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Abstract
Bananito (Musa acuminata, AA) fruit in three maturity stages (stages 2, 4 and 6) were investigated in this study. Correlation
analysis was conducted between fruit firmness, soluble solids content (SSC) and several colour parameters. Point-measured
spectroscopy (Vis-point) and spatial-measured hyperspectral imaging (Vis-HSI) were applied to collect visible spectra (400–740
nm) from the fruit peel. Three classification methods, k-nearest neighbour (k-NN), soft independence modelling of class analogy
(SIMCA) and partial least square discriminate analysis (PLSDA), were applied for maturity stage classification. Results showed
that a strong correlation was found between SSC and peel yellowness index (r = 0.92). Ripeness classification models developed
using Vis-HSI data performed better than using Vis-point data. The best model based on PLSDA achieved a total correct
classification rate of 93.3%. A simplified PLSDAmodel established on three wavelengths (650 nm, 705 nm and 740 nm) derived
from the regression vector provided an equivalent model performance. This study demonstrated the use of hyperspectral imaging
for accurate and non-destructive ripeness classification of bananito fruit based on the visible peel spectra, and the potential of
using the three feature wavelengths to develop a multispectral imaging system for industrial application.
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Introduction

Banana is generally cultivated in tropical and subtropical areas
in over 130 countries around the world (Mohapatra et al.
2011). It is a popular fruit in people’s “five a day” menu in
many European countries, where the consumption of at least
five servings of fruits and vegetables per day is encouraged.
Bananito (Musa acuminata, AA), also called baby-banana or
mini-banana, has a smaller fruit size compared to normal ba-
nanas. It provides all nutrients that the conventional bananas
have, but in an intense, sweeter and creamy flavour (Li et al.
2006). In addition, the bananito fruit is easy to digest
(FreshPlaza 2018) which is a distinction to normal bananas.

As a result, the exotic bananito fruits are very welcomed by
the people who live outside the cultivated regions.

The ripeness level of banana fruit is vitally important for
fruit transportation and storage, quality control and market-
ability (Li et al. 2011). Conventionally, bananas maturity
stages are mainly determined by the following methods: (1)
visually evaluating the whole-fruit colour and comparing the
colour with a standard colour chart (Hashim et al. 2012;
Pathare et al. 2013); (2) measuring fruit firmness using a pen-
etrometer; (3) or measuring some components such as the
pulp to peel ratio, soluble solid content, titratable acidity and
starch pattern (Robinson and Saúco 2010). These strategies
are based on the evaluation of the apparent colour, texture or
other chemical properties that are associated with fruit ripen-
ing. However, the determination procedure is subjective (vi-
sual evaluation), or time-consuming and sample-destructive,
which is not practical for widespread industrial application.

In recent few decades, several non-invasive techniques
have been applied to bananas’ quality attribute prediction,
maturity stage classification and disease identification. For
example, the use of colourimeters for monitoring colour
changes during storage (Kajuna et al. 1998) and predicting
textural attributes of bananas (Jaiswal et al. 2014), the use of
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electronic nose (Eduard et al. 1999) or gas sensors (Steffens
et al. 2010) to analyse the volatile components emitted from
banana fruits for ripeness stages determination and the use of
RGB images captured by a computer vision system (Mendoza
and Aguilera 2004; Sanaeifar et al. 2016; Surya Prabha and
Satheesh Kumar 2015) for prediction of bananas’ maturity
stages and some quality indices (i.e. firmness, total soluble
solids, pH). Chilling injury occurred on bananas could be
inspected by laser-induced backscattering (Hashim et al.
2013) and senescent spotting symptoms can be detected by
the use of fractal texture analysis on banana images (Quevedo
et al. 2008). Due to physicochemical changes taking place in
the fruit during ripening that will bring variations to corre-
sponding spectra, the spectroscopic technology is useful in
the determination of banana quality attributes and maturity
stages (Zude 2003; Davey et al. 2009; Liew and Lau 2012).

