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Abstract
Nowadays, progresses in data processing software have promoted the application of infrared (e.g., FT-IR, NIR, MIR), Raman,
and hyperspectral imaging (HSI) techniques for quantitative analysis of biological material and/or aroma compounds in foods. In
this review, applications of vibrational spectroscopy combined with chemometrics are summarized including analysis of total
polyphenol, individual polyphenols, vitamins, and aromatic compounds in raw and some processed products. Laboratory-based
and online application of vibrational spectroscopies monitoring for analysis of phenolic compounds have been described. In
addition, technical challenges and future trends have been covered. Based on the literature, the near-infrared technique often has
an advantage over other spectroscopy approaches and the expensive and time-consuming chemical methods such as high-
performance liquid chromatography and gas chromatography. Overall, the current review suggests that vibrational spectroscopies
are promising and powerful techniques that can be used for rapid and accurate determinations of food nutraceuticals and volatile
compounds in both academic and industrial contexts.
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Introduction

Polyphenol compounds and vitamins in food are of great in-
terest and have gained more attention in recent years due to
their health properties. Several epidemiological studies proved
that these compounds have the capability to improve health by
reducing risk or the symptom of chronic diseases (Shahidi and
Zhong 2015). Recently, the role of flavor compounds in

human health due to their antioxidant, anti-inflammatory, an-
ti-cancer, and anti-obesity activities was reviewed by Ayseli
and İpek Ayseli (2016). Minor constituents of food, especially
phenolic and volatile compounds, are inherently associated
with the global quality and positive sensory attributes of var-
ious foods (Inarejos-García et al. 2013). Typically, the price
and ranking (i.e., high, medium, or low commercial value) of
many foods depend on the organoleptic properties (Bianchi
et al. 2005; D’Amico et al. 2016). Several attempts have been
made to establish highly sensitive and selective approaches for
measurement of bioactive and aroma components where com-
prehensive researches have been performed on the various
extraction and separation techniques (e.g., SPE, SPME) as
well as enhancing the chromatographic used (e.g., HPLC,
GC-MS) (Tahir et al. 2016c; Tahir et al. 2017). Although these
techniques can deliver accurate results, these methods are
time-consuming, laborious, expensive, and complex (Cigic
and Prosen 2009). Furthermore, the extraction process used
may affect the chemical composition of phenolic compounds
and/or aroma compounds (Boido et al. 2013; Bureau et al.
2019; Tahir et al. 2016a, b, c). Therefore, scientists continue
to make significant attempts to find alternative rapid, ease-of-
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use, no or minimal sample preparation, and cost-effective
techniques that might complement or replace conventional
analytical tools in terms of measurement of aroma and bioac-
tive compounds (Tahir et al. 2016a, c, 2017). Vibrational spec-
troscopies including infrared (e.g., FT-IR, NIR,MIR), Raman,
and hyperspectral imaging (HSI) coupled with chemometric
methods could be used as alternatives for quantitative analysis
of various biologically active materials and aroma compounds
(Fig. 1) in foods due to many advantages (Table 1). Some of
these advantages include the hastening of the analysis and
reducing the cost.

Nowadays, vibrational spectroscopies have been applied as
powerful tools to study molecules, aromatic, and biological
compounds in food (de Toledo et al. 2012; Li et al. 2019;
Sekine et al. 2011). The contribution of these compounds
(e.g., chlorogenic acid, flavonoid 3-methoxyquercetin,
luteolin, phenol, pigments, tannin) to FT-IR, NIR, and
Raman spectroscopy data has been previously reported
(Coates 2000; Eravuchira et al. 2012; Marrassini et al. 2015;
Sekine et al. 2011; Tahir et al. 2017; Tondi and Petutschnigg
2015). The infrared (IR) region includes that part of the elec-
tromagnetic spectrum in the wavelength range between 780
and 100,000 nm and is divided into near-IR, mid-IR, and far-
IR subregions (Baeten and Dardenne 2002; Osborne 2006);
the NIR region covers the wavelength range from 780 to
2500 nm (Osborne 2006). When compared with spectra

collected in the mid-infrared (MIR) region, a NIR spectrum
normally exhibits few well-defined, sharp peaks (Williams
and Stevensen 1990). NIR technique operates with a light
source from which the sample absorbs specific frequencies
corresponding to overtones and combination bands of vibra-
tional transitions of the molecule primarily of OH, CH, NH,
and CO groups (Karoui 2018). MIR spectroscopy is typically
used to determine the molecular composition of a sample.
Raman technique is fundamentally similar to infrared since
it gives information about the chemical bonds within the or-
ganic matrix. Raman technique is based on a special phenom-
enon termed Raman scattering. When the incident light is
directed at a sample, a small fraction of the light is scattered
by the sample. The scattered light conveys information on the
vibrational band energies of molecules. A plot of the intensi-
ties of the scattered portion of incident light against the shifts
in the frequency between the incident and the scattered light is
known as Raman spectra (Kizil and Irudayaraj 2018). After
vibrational spectroscopy data obtained, chemometrics tech-
niques are employed to extract relevant information and re-
move the irrelevant information in order to determine volatile
compounds and other bioactive compounds accurately.
Generally, chemometrics comprises two parts, spectral prepro-
cesses and regression methods. In the current article, a com-
prehensive overview of applications of four technologies for
evaluating bioactive and volatile compounds will be

Fig. 1. The flowchart of
assessing bioactive components
volatile compound and
antioxidant activity by vibrational
spectroscopy
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addressed and some technical challenges and future research
trends will be discussed as well.

Vibrational Spectroscopy

Recently, vibrational spectroscopy–based approaches have
been extensively applied for the determination of various bi-
ologically active agents and volatile compounds in foods.
These techniques, representing good alternatives to conven-
tional methods, involve the application of toxic chemical and/
or complicated sample preparations. Furthermore, vibrational
spectroscopy methods enable the measurement of several
characteristics from a single analysis in a very short time.
Moreover, modern advancement in instrumentation and com-
putational fields, as well as development in chemometric tech-
niques, makes vibrational spectroscopy methods available for
in situ and online investigation of different kinds of samples.
Three key techniques are implemented to measure molecular
vibrational motions: infrared spectroscopy (near and mid-in-
frared), Raman spectroscopy, and hyperspectral imaging sys-
tem (HSI) technique.

The intense and specific bands indicated in the Raman,
MIR, and FT-IR spectra data make these technologies very
interesting, enabling the measurement of quality parameters
in foods. MIR and NIR spectroscopies have a good signal
intensity compared with Raman technique; however, MIR
has the advantage over NIR; thus, trace components can be
identified. The typical detection results of optical techniques
are presented in Fig. 2 by taking honey and cocoa bean as an
example (Caporaso et al. 2018; Tahir et al. 2017).

