrogen bonds, and hydrophobic interactions in the linked 
phenolics (Maran et al. 2014). These parameters were not 
used in the extraction of bioactive compounds in this study, 
due to the possible degradation of other non-anthocyanin 
polyphenols. This demonstrates that further studies, such as 
the use of different extraction methods, should be carried out 
to identify the phenolic and anthocyanin profile of jambolan 
more accurately.

Conclusions

The maximum yield of bioactive compounds in jambolan 
and their antioxidant capacity were optimized using a binary 
mixture of water and acetone in equal proportions. The study 
also showed that the optimized extract of the fruit includes 
the main polyphenolic classes with antioxidant action, such as 
phenolic acids, flavanones, flavonoids, proanthocyanidins, and 
anthocyanins. Thus, these results establish jambolan fruit as an 
alternative source of bioactive compounds, especially because 
of its high content of polyphenols and anthocyanins, which 
implies its potential commercial application in food coloring 
products, nutraceuticals, pharmaceuticals, and cosmetics that 
are beneficial to human health.
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