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Abstract
Near-infrared (NIR) spectroscopy was used to distinguish between game meat from six different species, i.e. three medium-sized
(impala, blesbok and springbok) and three large-sized (eland, black wildebeest and zebra) that were harvested (collected and
slaughtered) from different farms across South Africa. Longissimus thoracis et lumborum (LTL)muscle steaks were removed and
scanned with a handheld NIR spectrophotometer in the spectral range of 908 to 1700 nm. Spectra were treated with two different
pre-processing combinations: (1) smoothing, standard normal variate and de-trending (SNV-Detrend), and (2) SNV-Detrend and
Savitzky-Golay 2nd derivative. Data were explored with principal component analysis (PCA) and classified with linear discrim-
inant analysis (LDA), soft independent modelling by class analogy (SIMCA) and partial least squares discriminant analysis
(PLS-DA). For discrimination and classification, models were developed within each of the medium- and large-sized groups.
LDA resulted in good classification accuracies ranging from 68 to 100%, irrespective of the pre-processing combination used.
PLS-DA performed well (classification accuracies ranging from 70 to 96%) when spectra were treated with SNV-Detrend and
Savitzky-Golay 2nd derivative. The prediction results obtained with SIMCA, pre-processed with smoothing and SNV-Detrend,
ranged from 67% (springbok) to 100% (impala and eland). Although accurate models were obtained, they could still be improved
by extending the sample set with meat samples from each species to cover variation in terms of season, geographical location, age
and sex.
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Introduction

Meat and meat products represent an important component of
the human diet. In addition to proteins, red meat also offers
minerals and trace elements, particularly zinc and iron, to the
diet. Game meat, also high in proteins (20.0–23.8%), offers a
healthy alternative to other red meat as it is known to be much

lower in fat (0.8–2.45%) compared to beef (14.2% fat; 19.2%
protein) (Hoffman 2007). South African (SA) game meat is
considered an organic food product since the animals are wild
and free-roaming, in contrast with many game species in other
parts of the world that are semi-domesticated (Hoffman and
Wiklund 2006; Mostert and Hoffman 2007). For this reason,
SA game meat is a highly priced commodity making it an
attractive target for species substitution (Ballin 2010;
Kamruzzaman et al. 2013).

Meat species substitution is a current problem involving
economic and safety issues since one cannot easily detect
the source of origin or differentiate between species when
evaluating meat visually (Kamruzzaman et al. 2013). Beef
burgers (produced in Ireland in 2013) were found to contain
horse meat, exposing consumers to undeclared animal species
in meat products (O’Mahony 2013; Walker et al. 2013). In
South Africa, Cawthorn et al. (2013) found species (such as
chicken, goat, water buffalo and donkey) that were not de-
clared on the product labelling in beef sausages. Such reports
subsequently raised consumers’ concern regarding traceability
and origin of the food they eat (Verbeke and Ward 2006).
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Correct and reliable labelling of meat products is important to
allow consumers to make informed choices.

Due to the cost of analytical methods (chromatography,
electrophoresis, enzyme-linked immunosorbent assay
(ELISA) and DNA-based techniques) required for accurate
identification of meat species (Cawthorn et al. 2013; Fajardo
et al. 2010; Jonker et al. 2008), raw meat products are not
tested on a regular basis. To address this shortcoming, near-
infrared (NIR) spectroscopy can be used as a rapid screening
method (Manley 2014) for detection of potential substitution
of meat species (Ding and Xu 1999; Cozzolino and Murray
2004). NIR spectroscopy can be used to quantify and qualify
physical, chemical and biological attributes of food samples
based on their spectral signature (Manley 2014).

