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Abstract
In the present study, a minimal-invasive analytical method for determination of Cu, K, Sr, and Zn in cocoa beans was performed
using energy X-ray fluorescence (EDXRF) and laser-induced breakdown spectroscopy (LIBS) combined with multivariate
calibration. Partial least squares (PLS) chemometric technique was applied to modeling the data, and inductively coupled plasma
optical emission spectrometry (ICP OES) technique was the reference method for the chemical elements concentration levels,
after microwave acid mineralization. The figures of merit estimated for Cu, Sr, Zn, and K showed good performance, with
acceptable trueness values (85–120%). Data fusion strategy between EDXRF and LIBS data was used to enhance the predictive
capability of K. In addition, lower standard error of cross-validation (SECV) (872 mg kg−1) was obtained, showing better
performance than those obtained by individual data.

Keywords Chemometrics . Partial least squares . Food samples . Nutrients . Spectroanalytical techniques . Direct solid analysis

Introduction

Elements mass fraction in food matrices have been commonly
determined by different spectroanalytical techniques based on
plasma, such as inductively coupled plasma optical emission
spectrometry (ICP OES) (Villa et al. 2015; Mir-Marqués et al.
2015; Mir-Marqués et al. 2016; Costa et al. 2019a) and induc-
tively coupled plasma-mass spectrometry (ICP-MS)
(Chevallier et al. 2015; Mir-Marqués et al. 2016) due to its high
sensitivity and multi-elemental capability.

However, these analytical instrumental techniques usually
require a sample pre-treatment procedure employing acidmin-
eralization with the help of oxidizing reagents (hydrogen per-
oxide, for instance). These procedures are most used in the
sample preparation, presenting some drawbacks, such as risk

of contamination of the samples, low analytical frequency,
and use of concentrated acid, which can affect the analytical
blank and the accuracy of the results (Korn et al. 2008;
Ferreira et al. 2010). All these observations make less attrac-
tive the use of acid mineralization for the determination of
macro- and micronutrients in food matrices.

Energy dispersive X-ray spectroscopy (EDXRF) is com-
monly used for metals determination in different matrices,
since liquid to solid samples (Pereira et al. 2006; Gupta et al.
2013; Peruchi et al. 2014; Bull et al. 2017; Brito et al. 2017;
Andrey et al. 2018; Byers et al. 2019). Aside from direct solid
sample analysis, EDXRF is non-destructive, selective and al-
lows simultaneous determination; also has higher frequency, it
is simpler in design, and cost less (Kelsey et al. 2016; Oyedotun
2018; Oliveira et al. 2020), which makes it suitable to over-
come the drawbacks described previously. EDXRF presents a
simple spectrum with few spectral interference possibilities.
Some difficulties can be observed to determine light elements,
because mostly are transparent to X-rays and the X-ray absorp-
tion effect is relatively lower than those presented by heavy
elements (Van Grieken and Markowicz 2001).

Another technique commonly used for direct solid analysis
is laser-induced breakdown spectroscopy (LIBS). This is a
versatile technique that presents several advantages, such as
multi-elemental capability and direct solid analysis, and high
analytical frequency where hundreds of spectra are collected
in a short period of time (Markiewicz-Keszycka et al. 2017;
Costa et al. 2019b; Machado et al. 2020).
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Both techniques (EDXRF and LIBS) have been tradi-
tionally used in combination with routine univariate cali-
bration strategies (Costa et al. 2019c). However, depending
on complexity of the sample, this option is not always ef-
fective, being necessary other approaches to minimize ma-
trix effect, and some examples are well described in the
scientific literature.

Therefore, the goal of this study was to evaluate multivar-
iate calibration models employing direct solid sample analysis
by EDXRF for the determination of Cu, K, Sr, and Zn in
cocoa bean samples. Considering the potential information
provided by EDXRF and LIBS, regarding the composition
of cocoa beans, data fusion strategy was also evaluated to
improve both analytical performance and predictive capability
of the analytes.

Materials and Methods

Instrumentation

The measurements were carried out using a benchtop EDXRF
spectrometer, Rigaku NEX QC+ (Austin, TX, USA),
equipped with an Ag target X-ray tube and Be detector win-
dow that can be operated at a maximum voltage of 50 kVwith
a resolution of 0.024 keV (2048 channels) and a 25% detector
dead time. During the spectrum acquisition was considered
Kα transitions for all elements under investigation.