Infrared Spectroscopy

Infrared (IR) is a region that presents the molecular bond vibra-
tions, in the spectral zones between 14,000 and 4000 cm−1 for
NIR and 4000–400 cm−1 for MIR, offering valuable informa-
tion regarding physical and chemical characteristics of samples.
NIR spectrum results from complex overtones and combina-
tions of tones whereas the MIR spectrum represents the funda-
mental vibrations of molecules (Burns and Ciurczak 2001;
Ozaki, McClure et al. 2006). The suitable mode of infrared
spectroscopy analysis mode should be determined based on
the optical characteristics of the food samples (Fig. 3).

Table 1 The main features of some vibrational spectroscopy techniques for measurement of bioactive compounds and volatile in foods

Features IR spectroscopy NIR Raman

Speed Fast Fast Fast

Penetration depth Several mm–several cm Several mm–several cm Several mm–several cm

Emission process na na ✓

Fluorescence-free spectra na na ✓

Low-frequency modes Fair na Excellent

Best vibrations Asymmetric Comb/overtone Symmetric

Process monitoring ✓ ✓ ✓

Saving of labor and reduction of
samples to analyze

✓ ✓ ✓

Direct, non-invasive and
non-destructive in situ analysis

✓ ✓ ✓

Compatible with suitable fiber optics ✓ ✓ ✓

Low-frequency modes Fair na Excellent

Analyte Component, active ingredients,
physical attributes

Component, active ingredients,
physical attributes

Component, active ingredients,
physical attributes

Ease of sample preparation Variable Simple Very simple

Intensity proportional to concentration na na ✓

Simple analysis: concentration vs peak
area

✓ ✓ ✓

Analysis of liquids Very simple Very simple Very simple

Analysis of powders Simple Simple Very simple

Analysis of polymers Simple Simple Very simple

Analysis of gases/volatile Very simple Simple Simple

Qualitative and quantitative analysis ✓ ✓ ✓

Cost (price) Moderate Moderate to high High

Application modes Lab, portable, commercial Lab, portable Lab, portable

Not applicable (na)
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Reflectance mode determination is the easiest to ac-
quire because it can be performing without contact with
the food besides light intensities are fairly high.
However, it is subjected to variations in surface charac-
teristics. The advantage of the transmission cell is that it
offers very accurate and reproducible spectroscopic de-
terminations; however, the main drawbacks often require
a destructive preparation or semi-preparation of the sam-
ple. Generally, transmission mode determinations are
better than reflectance mode for measurements of inter-
nal disorders of foods. However, the intensity of light
penetrating the food is often very low, making it a chal-
lenge to acquire accurate transmission determination,
mainly in environments of high ambient light levels.

Transparent foods are usually analyzed in transmit-
tance (Fig. 3a). Solid and semi-solid or turbid foods
could be analyzed in diffuse transmittance (Fig. 3b),
diffuse reflectance (Fig. 3c), or transflectance (D) based
on their absorption and scattering properties. Also, pseu-
do absorbance (A) relative to standard reference material
is determined (A = log(1/T) for transmittance and log
(1/R) for reflectance spectra) (Reich 2005).

Raman Spectroscopy

In Raman spectroscopy, the sample is illuminated with a
monochromatic laser beamwhich interacts with the molecules
of the sample and creates a scattered light. The scattered light
having a frequency different from that of incident light (in-
elastic scattering) is used to produce a Raman spectrum
(Bumbrah and Sharma 2016; Skoog et al. 2017; Smith and
Dent 2019). Raman spectroscopy also provides information
regarding the chemical bonds within a compound similar to
those obtained from infrared spectroscopy. However, the laser
sources used in Raman technique might cause fluorescence of
some organic molecule compounds, affecting the signal-to-
noise ratio and decreasing the sensitivity of this technique.
Hence, in many studies, it was used as a complement to IR
data (Gao et al. 2018).

HSI Technique

Hyperspectral imaging (HSI) is a spectral imaging acquisition,
which combines the main characteristics of spectroscopic and
computer vision technique. It is considered a very efficient

a

b 

Fig. 2 (a) representative FT-IR,
Raman, and NIR spectra of
honey. (b) HSI spectra of cocoa
Q4 beans
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analytical tool to meet the growing demand of both spatial and
spectral information, and therefore it has been extensively
used for food quality and safety inspection (Su and Sun
2018a, b). HSI technique recorded spectral information in
different spectral regions and can be combined with various
spectroscopies such as VIS/NIR, MIR, and Raman (Pallone
et al. 2018; Su and Sun 2018a, b). VIS/NIR HSI systems are
the most common for food quality and safety measurements
(Cheng et al. 2017). Over the past 6 years, vibrational spec-
troscopic technologies, particularly NIR, FT-IR, Raman, and
NIR-HSI techniques, have demonstrated their potential in the
measurement of food quality parameters including biological-
ly active materials and volatile profiles.

Some Advantages and Drawbacks of Raman
and Infrared Spectroscopies

Raman and IR spectroscopies showed many advantages that
make these technologies attractive as substitutions to conven-
tional, boring, and more time-consuming analytical method-
ologies. They are fast, do not require chemical reagents, and
are non-destructive. Both Raman and IR spectroscopic proce-
dures are integral because of their diverse determination rules.
Since infrared motion needs a change in the dipole moment of
a molecule, those bonds which are highly polar will absorb the
most strong, for instance, C=O and O–H. Conversely, diatom-
ic atoms, for example, H2, will not be infrared active (Pavia

and Lampman 1996). In Raman spectroscopy, it is the change
in polarizability, which is critical, and thus, bonds such as
C=C are the most intense. Since all of the frequencies are
determined simultaneously, most measurements by IR are
made in a matter of seconds rather than several minutes. For
instance, the detectors utilized in FT-IR are very sensitive and
the optical throughput is greatly higher, which results in very
lower noise levels; and the rapid scans enable the addition of
several scans (i.e., signal averaging) to decrease the random
measurement noise to any required level. In FT-IR spectros-
copy, the moving mirror in the interferometer is the only con-
tinuously moving part. Therefore, there is very little risk of a
mechanical breakdown. FT-IR system uses a HeNe laser, as an
internal wavelength calibration standard, thus, does not re-
quire to be calibrated by the user. These advantages together
with others make assessments conducted by FT-IR very accu-
rate and reproducible. The main disadvantage of FT-IR is a
single beam whereas dispersive techniques commonly have a
double beam (Dutta 2017).