Among the above-mentioned non-destructive methods, the
spectroscopic technique gained great attention in industry be-
cause the instrument is easy-operating and cost-effective, with
capabilities in fast and accurate determination of a variety of
agri-food products (Rambo et al. 2016; Liu et al. 2011;
Magwaza et al. 2012; Cortés et al. 2017, 2019). In recent
decades, hyperspectral imaging (HSI) technique has emerged
as an attractive non-contact process analytical tool for agri-
food quality evaluation (Wang et al. 2015a; Pu et al. 2015; Liu
et al. 2017, 2018; Ma et al. 2017, 2018; Pan et al. 2018; Cheng
et al. 2016a, 2016b, 2017, 2018; Dai et al. 2016), as the com-
bination of computer vision (Du and Sun 2005; Jackman et al.
2011; Sun and Brosnan 2003; Wang and Sun 2003; Zheng et
al. 2006) and spectroscopy (Morsy and Sun 2013; He and Sun
2015; Wang et al. 2017a, 2017b; Xu et al. 2015) in the HSI
system provides spectral and spatial information of target
objects in one scan. For banana fruit, Rajkumar et al. (2012)
proposed the use of line-scanned hyperspectral imaging in
visible and NIR regions (400–1000 nm) for some quality at-
tributes prediction and maturity stages determination.
Multiple linear regression models developed on the selected
wavelengths yielded good performance (R2 > 0.85) for firm-
ness, moisture content and total soluble solids prediction.
Correlations between each quality attribute and the maturity
stage at different temperature have also been investigated.
Wang et al. (2015b) studied the potential of using reflectance
hyperspectral imaging (400–1100 nm) for banana shelf-life
prediction in terms of different browning levels. By combin-
ing image features extracted from principal component anal-
ysis (PCA) and the average spectra, a classification model
based on back-propagation neural network algorithm
achieved the best performance for shelf-life prediction.

The distinction between bananito fruit and banana fruit is
obvious in terms of texture (i.e. firmness) and sweetness (i.e.
soluble solids content). Though many investigations have re-
ported the quality changes of conventional banana fruit during
ripening process, as well as the application of spectroscopic

and imaging techniques for maturity stages determination,
there is a lack of knowledge in understanding the quality evo-
lution of bananito fruit (Musa acuminata, AA) during ripen-
ing. Furthermore, a comparison of the performance between
spectroscopy and HSI techniques on bananitos ripeness pre-
diction has never been made. The current study applied hand-
hold spectrometer and desktop hyperspectral imaging to cap-
ture visible spectral information from bananito fruits, with the
objectives of (1) understanding the changes of fruit colour,
soluble solids content and firmness of bananito fruit when it
ripens, (2) investigating the correlation between fruit firmness,
soluble solids content and several colour parameters, (3) com-
paring classification performance of spectrometer and
hyperspectral imaging for bananitos ripeness stage.

Materials and Methods

Fruit Samples

Bananito fruit (Musa acuminata (AA), c.v. Pisang mas, origi-
nates from Colombia) at maturity stage 2, stage 4 and stage 6
were kindly supplied by a fruit company (AL.MA s.r.l.) in
Milan, Italy. The maturity stages were defined by visually
inspecting the whole-fruit skin colour, using a bananito ripeness
chart provided by the fruit supplier as a reference. This classifi-
cation is similar to the ripeness chart that is commercially used
for banana fruit (USDA 2001). The weight (whole-fruit) and
diameter (measured in the central part of the fruit) of all bananito
fruits were determined, and results are presented in Table 1.

Instruments and Spectra Acquisition

A portable spectrophotometer (CM-2600d, Konica Minolta,
Inc., Japan) covering spectral region of 360–740 nm was used
to collect the point-measured reflectance spectra from
bananitos peel. This instrument contains a diffused illumina-
tion system (D65, 2° standard observer) with an integrating
sphere size of 52 mm in diameter. The spectral separation
device is diffraction grating, and the measuring window is
6 mm in diameter. The spectrophotometer measurements were
carried out on three different spots (stalk-end, middle part and

Table 1 Details of bananito samples in three maturity groups

Ripeness stages 2 4 6

No. of fruits 30 26 34

Diameter (mm) 22.51 ± 1.19 22.57 ± 1.21 23.03 ± 1.48

Weight (g) 47.00 ± 6.26 48.90 ± 5.31 48.64 ± 7.07

The diameter and weight data are presented as “mean ± standard devia-
tion” for each ripeness stage
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tip-end) on each side of a fruit. As a result, a total of six
measurements per fruit were collected.

A desktop hyperspectral imaging system (DV S.r.l., Padova,
Italy) was employed to simultaneously acquire spatial and spec-
tral data from bananitos peel. The HSI systemmainly consists of
a CCD camera (avA 1000-100gm, Basler AG, Germany), a
spectrograph (V10H, Spectral Imaging Ltd., Finland) providing
spectral information from 400 to 1000 nm with a resolution of
5 nm and a cylindrical diffuser equipped with 150 W halogen
lights. Hyperspectral images were taken in a dark room to avoid
interference from external lights. Both sides of whole-fruits were
scanned. The two instruments were carefully calibrated before
data acquisition. The spectrometer is calibrated using a white
calibration plate provided by the supplier. The HSI system is
calibrated by a white and a dark reference image as detailed in
the paper of Gowen et al. (2009).