Visible (400–780 nm) and NIR (780–1100 nm and 1100–
2500 nm) spectroscopy has been indicated as an effective test
method for meat species identification. NIR spectroscopy
works well in combination with chemometrics for more deci-
sive classification of food samples (Reid et al. 2006).
Information contained in NIR spectra can be extracted using
various multivariate techniques that relate several variables to
chemical properties. The most frequently used techniques al-
low samples with similar characteristics to be grouped, in
order to establish classification methods for unknown samples
(qualitative analysis) or to performmethods determining some
property of unknown samples (quantitative analysis). Ding
and Xu (1999), Cozzolino and Murray (2004), and Mamani-
Linares et al. (2012) coupled NIR with chemometrics to
achieve good classification models of meat species. Visible-
near-infrared (vis-NIR) spectroscopy was used in initial stud-
ies on meat species classification. Ding and Xu (1999) differ-
entiated beef from kangaroo meat samples with a classifica-
tion accuracy of 83%. No kangaroo meat samples were
misclassified (100% accuracy). Similarly, Cozzolino and
Murray (2004) identified muscles from beef, pork, chicken
and lamb with accuracies of more than 85%. Discrimination
of cattle, llama and horse meat species was possible with ac-
curacies of 100, 95 and 89%, respectively (Mamani-Linares
et al. 2012). Prieto et al. (2008) used only the NIR region
(1100–2500 nm) to discriminate groundmeat samples of adult
steers (oxen) from that of young cattle. Using partial least
squares discriminant analysis (PLS-DA), an overall classifica-
tion accuracy of 100% was obtained. Intramuscular fat and
water content were shown to be the main sources of variation
between these sample groups. Since 2013, the availability of
handheld instruments (O’Brien et al. 2013) opened up the
opportunity to take the instrument to the sample, in contrast
to desktop NIR instruments which require samples to be
transported to the laboratory for analysis.

The consumption of game meat is becoming popular all over
the world. For example, in Spain, approximately onemillion two
hundred thousand hunters and nine million animals of the main
hunted species are hunted each year. In Andalusia, over five

million big and small game species were hunted during the
2015 and 2016 season (Moreno-ortega et al. 2018). In Sweden,
70%of the population including non-hunters are reported to have
consumed game meat (LJung et al. 2012). In Africa, among the
most hunted species are springbok (Antidorcas marsupialis),
gemsbok (Oryx gazella), impala (Aepyceros melampus), blesbok
(Damaliscus pygargus phillipsi), kudu (Tragelaphus
strepsiceros), blue wildebeest (Connochaetes taurinus) and red
hartebeest (Alcelaphus buselaphus caama) (Van Schalkwyk &
Hoffman 2016). The South African consumer demand for game
meat within the formal market has been considerably lower than
for more conventional livestock species such as beef, mutton and
pork. The lower demand can potentially be attributed to limited
availability, higher retail prices as well as the naturally darker
colour of game meat (Hoffman and Wiklund 2006; Wassenaar
et al. 2019). Nonetheless, Saayman et al. (2011) investigated the
effect of local hunting on the South African economy and found
that there was a largely positive economic impact; hunting had a
contribution of over 6 billion ZAR to the gross domestic profit
(GDP) of the country along with job creation. Van der Waal and
Dekker (2000) found approximately 13,700 permanent jobs cre-
ated as well as extra people being hired temporarily during the
hunting season. In a 2018 report, the same authors found that
trophy hunting contributed significantly to the national economy
and supplied over 17,000 jobs, which could result in areas of
lower income becoming more economically stable (Saayman
et al. 2018). However, the increase of hunted wild game meat
markets all over the world is however hampered by the lack of a
well-structured food chain (Marescotti et al. 2019).

Marketing game meat on species level rather than a collec-
tive ‘game meat’ has been considered. However, some of the
game species are more popular and sought after by consumers.
Springbok and eland are, e.g. favoured compared to zebra
which is deemed less desirable. Game meat is sold in the form
of steaks, sausages, biltong and droewors. Therefore, there is a
possibility that these meat portions can be mislabelled, and in
such cases, meat species classification will be required.

Recently, we reported that a handheld NIR device could be
used to discriminate muscles of SA game species (Dumalisile
et al. 2020). Overall accuracies ranging from 85 to 100%were
achieved when distinguishing between impala, eland and os-
trich muscles. In this study, we aim to use NIR spectroscopy
coupled with various discriminant and classification methods
to differentiate between Longissimus thoracis et lumborum
(LTL) muscle steaks of selected game species.