The main advantages of NIR spectroscopy over other spec-
troscopies are that they can provide spectra with high intensi-
ty, high resolution, precise spectral frequency measurement,
being fluorescence-free, and ease of sample presentation.
Furthermore, this technique is appropriate for online and in-
line process monitoring and quality control of food products.
Conversely, this system is characterized by poorly resolved
spectra, the lack of information from nonpolar groups, an

Fig. 3 Infrared spectroscopy
assessment modes—a
transmittance, b diffuse
transmittance, c diffuse
reflectance, and d transflectance
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absence of structural selectivity and sensitivity, and spectra
affected by temperature changes (Fernández Pierna et al.
2018). NIR-HSI is widely used for measurements of bioactive
compounds in food (Table 2). The advantage of NIR-HSI is
the larger surface area being analyzed. In addition, it can ac-
quire multi-constituent information and sensitive to minor
chemical components. The main drawback of NIR-HSI is ex-
pensive and requires training (Jha 2010).

Raman spectra are obtained in a fairly fast acquisition time
(milliseconds to minutes, depending on the sample). This en-
ables for high-spatial-resolution 2D and 3D Raman mapping
with tens of thousands of points being acquired in a few hours
or less (Erasmus and Comins 2018). Also, in this technique,
there is the absence of interference from overlapping peaks
and, e.g., aqueous solutions do not present a problem (com-
pared to, e.g., IR spectroscopy) (Alajtal 2010). In comparison
with IR spectroscopy, one of the most attractive features of
Raman techniques results from its weaker water interference.
Thus, Raman technique can suitably analyze samples in var-
ious states (e.g., dried, hydrated, liquid, or solid state) with less
sample preparation processes, which is fundamental for fast
and non-destructive determination of the chemical composi-
tion of food in situ. Also, in this technique, fluorescence effect
is well circumvented in the measurements and samples
retained in glass bottles or simply in the raw form can be
analyzed easily (Kizil and Irudayaraj 2018). A further advan-
tage is that a Raman spectrum covers the spectral range be-
tween 4000 and ∼ 100 cm−1, depending on how effective the
Rayleigh line filtering is (Y.-S. Li and Church 2014).
Conversely, the acquisition of an IR spectrum over this fre-
quency range depends on the utilization of both mid- and far-
IR spectrometers. The main drawback with conventional
Raman spectroscopy is the small scattering cross-section of
many materials. The details of the advantages and drawbacks
of infrared and Raman spectroscopy can be found in the liter-
ature (Baeten and Dardenne 2002; Y.-S. Li and Church 2014).

Chemometric Analysis

Nowadays, the research activities in chemometrics are very
intense and a large number of publications dealing with the
vibrational spectroscopy focus on this field. IR, Raman, and
HSI are capable of providing useful information about the
various characteristics of a sample. In addition to the sample
properties, some redundant information originating from in-
strumental noise, scattering, and environmental effects might
contribute to the complexity of a spectrum. These effects can
be largely reduced by applying pretreatment techniques such
as smoothing, standard normal variate (SNV), multiplicative
signal correction (MSC), first derivative (1st Der), and second
derivative (2nd Der) (Mora-Ruiz et al. 2017; Pu et al. 2015;
Tahir et al. 2016a).

Due to the large overlap and the complex nature of contin-
uous data, sometimes, it is a challenge to find the positions of
characteristic bands that represent the different components in
plant foods. To avoid using irrelevant information, the selec-
tion of feature wavelengths in the vibrational spectroscopy
(e.g., HSI and NIR) region is a highly effective method to
develop a robust and accurate model (Table 2) (Su and Sun
2018a, b). Thus, different combinations of feature wave-
lengths associated with specific quality parameters are expect-
ed to be efficiently captured. Several wavelength selection
procedures such as successive projection algorithm (SPA)
and stepwise regression (SWR) (Y.-C. Yang et al. 2015), in-
terval selection in partial least squares (iSPA) (Mariani et al.
2015). competitive adaptive reweighted sampling (CARS)
(Ma et al. 2016), and principal component analysis (PCA)
(Khulal et al. 2016) have been employed over the last couple
of decades. The most common modeling techniques for quan-
titative analysis of volatile and bioactive compounds include
partial least squares regression (PLSR), least squares-support
vector machine (LS-SVM), modified linear regression (MLS),
artificial neural network (ANN), synergy interval partial least
square regression (Si-PLS), support vector regression (SVR),
and backward interval partial least squares (bi-PLS) (Table 2).
Generally, a good regression model is characterized by higher
coefficients in calibration (Rc), cross-validation (Rcv), and pre-
diction (Rp) and lower error values in calibration (RMSEC),
cross-validation (RMSECV), prediction (RMSEP), standard
error of prediction (SEP), and standard error of calibration
(SEC).

Applications on Volatile and Bioactive
Components

The under-mentioned sections summarized the recent prog-
ress of the applications of spectroscopic techniques with suit-
able chemometrics methods in this field (Table 2 and Table 3).
Generally, the applications of these techniques can be grouped
into the following categories: (1) measurement of volatile
compounds, (2) measurement of individual bioactive com-
pounds, (3) measurement of a group of bioactive compounds.
HSI was mostly used for (3), and Raman and MIR for cate-
gories (2) and (3), while NIR has been applied for all
categories.

Basically, determination of phytochemical compounds and
vitamins using Raman, NIR, MIR, and HSI techniques re-
quires appropriate reference chemical assays to be performed
simultaneously as spectral measurements. Spectroscopic tech-
niques are indirect tools for measuring volatile compounds
and health-related components in foods. Conventional
methods such as GC-MS, HPLC, and UV-vis spectrophotom-
eter are usually performed to obtain data about volatile and
bioactive compounds (such as vitamins, phenolics, and
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flavonoid). Thereafter, appropriate mathematic models might
be developed for the determination of concentrations of either
individual compound or prediction of total antioxidant com-
pounds based on how models were developed.

