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Abstract

In this work, a rapid and accurate assay was successfully developed for T-2 toxin detection based on exonuclease-catalyzed target
recycling strategy. Upconversion nanoparticles (UCNPs) were conjugated with T-2 aptamer and used as signal probes, while
magnetic nanoparticles (MNPs) were conjugated with the complementary DNA of T-2 aptamer (¢cDNA) and used as capture
probes. The results reveled that good linear correlation (R = 0.9988) was achieved for T-2 toxin detection over the concentration
range of 0.1-100 ng/mL with a detection limit as low as 0.035 ng/mL (S/N = 3). In addition, the reliability of the proposed method
was also applied to the determination of T-2 toxin contents in real food samples and the average recoveries ranged from 95.97 to
104.00%. The sensing platform developed in our study demonstrated great potential for simple and sensitive detection of T-2

toxin contents in food samples.
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Introduction

T-2 toxin, a heat-stable trichothecene produced particularly by the
Fusarium species, is widely occurred in maize, wheat, oat, beer,
etc. Creppy 2002 (Chen et al. 2017; Creppy 2002). It has been
proved that the consumption of T-2 toxin—contaminated food and
feed could cause various pathologies on humans and animals,
including lesions in hematopoietic, lymphoid, and gastrointestinal
tissues and suppress reproductive organ functions (Stanford et al.
1975; Williams 1989; Yuan et al. 2014). In recent years, with the
improvement of living condition, more and more people pay
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much attention to the safety of food products. Tremendous
amount of attention has been attached to the study of T-2 toxin
and it has been regarded as one of the most dangerous contami-
nants by the European Food Safety Authority (EFSA) (Sun et al.
2014). Considering the adverse effects and the universal existence
of this hazardous toxin, there is a need to develop effective ap-
proaches for T-2 toxin detection and removal.

For the determination of T-2 toxin in foods or feedstuffs, sev-
eral analytical methods such as high-performance liquid
chromatography-tandem mass spectrometry (Sun et al. 2014),
fluorescence assay (Khan et al. 2018), fluorescence polarization
immunoassay (FPI) (Porricelli et al. 2016), ultra-performance lig-
uid chromatography (UPLC) (Pascale et al. 2012), high-
performance liquid chromatographic—-mass spectrometry (LC-
MS) (Flores-Flores and Gonzalez-Pefias 2015), immunomagnetic
bead-based enzyme-linked immunosorbent assay (IMB-ELISA)
(Deng et al. 2017), ultra-performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS) (Soleimany et al.
2012), gas chromatography-tandem mass spectrometry (Kong
et al. 2012), multi-immunochromatographic strip assay (ICA)
(Kong et al. 2016), competitive enzyme-linked immunosorbent
assay (Li et al. 2014), and ultra-performance liquid
chromatography-tandem mass spectrometry (Soleimany et al.
2012) have been used. Chromatographic methods are usually
highly selective and very accurate. However, these methods are
relatively sophisticated, expensive, and tedious, which cannot
meet the high-throughput detection required by the government
and the food industry. In contrast, the immunoassay-based method
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offers rapid means of detection, but it is strongly dependent on the
use of susceptible and expensive antibodies. Thus, novel, simple,
low-cost, and accurate analytical methods to detect trace amounts
of T-2 toxin in food/feed products are highly demanded.

Aptamers are synthetic DNA or RNA single-chain oligo nu-
cleotides, which can bind to the targets (Seleci et al. 2016; Xuhan
et al. 2018). In addition to high affinity and specificity, aptamer
has more advantages compared with antibody, embracing pro-
duction automation, good stability, desirable biocompatibility,
lack of immunogenicity, and flexible chemical-modification
(Sharma et al. 2016). Due to these appealing features, they have
become a powerful tool to specifically identify various targets,
such as proteins, peptides, amino acids, antibiotics, small
chemicals, viruses, whole or part of cells, and even metal ions
(Seok Kim et al. 2016; Taghdisi et al. 2016; Weerathunge et al.
2014). Recently, T-2 toxin aptamer was selected and identified by
Chen et al. (2014) and no one has quantified T-2 levels in food
based on constructing aptasensor for T-2.