Materials and Methods

Meat Samples

A total of 118 animals of the following game species was
obtained: 33 impala (Aepyceros melampus), 26 blesbok
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(Damaliscus pygargus phillipsi), 13 springbok (Antidorcas
marsupialis), 15 eland (Taurotragus oryx), nine black wilde-
beest (Connochaetes gnou) and 22 zebra (Equus quagga). The
game species originated from different areas and were hunted
during different seasons as shown in Table 1. The animals
were free-roaming and grazed on natural vegetation. All ani-
mals were hunted according to the standard operating proce-
dure with ethical clearance (approval number: SU-ACUM14-
001SOP; Stellenbosch University (SU) Animal Care and Use
Committee). The animals were eviscerated at abattoirs accord-
ing to the South African red meat regulations (DAFF
(Department of Agriculture, Forestry and Fisheries) 2004;
Van Schalkwyk and Hoffman 2016), and transported chilled
to the meat research laboratory at the Department of Animal
Sciences, SU. After 24 to 48 h post-mortem, the Longissimus
thoracis et lumborum (LTL) muscle was removed at the sixth
rib of each carcass.

Near-Infrared Spectral Acquisition

Each LTL muscle was cut into a 2.0 to 2.5-cm-thick steak and
allowed to bloom for 30 min at ambient temperature. Near-
infrared (NIR) spectra were collected from each muscle with a
MicroNIR™ OnSite spectrophotometer and spectral acquisi-
tion software (Viavi Solutions®, San Jose, CA, USA). The
illumination source comprised of two integrated vacuum tung-
sten lamps coupled to a linear variable filter and a 128-pixel
indium gallium arsenide (InGaAs) photodiode array detector.
The reflectance spectra were recorded from 908 to 1680 nm at
6.2 nm intervals, resulting in 125 data points. The InGaAs
detector was used to achieve a resolution of 30 μm ×
250 μm/50 μm (< 12.5 nm resolution). A 2-mm-thick
Steriplan glass Petri dish was placed on top of the meat sam-
ples to prevent direct contact of the spectrophotometer with
surface moisture. Triplicate spectra were collected through the

glass surface, at three different positions for each sample. A
sample spectrum was recorded in about 0.25 to 0.5 s. Each
spectrum was the average of 100 scans. The external white
and dark references were scanned every 10 min during sample
collection.

Moisture, Protein and Fat Analysis

Moisture, protein and fat content of the gamemeat steaks were
determined as described by Neethling et al. (2014a, b). The
moisture content (g/100 g) of each species was determined by
drying the homogenised muscles at 100 °C for 24 h, according
to the Association of Official Analytical Chemist’s Standard
Techniques (AOAC method 934.01.30). For protein content
determination, dried and defatted meat samples were ground
to a fine powder. The crude protein was analysed using the
LECO combustion method also known as the Dumas com-
bustion method (AOAC method 992.15). Approximately
0.15 g sample was weighed and inserted into a foil wrap
designed for a Leco protein analyser (LECO FP-528
Nitrogen Analyzer, Leco Corporation). An ethylene diamine
tetra-acetic acid (EDTA) calibration sample (Part number 502-
092) was analysed with each batch of samples to ensure accu-
racy and recovery rate. The protein content was determined as
nitrogen (% N) content multiplied by a factor of 6.25. The fat
content was determined by homogenising the samples in a
blender, followed by chloroform/methanol (2:1) extraction
(Lee et al. 1996).

Multivariate Data Analysis

The spectral data were imported into and analysed with The
Unscrambler® X version 10.5 (CAMO Software, Oslo,
Norway) and PLS_Toolbox (Version 8.6.2, Eigenvector
Research, Inc., Manson, WA USA) data analysis software

Table 1 Description of game species (blesbok, impala, springbok, black wildebeest, eland and zebra), number of samples, provenance and harvest
season

Species Total number of animals (n) Sex Average weight (kg) Provenance (n) Harvest season

Female Male

Blesbok 26 14 12 51.2 Witsand (15)
Witsand (11)

May 2016
May 2017

Impala 33 11 22 37.1 Bredasdorp (11) Modimolle (22) February 2017
February 2017

Springbok 13 8 5 38.3 Witsand (10)
Witsand (3)

May 2017
September 2017

Black wildebeest 9 3 6 141 Bredasdorp (9) September 2017

Eland 15 7 8 337.3 Bredasdorp (15) June 2016

Zebra 22 5 17 323.7 Bredasdorp (10) Wellington (12) July 2017
January 2018
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packages. Triplicate spectra were averaged, to obtain one
spectrum per sample. The data was converted to absorbance
with the following formula:

A ¼ −log Rð Þ

Where:

A absorbance
Log log base 10
R reflectance

Spectral Pre-processing

Two combinations of pre-processing (mathematical transfor-
mation) techniques were applied to reduce potential scattering
effects, baseline shifts and noise in the data (Rinnan et al.
2009; Engel et al. 2013). Firstly (combination one), spectra
were smoothed with a seven-point moving average to remove
noise followed by standard normal variate (SNV) and de-
trending (Barnes et al. 1989). SNV was applied to remove
the scattering effects by centring and scaling each spectrum
and de-trending was applied to reduce the baseline shift and
curvature. Secondly (combination two), spectra were treated
with SNV and de-trending (SNV-Detrend), followed by
Savitzky-Golay 2nd derivative, 2nd order polynomial and
seven-point smoothing. Savitzky-Golay 2nd derivative was
applied to smooth noise fluctuations without introducing dis-
tortions and to enhance peaks not clearly visible in the original
spectra (Savitzky and Golay 1964).

Principal Component Analysis

Principal component analysis (PCA) was computed in The
Unscrambler®. PCA (Cowe and McNicol 1985) decomposes
the raw data matrix (X) into scores and loadings, according to
the following equation:

X ¼ T1P
0
1 þ T2P

0
2 þ…þ TkP

0
k þ E

where:

X raw data matrix
T scores matrix
P loadings matrix
E residuals
k must be less than or equal to the smaller dimension of X

In this equation, E is that part of the original data (X) not
exp la ined by the model . The expla inable pa r t ,

(T1P
0
1 þ T2P

0
2 þ…þ TkP

0
k ), captures the essential patterns

in the data and is known as the principal components (PCs).
The first PC accounts for as much of the variability in the data
as possible, and each succeeding component accounts for the
remaining variance. Thus, in a 3-component model, PC1 will

have the largest explained variance, PC2 the second most and
PC3 the least. The explained variance, similar to the eigen-
values, indicates the portion of variability captured by a PC
(Wold 1987). The larger the eigenvalue, the greater the
amount of the variance the PC explains.

Calibration and Validation Sets

Calibration and validation (test) sets were obtained from the
original data using the Kennard-Stone (KS) algorithm
(Kennard and Stone 1969). This algorithm allows to design
model set uniformly, i.e. samples are selected into a model set
by including samples that represent the most different sources
of variability. Thus, it employs distance calculations and se-
lects samples based on their spectral features (Pasquini 2018).
The algorithm was employed on the full data set to split it into
a calibration set comprised of 83 samples (70% of the original
data set) and the remaining 35 (30%) were used for validation.
Table 2 illustrates the number of samples used for calibration
and validation.

Classification Methods

Classification models were developed using hard and soft
modelling methods. Here, we used popular techniques such
as linear discrimination analysis (LDA) (Fisher 1936), partial
least squares discriminant analysis (PLS-DA) (Barker and
Rayens 2003) and soft independent modelling of class analo-
gy (SIMCA) (Wold 1976; Brereton 2011). The different spe-
cies were grouped according to size, medium-sized (impala,
blesbok and springbok) and large-sized (eland, black wilde-
beest and zebra) species and models were developed within
each of these groups. For the PLS-DA approach, groups of
classes were modelled simultaneously using one PLS-2 mod-
el. Cross-validation based on venetian blinds was applied dur-
ing the calibration process to determine the optimum number
of latent variables (LVs) and all models were independently
validated. For all algorithms, class modelling was set to “Class
Predict Strict” in the PLS_Toolbox (Version 8.6.2,
Eigenvector Research, Inc., Manson, WA USA). In this

Table 2 Calibration and validation (tests) sets obtained by Kennard-
Stone algorithm

Species Calibration (70%) = 83 Validation
(30%) = 35

Impala 23 10

Blesbok 21 5

Springbok 10 3

Black wildebeest 5 4

Eland 10 5

Zebra 14 8
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approach, each sample belongs to a given class if the proba-
bility is greater than a threshold value for that class. If no class
has a probability greater than the threshold, or if more than one
class has a probability exceeding it, the sample is assigned to
class zero (0) indicating no class could be assigned. Confusion
matrices were used to evaluate the performance of the indi-
vidual models. To interpret the confusion matrix results, clas-
sification accuracy was calculated using the following equa-
tion (Oliveri and Downey 2012):

%Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

� 100

where,

TP True positive (when samples belonging to the class
being modelled are correctly predicted to be inside the
boundary of that class) e.g. for a blesbok class model,
true positive samples are blesbok samples predicted as
such

FN False negative (when samples belonging to the class
being modelled are incorrectly predicted to be outside
the boundary of the class), e.g. in a blesbok class model,
false negative samples are blesbok samples that are
misclassified

FP False positive (when samples not belonging to the class
being modelled are incorrectly predicted to be inside the
boundary of the class), e.g. in a blesbok class model,
false positive samples are samples not being blesbok,
predicted as blesbok

TN True negative (when samples not belonging to the class
being modelled are correctly predicted to be outside the
boundary of the class), e.g. in a blesbok class model,
true negative samples are samples not being blesbok,
predicted as such

Results and Discussion

Proximate Analysis

Proximate analysis was done to support the spectral interpre-
tation of the species, and these are presented in Table 3. The
moisture content of game meat usually varies between 70 and
77% (Hoffman 2007). In this study, the moisture content was
between 75.30 and 75.60%, with no major differences be-
tween the species. As expected, the protein content was within
the range (20.0–23.8%) reported by Hoffman (2007), with
blesbok the lowest (21.53%) and eland the highest
(22.96%). The fat content was within the reported limits
(0.8–2.45%), except blesbok with a fat content of 2.48%.
This was higher than the 1.7% reported by Von la

Chevallerie (1972). The zebra’s composition was similar re-
sults to that reported by Hoffman et al. (2016).

Characterisation of NIR Spectra

Mean spectra (raw and pre-processed) of the medium-sized
antelopes and the large-sized game species are shown in
Figs. 1 and 2, respectively. The raw spectra (Figs. 1a and 2a)
show three broad absorption bands typical of red meat sam-
ples. The bands at 976 and 1434 nm are related to third and
second overtone stretching of the O-H bond (Barbin et al.
2012; Elmasry et al. 2011) associated with the moisture con-
tent of the samples. Water is the main component of meat (ca.
75%) (Table 3). In addition to these, the wavelength band at
1186 nm corresponds to the second overtone of a C-H
stretching bond, associated with intramuscular fat
(Cozzolino and Murray 2004; Ding and Xu 2000; Osborne
et al. 1993).

Pre-processing enhanced the differences between the re-
spective species at these wavelengths (Figs. 1b, c and 2b, c).
The average spectra of blesbok and springbok seemed to be
more similar than that of impala. The average spectra of the
large-sized species showed differences in absorbance values
between all three species, especially at the bands associated
with moisture. The large-sized species seemed to be more
similar in terms of fat. Due to the broad bands observed in
NIR spectra, it was not always possible to distinguish between
the different species based on visual inspection of the raw or
pre-processed spectra. Further analysis such as exploratory
data analysis and classification model development are re-
quired to effectively determine the potential of NIR spectros-
copy to distinguish between game meat muscles.

Principal Component Analysis

The principal component analysis (PCA) scores plot (PC1 vs.
PC3) of all six species, pre-processed with combination 1
transformation and accounted for 94% of the total explained,
is shown in Fig. 3a. Two clear clusters separated the medium-
sized antelopes from the large-sized game species. The load-
ings line plot of PC3 (Fig. 3b) indicates a waveband at ca.
1372 nm, associated with fat, accounting for the separation
between the medium- and large-sized game species. This is

Table 3 Average proximate chemical composition (moisture, fat and
protein) (%) of the LTL muscles of blesbok, impala, eland and zebra

Species Moisture (%) Protein (%) Fat (%)

Blesbok 75.30 21.53 2.48

Impala 75.37 22.65 1.61

Eland 75.59 22.96 1.21

Zebra 75.60 22.33 1.76
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evident from the difference in average fat content of blesbok
and impala (2.05%) compared to that of eland and zebra
(1.49%) (Table 3).