Analysis of Total Phenolic Compounds

For predicting TPC using NIR, difference feature wavelengths
were extracted using difference selection techniques. For ex-
ample, competitive adaptive reweighted sampling-partial least
square (CARS-PLS) was used to predict TPC in tea (Ma et al.
2016). Compared with the PLS model built from the whole
wavelength, CARS-PLS algorithm can reduce the prediction
error and enhance the correlation coefficients (R2

p) from
0.8023 to 0.8412. The TPC in honey was determined using
NIR reflectance (10,000–4000 cm−1) combined with various
pretreatments (such as baseline correction, SNV, MSC, and
1st Der). The results indicated that the raw data model was
the most robust with a high correlation coefficient (Rp = 0.94)
and a higher ratio of performance to the standard deviation
(RPD ˂ 3.50) which indicated the precision of NIR using
spectra without any pretreatments (Tahir et al. b). NIR has also
been successfully applied to obtain non-destructive measure-
ments of TPC in many foods such as apples, red cabbage, and
honey (Table 2). Based on the abovementioned studies, it can
be concluded that it is possible to accurately determine TPC in
foods using NIR technology. Furthermore, as presented in Fig.
4, NIR is the most effective and widespread technique for
quantitative analysis of bioactive compounds in foods.

The online application of vibration spectroscopy tech-
niques in the determination of bioactive compounds is limited.
Aleixandre-Tudo et al. (2019) investigated the feasibility of

online application NIR for measurement of bioactive com-
pounds in intact and crushed grape berries transported on a
conveyor belt system online (Fig. 5). The study was conduct-
ed using commercial cellar equipment, which makes this sys-
tem valid for the commercial condition. The PLS results indi-
cated that NIR technique is a powerful tool for prediction of
the bioactive compounds such as phenolic compounds in
wine-like and homogenate samples. The developed model
showed lower prediction errors (RMSEP = 12.3%). The au-
thors concluded that the result of this study could be imple-
mented in fruit sorting and bench-marking as well as for
decision-making reasons, before the fermentation procedure.
However, comprehensive studies with a large number of sam-
ples with different maturity stages are required to demonstrate
this.

TPC in red cabbage was analyzed by NIR (10000–
4000 cm−1) and ATR-FT-IR (3600–3200 cm−1) (I. R. N.
de Oliveira et al. 2018). The authors applied ordered pre-
dictors selection (OPS) and genetic algorithm (GA) for
feature extraction prior to developing the PLS model.
The results indicated that PLS combined with the OPS
algor i thm had bet ter performance (RMSECV =
44.41 mg gallic acid equivalents (GAE) 100 g−1)
(RMSEP = 42.46 mg GAE L−1) with higher prediction
accuracy (Rp = 0.99). In another study, NIR and FT-IR
were investigated and compared based on the quantifica-
tion of TPC in grape juice. Results showed that both tech-
niques had comparable performance to determine TPC
with low prediction errors. However, FT-IR showed an
RMSEP (0.21 mg GAE100 mL−1) which was moderately
better than that of NIR (0.37 mg GAE100 mL−1)
(Caramês et al. 2017b).

FT-IR (1660 variables) and Raman (2644 variables) were
also compared for quantification of TPC in Chinese rice wine.
The authors compared several preprocessing techniques based
on prediction results (Wu et al. 2016). The optimal preprocess-
ing technique for FT-IR was 1st derivative with Savitzky-
Golay smoothing and Raman was Savitzky-Golay smoothing.
In this article, the authors also compared Si-PLS and PLS
models for prediction of TPC. It was observed that Si-PLS
models for both techniques presented high predictions with
R2

p of 0.9237 for FT-IR and R2
p of 0.9064 for Raman as

compared to PLS model with R2p of 0.9064 for Raman and
R2

p of 0.8918 for FT-IR. The results of this article demonstrat-
ed that the accuracy of models based on the Raman data was
superior to those based on the FT-IR data. FT-Raman of honey
showed very high accuracies for TPC (Rp = 99.9, RMSEP =
1.44 mg 100−1g) when PLS and preprocessing such as
straight-line subtraction and MSC were employed (Anjos
et al. 2018).

Recently, a multispectral technique coupled with BPNN
modeling for quantitative analysis of carotenoid and TPC in
tomato samples was investigated (Liu et al. 2015a). Results

Fig. 4 Publication numbers of applying vibrational spectroscopy for
measurements of total phenolic compound content (TPC), total
flavonoid content (TFC), total anthocyanin content (TAC), total
antioxidant activity (TAA), specific bioactive compound (SBC), and
volatile compounds (VCs) in foods from July 2011 to January 2019
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demonstrated the feasibility of multispectral imaging applica-
tion for accurate and rapid evaluation of bioactive compounds
such as lycopene (R2p = 0.938, RMSEP = 2.29 mg kg−1) and
TPC (R2p = 0.965, RMSEP = 0.31 mg GAE 100 g−1) distri-
bution in tomato fruits.

Analysis of Total Flavonoids

NIR technique was evaluated toward the determination of
TFC propolis, karkade tea, honey, apple, mint tea, and
coffee. It was observed that PLSR was the most wide-
spread method for measuring TFC in various foods. The
popular models for detections of TFC were MPLS, PLS,
and LS-SVM combined with a wide range of spectra, close
to full-wavelength models. The correlation coefficients in
raw propolis were R2

p = 0.96 (Revilla et al. 2017), goji
berry Rp = 0.9075 (Tingting et al. 2016), Karkade tea Rp

= 0.83 (Tahir et al. 2016a, b, c), and honey Rp = 0.95 (Tahir
et al. 2016a, b, c). Revilla et al. (2017) and Betances-
Salcedo et al. (2017) successfully applied NIR equipped
with remote reflectance fiber-optic probe to ground up
propolis for determining the TFC raw propolis. The result
showed that NIR technology with a fiber-optic probe could
be used as an alternative to the chemical methods.

ATR-FT-IR was also evaluated for prediction of TFC in
Moscatel dessert wines (Silva et al. 2014). PLS model on
the fingerprint zones (1800–900 cm−1) yielded higher predic-
tion (Rp = 0.811) with a lower error of prediction (REP =
0.20%).

Analysis of Anthocyanins

NIR was also evaluated for determination of TAC in various
foods. For measuring of TAC, Tahir and co-authors applied
NIR together with PLS to predict the TAC in karkade tea (Rp =
0.91) (Tahir et al. 2016b). In similar research, Viegas et al.
(2016) used NIR combined with PLS to quantify TAC in
Wax Jambu fruit. The authors compared the performance of
various pretreatments (such as smoothing, MSC, 1st Der, and
2nd Der). PLS combined with 2nd derivative showed the
highest correlation (Rp = 0.98) and RPD (5.19) with the lowest
prediction error (RMSEP = 9.0 mg L−1). More recently, NIR
was used to evaluate TAC in pomegranate (Arendse et al.
2017). In this study, two NIR acquisition approaches, i.e.,
integrating sphere (1064–1333, 1640–1835 nm) and emission
head (1064–1333, 1640–1835 nm), were compared. Among
the two NIR acquisition approaches, emission head (EH)
showed the TAC (R2

p = 70.50) with lower prediction error
(RMSEP = 0.13 g GAE L−1). NIR was applied to measure
the TAC in flowering tea (i.e., Camellia japonica, Hibiscus
sabdariffa, Rosa chinensis, Rosa rugosa, Dianthus
caryophyllus, and Myosotis sylvatica) (Xiaowei et al. 2014).
In this article, interval PLS (iPLS), a colony optimization in-
terval partial least squares (ACO-iPLS), and genetic algorithm
interval partial least squares (GA-iPLS) were applied on the
data with superiority given to ACO-iPLS, as acquired in the
characteristic regions for TAC (4590–4783, 5770–5963
cm−1). Based on the selected region, ACO-iPLS yielded
higher predictions (Rp = 0.9524) with lower prediction error