Lanthanide-doped upconversion nanoparticles (UCNPs)
have attracted much attention for applications in food safety
analysis due to their inherent advantages (Vilela et al. 2016).
Typically, UCNPs are able to absorb in the near-infrared
(NIR) region and emit in the visible region of the electromag-
netic spectrum. In addition, UCNPs have great chemical sta-
bility, low toxicity, high photostability, large Stokes shifts
nonblinking and nonbleaching emission, sharp full width at
half maxima, tunable fluorescence wavelength, and absence
of autofluorescence under low-energy near-infrared (NIR)
light excitation (Su et al. 2016). Up to now, UCNPs as a
promising fluorophore has been successfully applied in the
detection of various harmful chemicals and bacteria (Foubert
et al. 2016; Kurt et al. 2016; Nguyen et al. 2016). To date, no
research has been conducted to determine T-2 toxin contents
in food/feed products based on UCNPs.

Herein, we developed a rapid and reliable UCNPs and
magnetic nanoparticles (MNPs)-based aptasensor for T-2 tox-
in detection. The method established in this work would be
useful for accurate and highly sensitive detection of T-2 toxin
in food/feed industry.

Materials and Methods
Chemical Reagents

T-2 toxin was obtained from Sigma-Aldrich (Shanghai, China).
Aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEN),
fumonisin B1 (FB1), glutaraldehyde, tetraethyl orthosilicate
(TEOS), Ytterbium(III) chloride hexahydrate (Ybcly-6H,0),
Yttrium chloride hexahydrate (Ycl;-6H,0), and Erbium chloride
hexahydrate (Ercl;-6H,0) were purchased from Aladdin
Industrial Inc. (Shanghai, China). (3-Aminopropyl)
triethoxysilane (APTES), ammonium fluoride (NH4F), 1,6-
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hexanediamine, and 1-octadecene (ODE) were got from J&K
Chemical Technology Co., Ltd. (Beijing, China). Oleic acid
(OA), iron chloride hexahydrate, iron (I) chloride tetrahydrate,
cyclohexane, ammonia, ethanol, and methanol were obtained
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). T-2 toxin aptamer and its cDNA fragments were pur-
chased from Shanghai Sangon Biological Engineering
Technology & Services Co., Ltd. (Shanghai, China). The
aptamer was purified by HPLC and suspended in deionized wa-
ter from a Milli-Q device (18.2 M(2, Millipore, MA, USA).

The detailed sequences of the oligonucleotides are as follows:

T-2 toxin aptamer: 5'-biotin-GTATATCAAGCATC
GCGTGTTTACACATGCGAGAGGTGAA-3'

cDNA: 5-SH-CGATGCTTGATATAC-3".

Preparation and Surface Modification
of Nanoparticles

Synthesis of UCNPs

Thermal decomposition procedure was applied to synthesize
hexagonal NaYF,: 18% Yb, 2% Er UCNPs, as reported by
Sun et al. (2016). Typically, 0.80 mmol YClsz, 0.18 mmol
YbCls, and 0.02 mmol ErCl; were dissolved in 3 mL OA
and 7 mL ODE in a 50-mL three-necked flask. The mixture
was heated to 160 °C for 30 min and cooled down to room
temperature. Thereafter, 5 mL of methanol solution containing
1 mmol NaOH and 1 mmol NH4F was added to the mixture
and stirred for 30 min. Then, the solution was heated to 300 °C
under argon 1.5 h. After cooling to room temperature, the
nanocrystals were precipitated by the addition of ethanol, col-
lected by centrifugation at 5000 rpm. The precipitate from the
solution was washed with methanol and ethanol several times
and finally vacuum-dried at 60 °C overnight.

Surface Modification of UCNPs (AF-UCNPs)

The surface modification was according to the method report-
ed by Stober et al. (1968).