Fig. 4 and Fig. 1 of the supplementary material depict the
PCA scores plots of the medium-sized antelopes, pre-treated
with combination 1 (smoothing and SNV-Detrend) and com-
bination 2 (SNV-Detrend and 2nd derivative) pre-processing,
respectively. The first two principal components (PCs) explain
98% of the total variance when the spectra were pre-processed
with combination 1 and 95% when pre-processed with com-
bination 2. The PCA scores plots show separation in both

cases, in the direction of PC1, between the impala muscles
and those of springbok and blesbok. The PC1 loadings line
(Fig. 4b), for the data pre-processed with combination 1,
shows prominent wavebands at 982 and 1416 nm (O-H
bonds) and 1093 and 1570 nm (N-H bonds), associated with
moisture and protein, respectively (Osborne et al. 1993).
When the data was pre-processed with combination 2,
wavebands at 976 nm (moisture), and 1155 and 1366 nm
(fat) were contributing to the separation.

The similar spectral characteristics observed between the
springbok and blesbok samples are probably because they

Fig. 1 Mean spectra of samples
of the medium-sized antelopes
(impala, blesbok and springbok
species) with a raw spectra, b
combination 1 pre-processed
spectra and c combination 2 pre-
processed spectra. Wavebands
976–988 nm and 1410–1434 nm
are associated with moisture and
wavebands 1168–1186 nm with
fat
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were harvested from the same farm, during the same season
and grazing on the same pasture/fodder. Van Zyl and Ferreira
(2004) reported a distinct chemical difference between

springbok, blesbok and impala harvested from different
regions. In addition, Neethling et al. (2018) noted that spring-
bok from three farm locations differed significantly in their

Fig. 2 Mean spectra of the
samples of the large-sized game
species (black wildebeest, eland
and zebra) with a raw spectra, b
combination 1 pre-processed
spectra and c combination 2 pre-
processed spectra. Wavebands
976–988 nm and 1410–1434 nm
are associated with moisture and
wavebands 1168–1186 nm with
fat
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proximate composition and sensory attributes. Based on these
findings, it appears that the geographical origin of the species
has a meaningful impact on their chemical composition. The
lack of geographic variation in our study is evident.

The PCA scores plots of the large-sized species pre-
processed with combination 1 (smoothing and SNV-
Detrend) and combination 2 (SNV-Detrend and 2nd
derivative) are shown in Fig. 2 of the supplementary material
and Fig. 5, respectively. Fig. 2a of the supplementary material
shows the scores of PC1 vs. PC2 (95% explained variance)
illustrating separation of zebra muscles from eland and black
wildebeest in the direction of PC1. The wavelength bands
(982 and 1422 nm (O-H) and 1087 and 1570 nm (N-H))
responsible for this separation are shown in the PC1 loadings
line plot (Fig. 2b of the supplementary material). The O-H
bands are related to third and second overtone stretching of
the O-H bond (Barbin et al. 2012), associated with the mois-
ture content of the samples, while the N-H bands are associ-
ated with the second overtone stretching related to NH2 com-
pounds (proteins) (Osborne et al. 1993). In the direction of
PC2, eland muscles are separated from black wildebeest and
the accompanying loadings line plot (Fig. 2c of the supple-
mentary material) indicates 1174 nm as the responsible

waveband. This C-H, second overtone stretching bond is as-
sociatedwith fat (Cozzolino andMurray 2004). Hoffman et al.
(2009) reported that black wildebeest harvested in spring (re-
gardless of sex), to have a low fat content. Thus, it seems
possible that the difference in fat content between the eland
and black wildebeest muscles is due to the fact that the black
wildebeest species were harvested in spring (Table 1).

Figure 5 a displays the scores plot of PC1 vs. PC3 (78%
explained variance) showing clustering of the three groups of
large-sized species. The PC1 loadings line plot (Fig. 5b) re-
veals the main wavelength bands responsible for the grouping
as those located at 970, 1155 and 1366 nm, which correspond
to the moisture and fat, respectively. The loadings line plot for
PC3 (Fig. 5c) shows prominent bands at 1112 and 1366 nm
(both CH bands), responsible for the separation of eland and
black wildebeest.