Fig. 5 Schematic illustration of
the experimental setup for the
spectral data collection using a
conveyor belt moving online
system (Aleixandre-Tudo,
Nieuwoudt et al. 2019)
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(RMSEP = 0.12 mg/g). Similarly, the possibility of applica-
tion of NIR coupled with PLS algorithm to quantitatively
determine the TAC in açaí (Euterpe oleracea Mart.) and
palmitero-juçara (Euterpe edulisMart.) fruits was investigat-
ed (Inácio et al. 2013). The iSPA-PLS model using smoothing
preprocessing with a window of 5 points revealed better pre-
diction than the model built with spectra pretreated by 1st Der
combined with 2nd Der, demonstrating the effectiveness (R2

p

= 0.90, RMSEP = 9.35 g kg−1) of the smoothing (with 5-point
method) (Mariani et al. 2015). Based on NIR spectra together
with the PLS model containing 600 variables, TAC in
Jaboticaba fruit could be successfully quantified (R2

p =
0.89). Other authors found that the NIR spectroscopy could
be employed to determine TAC in black Goji berry accurately
with Si-PLS model estimation (Rp = 0.899, RMSEP = 0.60
mg/g) (Yahui et al. 2017). PLS with 2nd Der presented higher
prediction results (R2

p = 0.86).
In another study, NIR (10,000–8450 cm−1) and FT-MIR

(747.42–829.11 cm−1) were used for quantifying TAC in
grape juice (Caramês et al. 2017b). In the case of the PLS
model, both spectroscopies had a similar satisfactory perfor-
mance to predict TAC presenting low RMSEP = 4.22 mg 100
g−1 for FT-MIR and RMSEP = 4.44 mg 100 g−1 for NIR.
Additionally, the coefficient of determination was relatively
equal to R2

c = 0.81 for FT-MIR and R2c 0.84 for NIR.
FT-IR (4000–650 cm−1) coupled with the PLS model was

used to predict TAC in red and rose wine (Canan and Banu
2017). Several spectral preprocessing techniques were applied
before the PLS model analysis of FT-IR spectra. In some FT-
IR study, the cross-validation of the TAC model indicated a
weak performance (Andrianjaka-Camps et al. 2015). This re-
sult could be attributed to the small number of raspberries
puree used for developing PLS model. An analysis with a
larger number of samples may be considered to enhance the
performance of the model.

The potential of HSI technique to quantify TAC in foods
has been studied. In this regard, the feasibility of HSI to mea-
sure TAC in wine grapes was reported (Chen et al. 2015). The
prediction based on SVR with 60 latent values obtained from
PLS with smoothed spectra had the highest prediction accu-
racy (R2

p = 0.9414, RMSEP = 0.0046 mg g−1) as compared to
PLS model (R2

p = 0.8407, RMSEP = 0.0129 mg g−1). In
another article, the feasibility of HSI for screening the
nonacylated and total anthocyanins on the intact red grape
during ripening was described (Hernández-Hierro et al.
2013). The MPLS models with fingerprint zones (950–1650
nm) demonstrated the potential of measuring both
nonacylated (R2

p = 0.86, SECV = 1.70 mg g–1) and total
anthocyanins (R2p = 0.86, SECV = 2.41 mg g–1). However,
the high correlation achieved between the compounds re-
vealed that it is not possible to verify whether the results of
HSI technique for measuring the composition nonacylated
anthocyanins were attributable to their real absorbance or the

relationship among nonacylated anthocyanins and total antho-
cyanins (Hernández-Hierro et al. 2013). Again, HSI was suc-
cessfully employed for quantitative determination (R2p = 0.92)
of TAC in lychee pericarp during storage of samples (Y.-C.
Yang et al. 2015). Wavelength selection technique, such as
successive projection algorithm (SPA) and stepwise regres-
sion (SWR), was applied to the spectral data. Based on select-
ed wavelengths by SWR (11 bands) and SAP (9 bands), RBF-
SVR model attained worse results for SPA-RBF-SVR (R2P =
0.672, RMSEP = 0.93 mg g−1) and SWR-RBF-SVR (R2

p =
0.712, RMSEP = 0.84 mg g−1) as compared with RBF-SVR
based on full-wavelength models (R2

p = 0.916, RMSEP =
0.51 mg g−1). This technique coupled with LS-SVM also
was efficiently (R2

p = 0.959, RMSE = 0.146 mg g−1)
employed for quantitative analysis of TAC in mulberry fruit
(Huang et al. 2017). Similar performance (R2

p = 0.866,
RMSECV = 0.32 mg g−1) was observed in the study conduct-
ed by Y. Liu et al. (2017). HSI technique was also successfully
employed for the determination of TAC in wine grape with
R2

p of 0.907 (Gomes et al. 2017).

Analysis of Individual Phenolic Compounds

Non-destructive measurement of individual phenolic, flavo-
noid, and anthocyanin has also been developed and the evi-
dence can be found in a number of the articles presented in this
work (Table 2).