Colour Measurement

Spectral data of bananitos peel was analysed by the spectropho-
tometer and transformed in L*, a*, b* colour parameters
(Mclaren 1976). L* represents lightness and ranges from 0
(black) to 100 (white). The chromaticity coordinate a* gives
the range of green (−a*) and red (+a*) colour, while b* indicates
the blue (−b*) and yellow (+b*) colour.Chroma (saturation) and
hue angle (hue, in radians) can be calculated as:

Chroma ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a*ð Þ2 þ b*
� �22

q

ð1Þ
hue ¼ tan−1 b*=a*

� � ð2Þ

The calculation result of hue from Eq. (2) was transformed
to degrees (h°) and used in the study. By transforming L*a*b*
colour into XYZ colorimetric space, yellowness index (YI)
(ASTM 1988) of bananito peel can be calculated using Eq. (3).

YI ¼ 100 1:28X−1:06Zð Þ½ �=Y ð3Þ

Firmness and SSC Measurement

Two internal quality indices (firmness and soluble solid con-
tent) of each sample were determined in the study. Firmness
measurement was conducted using an InstronUniversal Testing
Machine (Model 4301, Instron Ltd., UK, software Bluehill
2.35) equipped with a cylindrical flat test probe (Ø 6.5 mm,
cross head speed 200 mm/min). After peel removal, flesh firm-
ness was measured on the middle part of the fruit. The testing
machine evaluated the maximum force needed to penetrate the
fruit to 8 mm. Bananito fruits were then cut crosswise in two
halves and frozen. SSC analysis was carried out on each half:
5 g of frozen flesh was diluted with milliQ water (1:3w/w). The
mixture was blended for 30 s (T10 Ultra-Turrax®, IKA, DE)
and then centrifuged (6000×g, 4 °C, 10 s) (Blankenship et al.

1993). A drop of the supernatant was assessed for SSC (two
readings per each bananito half) by means of a refractometer
(RFM 81, Bellingham+FFvalues (%) were averaged per fruit.

Data Processing

Statistical Analysis

Statistical analysis including analysis of variance (ANOVA),
post hoc analysis based on Bonferroni test and correlation
analysis between firmness, SSC and all the colour parameters
were conducted in Statgraphics 5.1 software (Statpoint
Technologies, Inc., USA).

Extracting Spectrometer and HSI Data

Mean Spectrum Extraction For the spectrometer data, a mean-
spectrum was used to represent each bananito sample by aver-
aging all spectra collected from the six different locations. For
the HSI data, the process of extracting mean-spectrum for each
bananito whole-fruit is shown in Fig. 1. After hyperspectral
image acquisition, a region of interest (ROI) was selected by
removing both ends (tip-end and stalk-end) from the whole-
fruit. Background removal was performed on the image at
wavelength 695 nm using simple thresholding method (Pu
and Sun 2016). The mean-spectrum was then calculated by
averaging all pixel-spectra that belonged to the sample. Since
the two sides of a whole-fruit were scanned, the two mean-
spectrum obtained from both sides were averaged to get a final
mean-spectrum that can represent a whole-fruit sample.

Fig. 1 Extraction of mean-spectra from hyperspectral imaging data
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Trim Spectral Region and Interpolation The spectral region
and resolution covered by the spectrometer (range, 360–740
nm; resolution, 10 nm; no. of wavelengths, 39) and the
hyperspectral imaging system (range, 400–1000 nm; resolu-
tion, 5 nm; no. of wavelengths, 121) were different. To com-
pare classification and prediction results in a fair way, we
trimmed the spectral regions into the same range. In the study,
the 400–740 nm region was covered by the two instruments,
thus, this region was considered as a common spectral region.
The spectra obtained by the spectrometer were interpolated to
have the same spectral resolution as the HSI system (5 nm).
Thus, the spectra from both instruments were in consistency,
with spectral range of 400–740 nm, spectral resolution of 5
nm, and wavelengths numbers of 69. Results of spectral trim-
ming and interpolation are shown in Fig. 2 a and b.

Data Set Splitting The ninety bananito fruits at three different
maturity stages (stages 2, 4 and 6) were divided into calibra-
tion set (two-third of the total fruits) and validation set (one-
third of the total fruits). To make sure that samples in calibra-
tion and validation set were well represented (both datasets
had a similar proportion of fruits in three maturity stages), all
fruits were firstly labelled and put in order, namely fruit no. 1–
30 were in stage 2, fruit no. 31–56 were in stage 4 and fruit no.
57–90 were in stage 6. Then, the fruits with a number of 3*n
(n = 1, 2, … , 30) were selected into validation set and the
remaining fruits were in calibration set. Thus, in the calibra-
tion set, there were 20, 17 and 23 fruits in maturity stage 2, 4
and 6, respectively, and in the validation set, there were 10, 9
and 11 fruits in maturity stages 2, 4 and 6, respectively.