Classification Methods

Because of the separation observed in the PCA scores plot
(Fig. 3a), the two groups (medium-sized antelopes and the
large-sized game species) were classified with PLS-DA and
a 96% classification accuracy was obtained (Fig. 3 of the

Fig. 3 a PCA scores plot
(combination 1 pre-processed
spectra; smoothing and SNV-
Detrend) of PC1 vs. PC3 (94%
explained variance) illustrating
separation of the medium-sized
antelopes (impala, blesbok and
springbok) from the large-sized
game species (black wildebeest,
eland and zebra) samples in the
direction of PC3. b PC3 loadings
line plot, with the waveband at ca.
1372 nm (associated with fat)
contributing to the separation of
the meat samples from the
medium-sized antelopes and
large-sized game species
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supplementary material). The model showed one medium-
sized antelope (impala) sample misclassified as a large-sized
game species, while two large-sized game species (zebra)
were misclassified as medium-sized antelopes. Based on these
results, subsequent classification models were developed
within these two groups.

Table 4 shows the classification accuracies of models de-
veloped with LDA, PLS-DA and SIMCA for both pre-
processing combinations. When combination 1 was used,
LDA delivered overall prediction results above 68% with
100% accuracy for the impala meat samples. The PLS-DA
models gave the lowest classification accuracies ranging from
47 to 91%. Regardless of the low accuracy (57%) obtained for
zebra species, the overall classification accuracy for large-
sized species was 77%. SIMCA models yielded classification
accuracies ranging from 67%, up to 100% for impala and
eland meat samples. However, when pre-processing combina-
tion 2 was used for spectral treatment of SIMCA models, the

lowest accuracies were obtained (50 to 84%); this highlights
the importance of the pre-processingmethod used and concurs
with Rinnan et al. (2009). The LDA model generated the best
prediction results across all categories with classification ac-
curacies ranging from 72 to 95%. The PLS-DA model also
gave good accuracies, ranging from 70 to 96%. With respect
to the medium-sized antelopes category, impala samples gave
outstanding results across the models. This was already evi-
dent in the spectral features (Fig. 1). In the case of the large-
sized species, the calibration and prediction accuracies of
eland samples were outstanding for PLS-DA models com-
pared to the others (LDA & SIMCA). In contrast, when
SIMCAwas used for classification, the lowest accuracies were
achieved for the eland samples. Classification accuracies of up
to 82% were obtained for the zebra samples, despite the dif-
ference between the two batches (Table 1). This indicates that
as much variation as possible is needed from each species to
build a robust model.

Fig. 4 a PCA scores plot
(smoothing and SNV-Detrend
pre-processed spectra) of PC1 vs.
PC2 (98% explained variance)
illustrating separation of the
impala meat muscles from those
of blesbok and springbok in the
direction of PC1. b PC1 loadings
line plot, depicting wavebands
associated with protein (1093 and
1570 nm) and moisture (982 and
1416 nm) mainly contributing to
the separation of impala from
blesbok and springbok
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Table 5 illustrates the confusion matrix of the calibration
sets. A notable result was obtained with PLS-DA pre-treated
with combination 2 for springbok samples, where 50% were
misclassified (false negatives). Springbok meat samples had
the highest misclassification rate, and were misclassified as
blesbok (Fig. 4 of the supplementary material). This is likely
because both species were harvested from the same farm in
the same season, feeding on the same pasture (Table 1)
(Neethling et al. 2014a, b). A noteworthy model for the
large-sized species was obtainedwith SIMCA pre-treated with
combination 1. Eland had a 50% misclassification rate, while
the other classes (True negatives) were correctly classified.
Thus, this model was capable of identifying all the other clas-
ses as a group. Even though the eland had the lowest classifi-
cation accuracy (75%), in contrast to black wildebeest (90%)
and zebra (78%), the model had a validation accuracy of
100% (Table 4). This should be approached with caution
though as only 5 eland samples were in the validation set.

When pre-processed with combination 2, none of the eland
samples were correctly classified. This further stresses the
importance of choice of pre-processing method.

The confusionmatrix results are best visualised graphically, as
illustrated in Fig. 4 of the supplementarymaterial where the PLS-
DA (pre-processed with combination 2) predictions are shown
for the medium-sized antelope. In the blesbok model, two sam-
ples were misclassified as springbok while four springbok sam-
ples were misclassified as blesbok, which also concurs with the
overlapping spectral features discussed in the “Proximate
Analysis” section (Fig. 1). For the impala model, one sample
was misclassified and one springbok sample was classified as
impala. Finally, for the springbok model, three springbok sam-
ples were misclassified as blesbok, and three blesbok and four
impala samples were misclassified as springbok.