A commercial LIBS, J 200 model from Applied Spectra
(Freemont, USA), was used as complementary technique. The
instrument is equipped with a Nd-YAG laser operating at
1064 nm. The instrument contains a high efficiency particu-
late air cleaner (HEPA) to purge the ablated particles, and the
movement of the sample is automated with a XYZ stage. It
also contains a 1280 × 1024 complementary metal-oxide
semiconductor (CMOS) color-camera imaging system. An
optical fiber bundle is coupled to a 6-channel charged-coupled
device (CCD) spectrometer to convert the plasma emission
light into spectra, with a spectral range of emission signals
between 186 and 1042 nm resulting in 12,288 variables. The
gate width is the time that spectrometer collects the emission
signals, which is fixed at 1.05 ms. For the identification of
elements emission lines, Aurora Software Package (also from
Applied Spectra) was used. The additional operation condi-
tions used were 2699 J cm−2 laser pulse fluence and 1.9 μs
delay time, and the laser pulse energy was about 50 mJ
(Gamela et al. 2020a).

Inductively coupled plasma optical emission spectrome-
ter (ICP OES) model iCAP 7400 (Thermo Fisher, Madison,
WI, USA) was used as reference method after microwave
digestion. The measurements were performed using argon
gas (99.999%, White Martins-Praxair, Sertãozinho, SP,
Brazil), using both axial and radial viewing modes. The

instrumental conditions and the emission lines used are
shown in Table 1.

The digestion procedure was performed using a single re-
action chamber oven (UltraWaveTM, Milestone, Sorisole,
Italy). Before digestion process, a volume of 150 mL of water
and 5.0 mL of concentrated HNO3 were added into the single
chamber reaction, which was pressurized with nitrogen gas
(99.9%, White Martins-Praxair) until 40 bar.

Reagents and Solutions

Analytical-grade reagents and deionized water (Milli-Q sys-
tem, 18.2 MΩ cm, Millipore, Bedford, MA) were used to
prepare all solutions and standards. All glassware and vessels
were soaked in a 10% v v−1 HNO3 solution during 24 h. After
that, a rinsing step with deionized water was performed, and
the materials were left to dry in a clean hood before use. The
multielementar solutions used for external calibration were
prepared from dilution of 1000 mg L−1 of Cu, K, Sr, and Zn
standard solutions (Qhemis, São Paulo, SP, Brazil) using di-
lute HNO3, i.e., 1% v v−1 (Synth, Diadema, SP, Brazil), pre-
viously purified using a sub-boiling distillation system
Distillacid™ BSB-939-IR (Berghof, Eningen, Germany).

Samples and Sample Preparation

Ten samples of cocoa bean were obtained in an area of the
Cocoa Research Center—CEPEC, an entity linked to the
Executive Committee of the Cacao Plan—CEPLAC of the
Brazilian Ministry of Agriculture, Livestock and Supply
(MAPA) located in Bahia State, Brazil.

Before analysis by EDXRF, the samples were only grinded
to reduce the particle size to improve the homogeneity of the
analytes in the samples. Then, approximately 500 mg of each
sample was placed into polypropylene cells and afterwards
covered with Mylar® film of a 6-μm thickness (Premier Lab
Supply, Port St. Lucie, FL, USA). The samples analyzed

Table 1 Instrumental parameters for ICP OES determinations

Parameter ICP OES

Radio frequency applied power (kW) 1.2

Plasma gas flow rate (L min−1) 12.0

Auxiliary gas flow rate (L min−1) 0.5

Nebulizer gas flow rate (L min−1) 0.50

Analytes monitored Emission line (λ/nm)

Cu 324.754 (I)

K 766.490 (I)

Sr 421.552 (II)

Zn 213.856 (I)
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using EDXRF spectrometer were the same for LIBS.
However, previously to LIBS analysis, the samples were
pressed using 60 t in−1 to form pellets (~ 12 mm diameter)
in order to make easier the data collection.

To evaluate the efficiency of the digestion procedure of the
sample, four certified reference materials (CRMs) of baking
chocolate (NIST 2384), whole milk powder (NIST 8435),
apple leaves (NIST 1515), and spinach leaves (NIST 1570a),
all from National Institute of Standard and Technology
(Gaithersburg, MD, USA), were also digested using concen-
trated HNO3.