NIR spectroscopy combined with chemometric was ap-
plied to analyze nine individual catechin, total catechin, and
gallic acid in green tea leaves. MPLS models presented high
reproducibility and sensitivity for detection of catechins in the
leaves of green tea, simultaneously improving its rapid and
cost-effective features (Lee et al. 2014). Cross-validation
models showed good correlations (R2p = 0.58–0.97) between
reference measurements and NIR estimates. Inarejos-García
et al. (2013) investigated the use of NIR (12,500–4000
cm−1) combined with chemometric for the determination of
several phenolic compounds in olive oil. Althoughmost of the
compounds showed satisfactory results, hydroxytyrosol and
tyrosols showed very low correlations, indicating that the
NIR technique could not be used for the quantitative analysis
of these minor compounds in olive oil (Table 2). The applica-
tion of NIR techniques combined with chemometrics for
assessing individual phenolic acid and flavonoid in food was
comprehensively demonstrated (Table 2). A comparison be-
tween the capability of NIR and HPLC methods suggested an
overall agreement between these two methodologies.
However, NIR has some advantages compared to HPLC.
For example, NIR is cost-effective and time-saving, and it
enables a substantial reduction in chemicals with minimal
sample preparation. Aleixandre-Tudo et al. (2018) employed
FT-NIR, FT-MIR, and FT-IR to monitor the main individual
phenolic compounds during wine fermentation. FT-NIR
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appeared to be the most accurate procedure to predict the
phenolic content. Although slightly less accurate models were
established, ATR-MIR and FT-IR can also be applied for the
prediction of the majority of phenolic compounds. While the
abovementioned publications demonstrated the potential of
NIR for measurement of specific bioactive compounds, some
authors recommended that its reliability needs to be further
modernized, expanded, and enhanced with more samples
(Ferrer-Gallego et al. 2011; Lee et al. 2014). Generally, FT-
NIR appears to be the most accurate to quantify the phenolic
compounds as compared with the other techniques.

FT-IR was employed for the prediction of various phenolic
acid in coffee beans (Table 2). Results provided evidence of
excellent performance for measurement of nine phenolic com-
pounds (R2p ˂ 0.92) for various chlorogenic acid isomers in
coffee beans (Liang et al. 2016). In this article, for the first
time, FT-IR was applied to the pure standard of chlorogenic
acid isomers in order to extract the fingerprint regions (1700–
1500, 1300–800 cm–1) to build PLS models and quantify in-
dividual chlorogenic acid isomer concentration in coffee
beans. FT-IR also was employed for screening the main
proanthocyanidins in chocolate (Hu et al. 2016). Chocolates
and the (+)-catechin standard were analyzed in the range of
4000–550 cm−1 and fingerprinting region (1800–700 cm−1)
was selected based on the targeted functional groups that ap-
peared in (+)-catechin region. The obtained PLS results (R2

p ˂
0.72) recommended the possible use of FT-IR for applications
in the food industry and commercial laboratories. Another FT-
IR application was established to predict individual anthocy-
anin in red grape must (Rasines-Perea et al. 2015). However,
the results showed the unsuitability of this technique for its
application in red grape musts (R2p = 0.46–00.66). Some FT-
IR investigations showed worse results and some components
were not detected (for example, vanillic, cinnamic, caffeic,
and p-coumaric acids) when used for quantification of low-
concentration compounds (Uncu and Ozen 2015). A compar-
ative analysis was carried out in order to validate the perfor-
mance of FT-IR and Raman techniques, as well as their com-
bination, in the determination of individual phenolic com-
pounds in honey. Generally, FT-IR and Raman methodologies
presented good results (R2p ˂ 0.99) (Tahir et al. 2017). In this
study, only samples of Sudanese honey varieties were present-
ed for examination. Therefore, a further study involving large
samples from different countries is needed before such
methods can be adopted by food, pharmaceutical, and apicul-
ture industries with confidence. Several anthocyanin concen-
trations of wine that were analyzed by MIR spectroscopy
showed acceptable prediction results (R2

val = 0.38–0.81), sug-
gesting that this technique could be used to screen the changes
of these compounds at different stages of the production pro-
cess and mainly aging (Sen et al. 2016). BP-ANN models
showed high performance (R2

p = 0.9679), and the average
relative error was 0.80%, which revealed the accuracy of the

projected method and provided a theoretical basis for the ap-
plications of HSI in non-destructive determination for interior
quality of soybean (Kezhu et al. 2014).

Analysis of Vitamins

Many studies have focused on the analysis of raw materials to
investigate their potential antioxidant activity over the past
three decades. However, in most of these studies, chlorophyll
had not been involved in the trials regardless of the fact that it
is the major pigment in nature (Lanfer-Marquez et al. 2005).
Blanco-Díaz et al. (2014) employed NIR combined withMLS
model to predict the chlorophylls in summer squash and
reached good prediction results (R2

p), where chlorophyll-a
was 0.66 and chlorophyll-b was 0.79. Furthermore, the feasi-
bility of NIR technique to quantify lycopene in carrot was
studied (Ding et al. 2016). The results indicated better perfor-
mance (Rp = 0.939), when radial basis function neural net-
works (RBF-NN) was applied to the NIR data. Nordey et al.
(2014) also conducted a feasibility study on the application of
portable NIR spectroscopy (350 to 2500 nm) coupled with
PLS model to measure various bioactive components (i.e.,
chlorophyll-a, chlorophyll-b, carotenoid) in mango peel sur-
face. The PLS models appeared to be very promising, partic-
ularly the ones achieved for the measurement of chlorophyll-a
and chlorophyll-b (R2p = 0.99). NIR data of summer squash
fruit flesh and skin were used to predict individual and total
carotenoids (Martínez-Valdivieso et al. 2014). This result
showed that NIR had good potential for the high-
performance monitoring of total carotenoids (R2

p = 0.95)
and in specific components such as lutein (R2

p = 0.96) and
β-carotene (R2

p = 0.81), indicating that NIR is a promising
tool for the non-destructive determination of carotenoid pro-
files. Also, the NIR technique with PLS modeling was used
for the prediction of carotenoid in honey and the results were
very promising (Rp = 0.96) (Tahir et al. 2016b). Furthermore,
the NIR technique was applied for the prediction of individual
carotenoid in tomato juice. Results revealed the satisfactory
performance of the projected method (R2

cv ˂ 0.75), for the
analysis of cis-lycopene diepoxide, lycoxanthin, zeaxanthin,
andβ-carotene in tomato juice sample (Deak et al. 2015). NIR
technique was also used to quantify β-carotene in mango fruit
and high accuracy (R2

p = 0.84, SECV = 16.55 retinol equiv-
alents 100 g−1) was achieved based on the MLR model
(Rungpichayapichet et al. 2015).

Tocopherol such as α-tocopherol, β-tocopherol, δ-tocoph-
erol, and γ-tocopherol and γ-tocotrienol is a form of vitamin
E and natural antioxidant with regulatory cellular and molec-
ular roles (Kim and Cho 2015; Žilić et al. 2016). NIR tech-
nique was also successfully (R2

p = 0.865) used for the deter-
mination of vitamin E in quinoa (Moncada et al. 2013). NIR
spectroscopy showed a high potential to analyze several to-
copherols in olive oil (Cayuela and García 2017). These
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authors compared the prediction results attained by NIR and
Vis-NIR range. Results achieved by the two acquisitions were
promising, particularly for α-tocopherol, γ-tocopherol, and
total tocopherols (Rp = 0.91) while β-tocopherol showed the
worse result (Rp = 0.41). Similarly, Inarejos-García et al.
(2013) showed that FT-NIR had lower (R = 0.14) prediction
results of β-tocopherol in olive oil.