Multivariate Data Analysis

Spectral pre-processing and multivariate modelling were per-
formed using PLS_toolbox 8.2 (Eigenvector Research, Inc.,
USA) and Matlab 2015a (The Math Works, Inc. USA).

Spectral Pre-processing The obtained spectra after trimming
and interpolation were pre-treated with standard normal variate
(SNV) in combination with mean-centring before any multivar-
iate models were built. The selection of the pre-processing

approaches was based on a preliminary investigation by trying
different pre-processing methods to build a classification model.

Principal Component Analysis As a preliminary analytical ap-
proach, principal component analysis (PCA) was applied to
90 samples in order to investigate their relationships with dif-
ferent maturity stages. PCA finds orthogonal variables called
principal components (PCs) to explain data variance. Each PC
is a linear combination of the original variables. Since the first
few PCs capture the most significant information in the data,
PCA has been proved to be an effective method for data ex-
ploration and data reduction in spectroscopic analysis
(Ravikanth et al. 2017).

Ripeness Classification Three supervised classification
methods, namely soft independent modelling by class analogy
(SIMCA), partial least square discrimination analysis (PLSDA)
and k-nearest neighbour (k-NN) were applied in the study to
classify bananitos maturity stages. SIMCA (Wold and Sjöström
1977) is a classifier based on PCA analysis. For each maturity
stage in the calibration set, an individual PCA model was de-
veloped with selection of an optimal number of PCs by cross-
validation (Djuris et al. 2013). The number of PCs in each PCA
model can be different. When all three classes were modelled, a
SIMCA classification model was generated by assembling all
PCA models. The class membership was determined by
projecting validation samples to each PCA model and calculat-
ing their orthogonal distances (Tominaga 1999). PLSDA
(Brereton and Lloyd 2014) is a linear classification method
based on partial least square (PLS) algorithm, where the depen-
dant y-responses are replaced with the class category. PLSDA
analysis provides an average percentage of classification error
for all classes during calibration and cross-validation; this in-
formation was used for selecting the optimal number of latent
variables (LVs). Unlike SIMCA and PLSDA, k-NN (Cover and
Hart 1967) is a non-parametric classification method. The class
membership of an unknown sample was determined by its k-
nearest neighbours in the calibration set. The nearest neighbour
to the unknown sample is the sample that has the smallest
Euclidean distance. The class membership of an unknown sam-
ple is decided by the majority class that its k-nearest neighbours

Fig. 2 Spectral trimming and
interpolation. a The 90 raw mean-
spectra from bananito peel; b the
data-points before and after
interpolation
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have. Therefore, k-NN classification result might be influenced
by the choice of k.

Wavelength Selection Methods Two methods were applied
in the study to select feather wavelengths to optimise the
model. One method is based on regression vector (RV) and
the other is based on variable importance in projection
(VIP) scores. In a PLS-based model, the regression coeffi-
cients in the regression vector (B) indicates how much the
spectral variables (X) will influence the measured re-
sponses (Y), as described below:

Y ¼ X*Bþ E ð4Þ

where E is the model residual.
For the RV method, a wavelength that has a large regres-

sion coefficient (absolute value) is regarded as significant to
the measured responses Y, thus, this wavelenght can be con-
sidered as an important wavelength.

For the VIP scores method, the VIP value of each wave-
length specifies the importance (score) of each wavelength/
variable in modelling for both X predictors and Y responses
(Svante and Eriksson 2001). It can be calculated using the
equation provided in the paper of Lu et al. (2014). The
threshold value of the VIP score for important wavelengths
selection is generally set at 1, since the mean of the squared
VIP scores is equal to 1 (Chong and Jun 2005).

Classification Rule and Model Performance Cross-validation
was performed using venetian blinds (7 splits) when
modelling. To classify each sample in the prediction
set, the probability of each sample being inside each
class was calculated in the PLS_toolbox software.
Classification rule used in the study was based on “class
predicted most probable”, meaning that a sample was
assigned to a class that has the largest probability value.
In this case, each sample was assigned to one class.

Classification performance of three classifiers was evaluat-
ed by total correct classification rate (TCC%), it can be calcu-
lated by Eq. 5.

TCC %ð Þ ¼ N c

N total
� 100 ð5Þ

where Nc represents the number of samples being correctly
classified and Ntotal indicates the total number of samples in
the prediction set.