Reference Method

The method used as reference was developed by Gamela
et al. (2020b) and presents the following characteristics: a
mass of 200 mg of cocoa beans was directly weighed in
perfluoroalkoxy alkanes (PFA) vessels and, 5 mL of
3.75 mol L−1 HNO3 and 1.75 mL of 30% v v−1 H2O2 were
added. The samples were submitted to the following
heating program (temperature in °C/ramp in min/hold in
min): (i) 180/5/5, (ii) 210/5/10, and (iii) 230/5/10. After
that, the vessel contents were transferred to volumetric
flasks, and the solution was diluted to 25 mL with ultrapure
water before analysis.

Acquisition of LIBS Spectra and Chemometric Tools

For LIBS, each sample was analyzed in triplicate using the
conditions described in “Instrumentation.” Approximately
600 spectra were collected, and all data treatment was per-
formed using MATLAB® 2019a (The MathWorks Inc.,
Natick, MA, USA) laboratory-made routines, and an interface
integrated MATLAB for first-order multivariate calibration
(MVC1) (Olivieri et al. 2004). The collected spectra were
normalized to minimize the microheterogeneity and signal
fluctuation during the data acquisition (Castro and Pereira-
Filho 2016). However, the normalization process was not nec-
essary for EDXRF, since this technique has not shown this
issue previously mentioned.

The samples were divided using Kennard and Stone algo-
rithm into calibration and validation sets (Kennard and Stone
1969). A number of samples used in the calibration and vali-
dation sets were 7 and 3, respectively. After that, partial least
squares regression (PLS) was used to model all data set, and
appropriate number of latent variables was selected and pre-
dicted the concentration values in the sample test. This tool is
considered first-order multivariate calibration, which mini-
mizes the lack of selectivity. The mathematical algorithms
are used to obtain information to predict the concentration in
the samples, and the main advantage is the possibility to pro-
pose models in the presence of concomitants (Escandar et al.
2007; Olivieri 2015; Zhang et al. 2018).

The best results were considered those that present low-
est standard error of cross-validation (SECV). In order to
improve the capability of the prediction of the model, data
fusion strategy was evaluated. Data fusion consists in the
use of multiple sources of data to produce a single model
(De Oliveira et al. 2019; Gamela et al. 2020c), and due to
the versatile characteristic of LIBS, this technique was used
as complementary.

Results and Discussions

Reference Method by ICP OES

For the evaluation of the proposed procedure, four different
CRMs, such as apple and spinach leaves, baking chocolate,
and whole milk powder, were submitted to the optimized
conditions described in previous study by Gamela et al.
(2020b), and the results are shown in Table 2. The results
obtained using this procedure demonstrated that the con-
centrations of all analytes in CRM are in concordance with
certified values according to Student’s t test at 95% of con-
fidence level. Moreover, the results obtained employing the
total digestion of the samples with concentrated HNO3 and
with proposed procedure were also compared using a paired
Student’s t test at 95% of confidence level (Gamela et al.
2020b). The results showed that there is no significant dif-
ference between the reference method and proposed
procedure.

Multivariate Calibration and Data Preprocessing

In this first step, univariate calibration was used to build re-
gression models based on EDXRF data under the area of
specific region of the element. However, this strategy present-
ed unacceptable errors for all determined elements due to var-
iability of matrix between the samples, what make this strate-
gy inadequate to estimate the concentration values in the
samples.

Partial least squares (PLS) multivariate models were
used to predict the concentration values of Cu, K, Sr,
and Zn in cocoa bean samples. For modeling the data,
the whole EDXRF spectra were used for the calculations
and are shown in Fig. 1. The data were modeled using the
calibration and validation samples, as described in
“Acquisi t ion of LIBS Spectra and Chemometric
Tools” section. The reference concentration obtained from
ICP OES was the y vector.