Vitamin C (L-ascorbic acid) is an essential water-soluble
antioxidant originating from citrus and other fruits. It may be
a factor in cardiovascular, immune cell development, and iron
use function in human (Gallie 2013). Vibrational spectros-
copies were previously used for prediction of water-soluble
vitamins (Blanco et al. 1993; Wojciechowski et al. 1998; H.
Yang and Irudayaraj 2002). However, most of these studies
were performed in pharmaceutical products. Most recently,
NIR seems to be a promising technique for quantification of
ascorbic acid in foods. In many studies, the simple PLS and
MPLS models were feasible in the quantification of ascorbic
acid in cashew apple, guava nectar, and guava pulp using NIR
spectroscopy, producing high prediction (R2

p about 0.85 for
guava products and 0.84 for cashew fruit) (Alamar et al. 2016;
Caramês et al. 2017a). According to Andrianjaka-Camps et al.
(2015), the least square support vector machine (LS-SVM)
showed the feasibility of quantifying ascorbic acid in apple
using NIR spectroscopy. The results of the LS-SVM model
presented an accurate estimation of ascorbic acid in apple (R2

p

= 0.80). A similar result of LS-SVM (Rp = 0.83) was observed
when NIR was used for the prediction of ascorbic in orange
samples (Liu et al. 2015b). Additionally, this technique was
applied in the determination of ascorbic acid in summer
squash with R2p of 0.86 (Blanco-Díaz et al. 2014) and passion
fruit with Rp of 0.663 (Maniwara et al. 2014). The authors
attributed the lower calibration and prediction results to the
low concentration of ascorbic acid content and physical char-
acteristics of passion fruits such as a waxy pericarp and thick
mesocarp. A similar result (R2

p = 0.61) was observed in cab-
bage (Kramchote et al. 2014); this result was expected since
the ascorbic acid is not the main compound in cabbage. Beghi
et al. (2013) also investigated ascorbic acid in Stark Red
Delicious and Golden Delicious apple samples by portable
NIR technique (450–980 nm) combined with PLS.
However, the results revealed that NIR spectroscopy was not
effective for evaluation of ascorbic acid in apples. The lower
prediction results (R2

cv = 0.40) in Stark Red Delicious could
be justified by a very low concentration of this component in
this cultivar. FT-NIR, FT-MIR, and FT-IR were used compar-
atively for prediction of ascorbic acid in pomegranate juice
(Arendse et al. 2018). The result of FT-NIR technique was
very promising for quantifying ascorbic acid (R2p = 0.709).
Similar findings were achieved from the application of NIR by
integrating sphere as an acquisition method, which enabled
the prediction of ascorbic acid in pomegranate with high ac-
curacy as presented in Table 2. Quantification of ascorbic acid

concentration in raspberry puree using FT-IR was conducted
by Andrianjaka-Camps et al. (2015), who found that Si-PLS
model was far more accurate (R2p = 0.94) in the determination
of ascorbic than those reported using NIR spectroscopy. A
comparative study was conducted in order to measure the
feasibility of NIR and MIR techniques in the determination
of carotenoids in passion fruit. Overall, NIR slightly showed
high performance (R2cv = 0.56, RMSECV = 0.04mg g−1) than
MIR spectroscopy (R2

cv = 0.772, RMSECV = 0.045.
However, both techniques presented low prediction results
and the authors attributed that to the low concentration of
carotenoid in passion fruit (G. A. de Oliveira et al. 2014).

Carotenoid is considered to be an effective bioactive com-
ponent and may have protected cells against oxidative damage
and, potentially, reduce the risk of cancer particularly prostate
cancer (Martí et al. 2016). Indeed, lycopene is the main carot-
enoid determined in tomatoes, constituting about 80–90% of
the total pigment contents (Rizk et al. 2014). In the case of
Raman spectroscopy, different Raman zones (i.e., 200–2000,
300–1900, 900–1650, 1100–1600 cm−1) with PLS were used
to quantify lycopene in tomato fruits (Fu et al. 2016).
However, all PLS models failed to quantify lycopene content
accurately with the lower prediction (Rp = 0.57) and high
prediction error (SEP = 14.2 μg g−1). The authors, therefore,
attributed the poor results to heterogeneous samples and poor
laser power (Fu et al. 2016). In another study, Krähmer et al.
(2016) compared the effect of various pretreatment methods
on the different FT-Raman spectral range to quantify individ-
ual and total carotenoids in carrots with high predictions (R2

p

˂ 0.80). Similar prediction result (R2
p about 0.85) was ob-

served from the application of Raman for determination of
total carotenoid in the carrot (Lawaetz et al. 2016). Recently,
Raman spectroscopy together with PLS model for carotenoid
determination in processed sweet potato was studied (Sebben
et al. 2018). The prediction results for the sample treated with
hot air was R2p = 0.90 and by microwave was R2

p = 0.88.
Although Raman technique showed great potential for quan-
titative analysis of this compound, satisfactory reproducibility
of Raman predictions relies on the features of the sample and
its condition after processing. For instances, sample dried
using microwave showed higher prediction, although
RMSEC of these groups was higher than samples of hot air
samples. From the abovementioned studies, food and pharma-
ceutical industries can practically make use of these vibration-
al spectroscopies which are not laborious but cost-efficient in
the analysis of vitamins.

Analysis of Volatile Compounds

Good functional food must provide both nutrient-specific
health-promoting functionality and satisfactory sensory char-
acteristic to meet consumer requirements (Sun-Waterhouse
and Wadhwa 2013). Recently, the NIR technique was
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investigated for the determination of the aroma compounds in
white wines during different stages of storage (Genisheva
et al. 2018). For extraction of the useful information, PCA
was applied and PLS models were used for the quantification
of the volatile compounds. The derived models using NIR
data and PLS presented high predictions (R2

p ≤ 0.95) and
can be used for other types of wine or even to the entire food
field. Musty taint odor is unpleasant organoleptic defects in
wines and it is a serious problem in winemaking worldwide
(Apostolou et al. 2014). In this regard, the NIR technique was
used to screen haloanisoles and halophenols accountable for
musty taint defect in barrel aged red wines. From the results,
the prediction of haloanisoles and halophenols using GC-MS
and NIR together with PLS model was good (R2p about 0.80).
The authors concluded that these compounds can be moni-
tored rapidly and simply by this technique (Garde-Cerdán
et al. 2012). However, the prediction errors achieved were
below the sensory threshold standards described for these
compounds, making this method unsuitable (dos Santos
et al. 2017). The major aroma compounds of lavandin and
lavender oils were investigated using NIR spectroscopy
(Table 3). Apparently, the correlation coefficients (R2

p =
0.97) obtained from the PLS regression were satisfactory
(Lafhal et al. 2016). In addition, the results indicated that this
technique might be applied to other oils commonly used in
medicine and other fields. Furthermore, NIR was used for the
determination of low concentrations of aroma compounds in
olive oil (Inarejos-García et al. 2013). However, poor correla-
tions were observed for some components such as E-2-
hexenal (Rp = 0.42) and C6 aldehydes (Rp = 0.43).