Conclusions

To date, this is the first reported study to discriminate dif-
ferent South African game meat species using NIR spec-
troscopy in combination with multivariate data analysis.
From this study, it was attested that it is possible to differ-
entiate game meat with classification accuracies of 67 up to
100%. Moreover, the three discrimination methods applied
have proven to discriminate meat samples from the two
groups (medium-sized antelopes and large-sized species)
of game species. In general, impala, black wildebeest and

Table 4 Calibration (Cal) and validation (Val) accuracy (%) results of
LDA, PLS-DA and SIMCA models, for classification of meat from
medium-sized antelopes and large-sized species using pre-processed

spectral data (combination 1: smoothing and SNV-Detrend;
combination 2: SNV-Detrend and 2nd derivative)

Category Species LDA PLS-DA SIMCA

Cal (%) Val (%) Cal (%) Val (%) Cal (%) Val (%)

Combination 1

Medium-sized antelopes Blesbok 91 72 84 66 91 70

Impala 94 100 89 84 98 100

Springbok 78 90 73 47 70 67

Large-sized species Black wildebeest 88 68 100 83 90 96

Eland 90 87 82 91 75 100

Zebra 86 82 72 57 78 69

Combination 2

Medium-sized antelopes Blesbok 89 86 90 70 57 60

Impala 98 95 90 89 85 80

Springbok 80 93 72 77 65 80

Large-sized species Black wildebeest 88 72 90 71 78 84

Eland 83 83 87 96 50 50

Zebra 83 82 75 76 71 57

Fig. 5 a PCA scores plot (SNV-Detrend and 2nd derivative pre-
processed spectra) of PC1 vs. PC3 (78% explained variance) showing
the grouping of the zebra, black wildebeest and eland muscles. b PC1
loadings line plot, showing the wavebands associated with the separation
of most of the zebra samples from those of eland and black wildebeest
(970 nm=moisture; 1155 and 1366 nm= fat). c PC3 loadings line plot
depicts the separation of the samples of eland and black wildebeest due to
difference in fat (1112 and 1366 nm)

R
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eland gave the best classification results while blesbok and
springbok were not good due to spectral similarities.
Furthermore, it was observed, especially with the PLS-

DA and the SIMCA models, that the classification accura-
cy of a model is influenced by the pre-processing method.
In this study, SIMCA models performed better when

Table 5 Confusion matrix obtained for LDA, PLS-DA and SIMCA classification models for medium-sized antelopes and large-sized species

Classification method Class True positive False positive True negative False negative

Smoothing (7 points) and SNV-Detrend pre-processed spectral data (combination 1)

Medium-sized antelopes

LDA Blesbok 95 12 88 5

Impala 96 6 94 4

Springbok 70 20 80 30

PLS-DA Blesbok 71 3 97 29

Impala 78 0 100 22

Springbok 50 5 95 50

SIMCA Blesbok 80 0 100 19

Impala 96 0 100 4

Springbok 40 0 100 60

Large-sized species

LDA Black wildebeest 89 13 88 11

Eland 100 16 84 0

Zebra 86 13 87 14

PLS-DA Black wildebeest 100 0 100 0

Eland 80 16 84 20

Zebra 50 7 93 50

SIMCA Black wildebeest 80 0 100 20

Eland 50 0 100 50

Zebra 57 0 100 43

SNV-Detrend and 2nd derivative (7 points) pre-processed spectral data (combination 2)

Medium-sized antelopes

LDA Blesbok 95 15 85 5

Impala 96 0 100 4

Springbok 80 20 80 20

PLS-DA Blesbok 86 6 94 14

Impala 83 3 97 17

Springbok 50 7 93 50

SIMCA Blesbok 14 0 100 86

Impala 70 0 100 30

Springbok 30 0 100 70

Large-sized species

LDA Black wildebeest 89 8 92 11

Eland 90 21 79 10

Zebra 79 13 87 21

PLS-DA Black wildebeest 80 0 100 20

Eland 80 5 95 20

Zebra 57 7 93 43

SIMCA Black wildebeest 60 4 96 40

Eland 0 0 100 100

Zebra 43 0 100 57
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treated with smoothing and SNV-Detrend while PLS-DA
models gave better accuracies with SNV-Detrend and
Savitzky-Golay 2nd.
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