The MVC1 calculates important figures of merit, such as
limit of detection (LOD), limit of quantification (LOQ), and
SECV, which allows to evaluate the efficiency of the regres-
sion models (Olivieri et al. 2004). The obtained models pre-
sented good results using one latent variable (LV), where the
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LOD and LOQ obtained were 1 and 3 mg kg−1 for Cu, 345
and 1036 mg kg−1 for K, 0.5 and 2 mg kg−1 for Sr, and 2 and
6 mg kg−1 for Zn. Moreover, the SECV was below the
lowest concentration values in the validation samples for
all determined elements. These values were 7 mg kg−1 for
Cu, 1506 mg kg−1 for K, 4 mg kg−1 for Sr, and 7 mg kg−1

for Zn.
The predicted concentration values for these elements

ranged from 16 to 17 mg kg−1 for Cu, 6602 to 8034 mg
kg−1 for K, 8 to 12 mg kg−1 for Sr, and 36 to 38 mg kg−1 for
Zn. Figure 2 shows the obtained trueness values for each
element in all samples, which ranged from 85 to 106% for
Cu, 94 to 100% for K, 109 to 120% for Sr, and 90 to 106%
for Zn.

Other strategy evaluated was data fusion between EDXRF
and LIBS combined with multivariate calibration to enhance
the regression model for K. In this sense, the data fusion mod-
el was built using the specific selected spectra of the transition
energy Kα (3.314 keV) of K from EDXRF, and the spectra

of two emission lines of this element (K I 766.49 nm and
K I 769.89 nm) from LIBS, as depicted in Fig. 3. After
that, the data were autoscaled and the calibration model
was calculated using PLS. However, due to lower sensi-
tivity of the LIBS, the data fusion was not successful for
Cu, Sr, and Zn.

The SECV value obtained for this element was 872mg kg−1.
Figure 4 shows the SECV values obtained using single model
EDXRF, and data fusion model employing EDXRF and LIBS
simultaneously. The results obtained for K using data fusion
strategy presented lower SECV when compared with those ob-
tained by a single source (EDXRF), showing a good capability
to predict the concentration values of this element. In addition,
the obtained LOD and LOQ were 1899 mg kg−1 and 5697 mg
kg−1, respectively. The predicted concentration values found
ranged from 6053 to 8339 mg kg−1, and the trueness was 76
to 120% as depicted in Fig. 5.

Therefore, considering the essential species for human
health, all analyzed samples presented high concentration
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Fig. 2 Trueness values (%) obtained for (a) Cu, (b) K, (c) Sr, and (d) Zn
using PLS

Fig. 1 Representative spectra obtained from cocoa bean sample using
EDXRF

Table 2 Concentration values (mg kg−1) of Cu, K, Sr, and Zn obtained in certified reference materials using diluted HNO3 (mean ± standard deviation,
n = 3)

Elements Baking chocolate (NIST 2384) Apple leaves (NIST 1515) Spinach leaves (NIST 1570a) Whole milk powder (NIST 8435)

Certified
value

Microwave
digestion

Certified
value

Microwave
digestion

Certified
value

Microwave
digestion

Certified
value

Microwave
digestion

Cu 840 ± 74 866.0 ± 0.2 15,250 ± 100 14,147 ± 126 15,270 ± 410 14,275 ± 52 9220 ± 490 9966 ± 445

K 8650 ± 400 7120 ± 17 16,080 ± 210 12,821 ± 198 29,030 ± 520 23,712 ± 433 13,630 ± 470 10,746 ± 139

Sr * ____** 25 ± 1 24.9 ± 0.3 55.6 ± 0.8 54.6 ± 0.5 4.3 ± 0.5 4.3 ± 0.1

Zn 38 ± 2 37 ± 1 12.4 ± 0.5 13.01 82 ± 3 76 ± 1 28 ± 3 27 ± 0.5

*Value not informed

**Not determined
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values of K and can be considered good source of this nutrient.
Regarding micronutrients, Zn were found in higher concen-
tration values than Cu and Sr.

Conclusions

Multivariate calibration and EDXRF and LIBS data were able
to predict the mineral content (Cu, Sr, and Zn) by means of
direct solid analysis. Whole spectra and PLS were employed
to calculate the calibration model, which showed simplicity
and presented good results, as low SECV, LOD, LOQ, and
acceptable trueness. Moreover, data fusion employing
EDXRF and LIBS was used for the determination of K, and
it demonstrated that with the use of this strategy and PLS for
modeling, the SECV was improved. In this sense, the use of
EDXRF and LIBS combined with multivariate calibration
represents an alternative to minimize matrix effect.
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