NIR with remote fiber-optic reflectance probe to analyze
volatile compounds in cheeses (González-Martín et al. 2014).
The calibration models developed using 67–72 samples of
cheese had a correlation coefficient (R2) between 0.600 for
the 3-methyl-1-butanol and 0.903 for the 2-nonanone. In this
study, the robustness of the MPLS models was confirmed by
applying it to 20 new samples of different compositions and
ripening times, which did not belong to the calibration set. The
results of that study showed that NIR was similar to those of
the purge-and-trap gas chromatography-mass spectrometry
(Table 3). Measurement of aromatic plant terpenoid content
is an important issue in many aspects. Results from Ercioglu
et al. (2018) summarized in Table 3 showed that NIR can be
used to predict terpenoid profile in plants with high coefficient
of determination (R2) values in the range of 0.953–0.997.
These results demonstrated that NIR could provide worthy
information with respect to aromatic plant authentication, im-
purity, and chemotypes in consideration of a variety of terpe-
noid compounds. Spectroscopic investigations have been
established for FT-NIR to monitor the off-flavors in olive oil
(Inarejos-García et al. 2013). The results showed that FT-NIR
is a powerful technique that allows rapid monitoring of
cornicabra virgin olive oil samples to determine their volatile

profile and thus their quality and commercial grade. The vol-
atile compounds were well correlated with the FT-NIR spectra
in the case of C6 alcohols (r = 0.69–0.80), accountable for the
green sensory notes in high-quality cornicabra virgin olive
oils. Although the FT-NIR showed promising results, further
research is required by sampling various varieties of olive oils
from different geographical areas before applying FT-NIR for
screening the flavor of olive oils in the food industry. A similar
trend was found when the NIR technique was used to monitor
the alcohol strength during fermentation of apple wine (Peng
et al. 2016).

Most recently, a comparative study was conducted in order
to assess the potential of using NIR, MIR, and Raman tech-
niques for determination of alcoholic strength in wine
(Teixeira dos Santos et al. 2018). Overall, MIR technique
revealed an excellent performance in the establishment of cal-
ibration models for the determination of alcoholic strength in
white wine (Table 3).

FT-Raman was used to predict natural pesticides (e.g., an-
tifungal) in carrot including falcarinol, falcarindiol, and 3-O-
acetylfalcarindiol (Krähmer et al. 2016). The results showed
that FT-Raman could be used for quantitative analysis of
falcarindiol while falcarinol and 3-O-acetylfalcarindiol
models can be used for screening purpose. Although the
NIR and Raman showed great potential for prediction of vol-
atile compounds in the oils, wine, cheese, and aromatic plant,
future investigations are required to demonstrate the feasibility
of their applications in industrial settings.

Technical Challenges and Future Trends

Advances in IR, Raman, and HSI techniques have presented
enormous opportunities for the research community, pharma-
ceutical, and food industries to establish rapid, non-destructive
analytical, and environmental-friendly methods for food bio-
active materials and aroma inspection. Based on these no-
preparation and chemical-free assessment methodologies,
the analysis time can be reduced and the errors arising during
the extraction of the bioactive active or aroma compounds can
also be decreased. Concerning all of the environmentally
friendly technologies reviewed and discussed in this article,
there are still some issues that impede the adaptation of the
latest scientific research achievement obtained in a laboratory
level to industrial implementations. These include (a) require-
ment for specific mathematics knowledge to perform this task;
(b) building appropriate preprocessing method to reduce the
influence of physical impacts on raw spectral data; (c) estab-
lishing state-of-the-art spectral analysis procedures capable of
filtering useless information; (d) manipulating proper chemo-
metric approaches for enhancing the model accuracy for si-
multaneous implementations; and (e) reducing the price of the
technologies. Then, the chemical properties of functional
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groups of foods presented in the spectra will be used for quan-
titative analysis of biologically active materials and aroma
compounds effectively. Thus, the food and nutraceutical in-
dustries can practically take advantage of the opportunity to
implement these non-destructive approaches without labori-
ous and inefficient chemical assays and thus prominently im-
prove the monitoring quality and biologically active material
in foods. A previous study (Aleixandre-Tudo et al. 2019)
showed NIR had achieved success in measuring of phenolic
compound in whole and crushed berries that are transported
on a moving conveyor belt. Thus, future work should focus on
enhancing the efficiency of previously presented algorithms,
which may increase the prediction accuracy of the model. To
some extent, the application of vibrational spectroscopies in
volatile compounds analysis is still not at a mature stage and a
limited number of studies have been published. Thus, further
study is expected to establish useful algorithms existing in
other fields for their applications in aromatic compound
detection.

Conclusions

The recent publications in the field of vibrational spec-
troscopy indicated that NIR, FT-IR, and Raman could
provide accurate measurement for bioactive and volatile
compounds of various foods. Obviously, not only is the
application of vibrational spectroscopy to analyze biolog-
ical active materials and aromatic compounds limited to
laboratory application but also, in some cases, online
measurement has been reported. However, the frequencies
of application of vibrational spectroscopies to determine
biological active material and aroma profile were varied
greatly. Figure 4 indicated the number of published arti-
cles on applying various vibrational spectroscopies for
determinations of various bioactive and volatile com-
pounds in food during the period of July 2011 to
January 2019. It is obvious from this figure that NIR
was more used for determination of bioactive compounds
and volatile compounds followed by FT-IR techniques.
Although Raman and HSI techniques were fewer applica-
tions in this field, an increasing number of research works
in the past few years have demonstrated their application
for measurement of bioactive compounds in food. This
article shows that infrared spectroscopy, Raman, and
HSI techniques are now convenient approaches to evalu-
ate the maturity and antioxidants, and able to characterize
raw and processed foods, and monitor products during
storage and processing.
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