Results and Discussion

Changes of Firmness, SSC and Colour

Table 2 shows the changes of bananito flesh firmness,
SSC and peel colour that were related with ripeness
stage. The mean value of flesh firmness for maturity
stages 2, 4 and 6 fruits were 15.26 N, 10.81 N and
5.10 N, respectively, showing that flesh firmness de-
creased with an increase in maturity level. In contrast,
soluble solids content of bananito flesh increased with
increasing ripeness stage. The mean value of SSC in
the flesh increased from 7.53 to 17.94% when fruit
changed from stage 2 to stage 6. The loss of mechanical
resistance and the increase in soluble solids content dur-
ing ripening process is generally associated with the ac-
tivity of ripening-related enzymes such as amylase,
pectinase and cellulase. During fruit ripening, the
primarily-stored starch is hydrolysed to small molecules
such as sucrose, fructose and glucose, leading to a reduc-
tion in starch content and to an increase in total soluble
solids (Garcia and Lajolo 1988). The pectinase present in
the cell wall is responsible for the degradation of pectins,
which, in turn, leads to a softer texture in banana fruits
(Smith et al. 1990). The riper the fruit is, the softer the
texture would be.

Table 2 Changes of firmness,
SSC and colour parameters in
bananito fruit of different maturity
stages

Maturity stage

2 4 6

Internal quality Firmness (N) 15.16 ± 7.24c 10.81 ± 6.56b 5.10 ± 1.54a

SSC (%) 7.53 ± 2.35a 9.88 ± 4.19b 17.94 ± 1.17c

Peel colour L* 64.10 ± 1.16a 65.37 ± 2.04a 70.99 ± 4.39b

a* − 13.68 ± 1.01a − 11.53 ± 3.79b 3.05 ± 3.71c

b* 35.14 ± 1.17a 36.21 ± 2.87a 43.97 ± 4.20b

Chroma 37.79 ± 1.12a 38.27 ± 2.56a 44.28 ± 4.10b

h° 111.29 ± 1.61c 107.70 ± 6.11b 85.91 ± 5.03a

YI 43.90 ± 1.01a 45.12 ± 2.52a 54.08 ± 2.03b

The data is presented as “mean ± standard deviation” for each maturity stage. Mean values in the same row with
different subscript letters “a, b, c” are significantly different (p < 0.05) based on Bonferroni post hoc test
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In terms of colour changes when fruit ripens, peel colour
a* (green-red) had a significant increase frommaturity stage 2
to stage 6. For example, unripe bananitos at maturity stage 2
had a negative a* value (a* = − 13.68), indicating the green-
ness of the peel colour; while ripe bananitos at maturity stage
6 showed a positive a* value (a* = 3.05), indicating the
disappearance of greenness due to chlorophyll decomposi-
tion. The peel hue angle showed a significant and decreasing
trend, with h° values changed from 111.3 (stage 2 fruit) to
85.9 (stage 6 fruit), revealing a change of the peel hue from
green to yellow. It was noted that there was no statistical
difference between stage 2 and stage 4 fruit in the peel colour
parameters of L*, b*, Chroma and YI, however, the difference
between fruits at stage 6 and the other maturity stages (2 and
4) was significantly different. The changing trend of the peel
colour L* and a* showed by bananito fruit (cv. Pisangmas) in
this study was in agreement with the findings of Sanaeifar
et al. (2016) on conventional banana (cv. Cavendish).
However, the a* value of the Cavendish banana fruit ranged
from − 30 to 0, which was lower than the a* value of bananito
fruit (ranged from − 13.68 to 3.05).

Correlations Between Firmness, SSC and Colour
Features

The correlation coefficients (r) between firmness, SSC
and several peel colour parameters are shown in
Table 3. When comparing the correlation coefficients of
firmness or SSC to all colour parameters, it was observed
that SSC had a higher r values, indicating that this ma-
turity index has a closer connection with fruit colour.
Sanaeifar et al. (2016) studied the correlation between
peel colour (L*, a* and b*) and SSC and firmness in
bananas (cv. Cavendish), showing similar results.
Among all correlation coefficients that were statistically
significant, the highest r value was found between SSC
and peel YI (r = 0.92), indicating the strongest relation-
ship between them and the potential of using peel
yellowness index to estimate SSC. Other peel colour pa-
rameters (L*, a*, b*, Chroma and h°) had a slightly
lower correlation to SSC when compared with peel YI,

with r equal to 0.72, 0.87, 0.82, 0.75 and − 0.89,
respectively.

Spectral Profiles of Bananito Fruit

Mean spectra (in common wavelength range of 400–740 nm)
extracted from bananito fruits using spectrometer (Vis-point)
and hyperspectral imaging (Vis-HSI) were investigated.
Figure 3 shows the visible reflectance spectra collected from
the bananito peel. When comparing raw peel spectra of Vis-
point (Fig. 3a) and Vis-HSI (Fig. 3d), it was observed that the
spectral profile showed a similar variation trend, and these
spectral changes were in line with the study of conventional
banana (Rajkumar et al. 2012). Take Vis-point spectra, for
example the main spectral variation among the three groups
of bananitos took place in the wavelength region of 540–740
nm. An obvious and relatively broad absorption band in
bananito peel was found at around 675 nm, which is associ-
ated with chlorophyll (Li et al. 1997). Since spectroscopy is a
quantitative analytical method, the reflectance intensity of
spectral signal was related to the concentration of chlorophyll
content presented in fruit skin. The degradation of chlorophyll
in bananito peel during fruit maturation resulted in a pro-
nounced reduction in spectral absorbance at 675 nm. As
shown in Fig. 3 a, the reflectance intensity of bananito fruits
of stage 2 was much smaller than that of stage 6 fruits, while
the reflectance intensity of stage 4 fruits was in between stages
2 and 6. Dispersion in the Vis-point and Vis-HSI spectra was
observed; however, the scattering effect in Vis-point spectra
was larger than that in Vis-HSI. Since the mean spectra of Vis-
point was obtained by averaging the spectra from six small
areas on the peel, while the mean spectra of Vis-HSI was
obtained by averaging all pixel spectra from whole fruit (ex-
cept both ends), the scattering effect in Vis-HSI spectra might
be averaged-out by including more variations from the sam-
ple. By use of SNV spectral pre-processing, undesired scatter-
ing effects were significantly reduced in the two sets of spec-
tra, as displayed in Fig. 3 b and e.

PCA analysis was conducted for bananito peel spectra to
explore and visualize their trends based on full wavelength
spectra. With the application of SNV and mean-centring be-
fore PCA, the scores plots of Vis-point and Vis-HSI data were
shown in Fig. 3 c and f, respectively. PCA scores plot shows
the position of each bananito fruit in the determined PC1–PC2
space. Spectra that had similar spectral characteristics were
close to each other. For Vis-point bananito peel data, the first
PC (PC1) accounted for the greatest variance (95.44%) pre-
sented in the data, while the second PC (PC2) which was
orthogonal to PC1 explained 3.76% of data variance.
Similarly, for Vis-HSI data, the PC1 and PC2 accounted for
93.97% and 5.45% of data variance, respectively. In summary,
the first two PCs in Vis-point and Vis-HSI captured over 99%
of total variance in the data, demonstrating the capability of

Table 3 Correlation coefficients (r) between firmness, SSC and colour
parameters

Peel colour

L* a* b* Chroma h° YI

Firmness − 0.47 − 0.58 − 0.57 − 0.51 0.61 − 0.63

SSC 0.72 0.87 0.82 0.75 − 0.89 0.92

Correlation coefficients shown in the above table are at significant level of
p < 0.001
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PCA in dimension reduction. It was clearly shown in the
scores plot that application of PCA yielded a distinct separa-
tion between bananito fruits in ripeness stage 2 and stage 6.
However, a part of stage 4 samples was overlapped with stage
2 samples, which illustrated that the use of PCAwas not suf-
ficient for bananitos maturity stage classification and more
complex supervised classification methods should be applied
to improve classification accuracy.

Comparison of Classification Models

Three classification models, namely k-NN, SIMCA and
PLSDA, were developed based on the full visible wave-
lengths of fruit samples in the calibration set (60 fruits in
total). Cross validation was carried out in the calibration
set using “venetian blinds” method that splits the data into
7 subsets. Selections of the optimal k value in k-NN, the

Fig. 3 Spectral profile and PCA analysis result of bananito fruit collected from spectrometer (Vis-point) and hyperspectral imaging (Vis-HSI)

Table 4 Ripeness classification result in the prediction set based on three classification models (TCC total correct classification)

Model Data Confusion matrix in prediction set No. of TCC samples

Predicted stage 2 Predicted stage 4 Predicted stage 6

k-NN Vis-point (k = 4) Stage 2 9 1 0 25
Stage 4 3 6 0

Stage 6 0 1 10

Vis-HSI (k = 3) Stage 2 7 3 0 24
Stage 4 3 6 0

Stage 6 0 0 11

SIMCA Vis-point (PCs: 4, 3, 3) Stage 2 8 2 0 24
Stage 4 3 6 0

Stage 6 0 1 10

Vis-HSI (PCs: 4, 3, 3) Stage 2 10 0 0 26
Stage 4 4 5 0

Stage 6 0 0 11

PLSDA Vis-point (LV = 4) Stage 2 7 2 0 24
Stage 4 3 6 0

Stage 6 0 0 11

Vis-HSI (LV = 5) Stage 2 9 1 0 28
Stage 4 1 8 0

Stage 6 0 0 11
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number of PCs of each PCA model in SIMCA and the
number of LVs in PLSDA were based on the average-
classification error of three classes in the cross validation.
The results were shown in the column 2 of Table 4. For
example, by selecting 4 LVs in the PLSDA modelling, the
average classification error of the three ripeness classes
was minimal. Once a calibration model was developed,
an external set of samples (a test set or a prediction set)
was applied to model to validate the model performance.
Table 4 presents the ripeness classification details of a pre-
diction set using bananito peel spectra. It can be seen from
the confusion matrix that classification between stage 2
and stage 6 fruits was identical; no fruits in ripeness stage
2 or 6 were misclassified into stage 6 or 2. However, only
few bananito fruits in stage 2 or 6 were misclassified to its
adjacent neighbour (stage 4). For example, of the actual ten
samples in stage 2, k-NN model using Vis-point peel spec-
tra predicted that nine samples were in stage 2 and one
sample was misclassified as stage 4. Of the actual eleven
samples in stage 6, the above model predicted that ten
samples were in stage 6 and one sample was in stage 4.
However, all classification models in Table 4 had difficul-
ties in classifying bananito fruits of maturity stage 4. Using
the peel visible spectra, some bananitos in stage 4 were
misclassified to stage 2. This result could be explained by

the similarity of peel spectra between stages 2 and 4, as
shown in Fig. 3.

From the confusion matrix shown in Table 4, the total cor-
rect classification rate (TCC%) for each classification model
can be calculated. Figure 4 shows the TCC% result of each
model for bananito ripeness classification. It is found that the
TCC% of Vis-HSI was generally higher than that of Vis-point.
That is to say, the use of hyperspectral imaging provides
higher classification results than the use of spectrometer. A
possible explanation for this result would be the fact that spec-
trometer only covered some small areas from the sample
whereas hyperspectral imaging system could capture spectral
information from the whole sample. Since the peel colour of
bananito fruits was not uniform from stem to tip (Chen and
Ramaswamy 2002), the mean-spectrum extracted from HSI
was more representative for ripeness classification. The
highest classification accuracy was achieved by using Vis-
HSI peel spectra in the PLSDA model, giving a TCC% of
93.3%. Based on the same data, the SIMCA model ranked
in the second place for bananito maturity classification, yield-
ing a TCC% of 86.7%.

Optimal Wavelengths Selection

Feature wavelengths selection is an important strategy to in-
vestigate optical properties of bananitos in relation to its ripe-
ness stage. It is beneficial to simplify modelling process and to
improve model accuracy by reducing data inputs and remov-
ing some unrelated variables (Liu et al. 2014). Since the
PLSDAmodel established on peel Vis-HSI spectra (full wave-
lengths) gave the highest ripeness prediction accuracy, selec-
tion of optimal wavelength was conducted on peel Vis-HSI
spectra using PLSDA. Two approaches, namely regression
vector (RV) and variable importance in projection (VIP)
scores, as detailed in “Wavelength Selection Methods”, were
applied to identify key wavelengths for ripeness classification.
In the regression vector plot derived from the three PLSDA
classification models for the three maturity stages, wave-
lengths that have the largest absolute value of regression

Fig. 4 Comparison of classification accuracy of three classifiers using
Vis-point and Vis-HSI data of bananito

Fig. 5 Selection of feature
wavelengths based on regression
vector (a) or VIP scores (b) using
peel Vis-HSI data
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coefficients indicate its great contribution to that model. In the
VIP scores plot of the PLSDA classification model, wave-
lengths of VIP scores over 1 are generally considered to be
important wavelengths for the model (Pu and Sun 2016).
Based on these selection rules, three feature wavelengths
(650 nm, 705 nm and 740 nm) were identified from the re-
gression vector plot (as shown in Fig. 5a) and three feature
wavelengths (665 nm, 705 nm and 740 nm) were identified in
the VIP scores plot (as shown in Fig. 5b).

The wavelengths 650 nm and 665 nm are in the range of
secondary absorption peaks of the reaction centre of the pho-
tosystem II (of the photosynthesis), and of the “light-harvest-
ing” chlorophyll a and b protein complexes (650–680 nm)
(Machlis and Torrey 1956). The wavelength 705 nm belongs
to the so called “red edge”, a spectral range that has a very
high sensitivity to changes in Chlorophyll a and a+b. This
“red edge” occurs between the wavelengths 680 nm and 710
nm, with a maximum sensitivity at 700 nm (Filella and
Penuelas 1994). A close relationship between the “red edge”
and the leaf chlorophyll concentration has been demonstrated
(Lichtenthaler et al. 1996). The wavelength 740 nm is a minor
absorption feature for water (Cubeddu et al. 2003).

Based on the peel Vis-HSI spectra that were processed with
SNV and mean-centring, spectral intensities at the three im-
portant wavelengths selected by RV (650 nm, 705 nm and 740
nm) or VIP (665 nm, 705 nm and 740 nm) were extracted to
construct a simplified PLSDA model. Classification results of
full-wavelength PLSDA model (PLSDA-1) and the two sim-
plified PLSDA models (PLSDA-2 and PLSDA-3) were com-
pared and shown in Table 5. Comparing PLSDA-2 and
PLSDA-3, both models yielded an equivalent classification

result. The classification accuracy of PLSDA-2 or PLSDA-3
was the same as PLSDA-1, indicating the capability of using
selected wavelengths to classify bananitos’ maturity stage.
The best classification model in the study was PLSDA-2, as
less number of latent variables was used.

Multispectral Imaging

Though a high classification accuracy (TCC% = 93.3%) was
obtained by the simplified PLSDA-2 or PLSDA-3 model, it
should be noted that these reduced wavelength models were
based on spectral values extracted after SNV and mean-
centring pre-treatments were applied to the full spectrum.
This means that the full wavelengths are still needed to
achieve such a good classification performance.

From the perspective of industrial application, it would be
more practical to develop a multispectral imaging system
equipped with few wavelength channels for bananitos’ ripe-
ness classification. To investigate the potential of using feature
wavelengths (650 nm, 705 nm and 740 nm) identified in the
study to classify bananitos’ maturity stage, the raw spectral
data (the peel Vis-HSI spectra) at the above-mentioned three
wavelengths were extracted. These raw spectral data were
processed with SNVand mean-centring, then a PLSDAmodel
(named PLSDA-multispectral) was established. Figure 6 a
shows the corresponding classification result for the validation
set. Five samples were misclassified (three samples in stage 2
were misclassified as stage 4, one sample in stage 4 was
misclassified as stage 2, and one sample in stage 6 was
misclassified as stage 4), yielding a total correct classification
rate of 83.3% for the PLSDA-multispectral model.

Table 5 Classification results of
full-wavelength PLSDA model
and simplified PLSDA model

Model Wavelengths
(nm)

Wavelength
selection method

No. of latent
variable

No. of misclassified
samples

TCC (%)

PLSDA-1 400–740 – 5 2 93.3

PLSDA-2 650, 705, 740 RV 2 2 93.3

PLSDA-3 665, 705, 740 VIP 3 2 93.3

Fig. 6 Comparison of simplified
classification models. a
Classification result of PLSDA-
multispectral model developed
using the raw spectral data extracted
from the three feature wavelengths
650 nm, 705 nm and 740 nm; b
classification result of PLSDA-
RGB model developed based on
the raw spectral data extracted from
three wavelengths 650 nm (red),
500 nm (green) and 450 nm (blue)
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Currently, commercial RGB cameras are available for
fruit ripeness classification based on the colour images. It
is interesting to compare the classification results obtained
by the PLSDA-multispectral model with the results ob-
tained by the RGB camera. Here in the study, an RGB
spectral dataset was constructed by selecting three wave-
lengths (650 nm, 500 nm and 450 nm) as the Red, Green
and Blue channel from the hyperspectral data (Cheng
et al. 2016). A PLSDA model (named PLSDA-RGB)
was then developed for bananito maturity classification,
the classification result is shown in Fig. 6 b. In total, eight
samples were misclassified (one sample in stage 2 were
misclassified as stage 4, six samples in stage 4 were
misclassified as stage 2 and one sample in stage 4 was
misclassified as stage 6), giving a total correct classifica-
tion rate of 73.3% for the PLSDA-RGB model.

When comparing Fig. 6 a to Fig. 6 b, it can be seen that the
PLSDA-multispectral model (TCC% = 83.3%) performs bet-
ter than the PLSDA-RGBmodel (TCC% = 73.3%), indicating
the feasibility and potential of developing a multispectral im-
aging system with the use of only three wavebands (650 nm,
705 nm and 740 nm) identified in the study for bananito ripe-
ness classification.

Conclusions

This study investigated variations of firmness, SSC and colour
of bananito during the ripening process, and the use of spec-
trometer and hyperspectral imaging for ripeness stage classi-
fication. Results showed that fruit firmness decreased whereas
SSC increased during fruit ripening. SSC had a closer linkage
to peel colour parameters as compared with firmness. The peel
yellowness index was found to have the strongest correlation
to SSC, with correlation coefficient of r = 0.92 obtained. A
PLSDAmodel developed on full wavelength Vis-HSI spectral
data performed the best result (TCC = 93.3%) in bananito
ripeness classification. The three selected wavelengths (650
nm, 705 nm and 740 nm) obtained by RV method gave a
comparative classification result to full wavelengths, and
worked better than the RGB wavelengths. By comparing
spectrometer and hyperspectral imaging, this study suggested
the use of visible hyperspectral imaging technique for non-
destructive and accurate classification of bananito fruits.
Potential of using the three feature wavebands to construct a
multispectral imaging system for industrial application has
also been demonstrated.
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