Synthesis of MNPs

MNPs were prepared according to a previously reported co-
precipitation method (Zhang et al. 2015). 8.5 g FeCl;-6H,0O
and 3.0 g FeCl,4H,O were dissolved in 38 mL hydrochloric
acid in a 500 mL three-necked flask. After that, 375 mL am-
monia solution was rapid added to the mixture. After vigorous
stirring for 30 min, the resulting precipitates were collected
with the aid of an external magnet, and then washed thorough-
ly three times. Finally, the obtained MNPs were dried at 60 °C
in a vacuum oven overnight and stored at 4 °C for further use.
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Preparation of Single-Stranded DNA-Modified UCNPs
and MNPs

T-2 toxin aptamer was conjugated with UCNPs using a classical
glutaraldehyde method (Ye et al. 2004). MNPs were modified
with cDNA by the method reported in our previous research (Wu
etal. 2017, 2018).

Fabrication of the Novel Aptasensor for the Detection of T-2
Toxin

Firstly, 100 puL of T-2 toxin aptamer-linked UCNPs and 200 puL
of cDNA-MNPs were incubated in the hybridization buffer
(10 mM Tris-HCI, 100 mM NaCl, 1 mM EDTA, pH 8.0) to form
cDNA-MNPs-aptamer-UCNPs complex. Next, the mixed solu-
tion was incubated at 37 °C for 1 h. Then, 30 U exonuclease I was
added into the mixture. Thereafter, sample solutions containing
various amounts of T-2 toxin were spiked into the mixture, which
was further incubated at 37 °C for 30 min with gentle shaking
before deactivating by heating at 80 °C for 20 min. Subsequently,
the dissociated MNPs and undissociated aptamer-UCNPs-

Fig.1 TEM image of UCNPs (a), a
TEM image of MNPs (b), and
XRD patterns of UCNPs and
MNPs (c)

c¢DNA-MNPs complexes were separated from the mixture with
a magnet. The obtained precipitate was washed several times
before being dispersed in PBS buffer again. Finally, the fluores-
cence spectra of the obtained mixture were recorded. The fluores-
cence signal intensities of the re-suspending solution in the ab-
sence (/p) and in the presence (/) of T-2 were all recorded and the
differences between I, and 7 (Al) were calculated for further use.
In this study, 543 nm was selected as the detection wavelength.
Each measurement was performed at least three times.

Analysis of Specificity and Selectivity

To evaluate the selectivity of the as-fabricated biosensor, other
biotoxins, including AFB 1, ZEN, OTA, and FB 1, at a concen-
tration of 1.0 ng/mL were used in the assay in place of T-2 toxin.

They were all tested using the same procedures mentioned above.

Sample Preparation

Beer samples were employed to assess the application poten-
tial of the developed UCNPs-based assay for detecting T-2
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toxin in real samples. Before the detection, 50 mL of beer
sample was vigorously stirred at 60 °C for 60 min for
degassing purpose. After that, different concentrations of T-2
toxin were added to the prepared samples for recovery tests.

The T-2 toxin contents in the real beer samples were also
validated by ELISA analysis using a commercially available
T-2 toxin detection kit (Towei Chemical Reagent Co., Ltd.,
Shanghai, China).

Characterization of Nanoparticles

D2 PHASER X-ray diffractometer (Bruker AXS Ltd.,
Germany), JEM-2100 high-resolution transmission electron
microscope (TEM, JEOL, Japan), and TU-1900 spectrometer
(Purkinje General Corporation, Beijing, China) were used to
characterize the synthesized nanoparticles in this study.
Fluorescence spectra were collected with a F-7000 fluores-
cence spectrophotometer (Hitachi Co., Tokyo, Japan) using
an external 0—1300 mW adjustable continuous wave 980 nm
laser (Beijing Hi-Tech Optoelectronic Co., Beijing, China) as
the excitation source.

Data Analysis

All data were expressed as mean + standard deviation (SD) of
at least three measurements throughout the study, and spectra

drawings were performed using Origin 8.5 (OriginLab Inc.,
USA). XRD and fluorescence spectra and TEM images were
collected and processed by Jade Version 5 Analysis software
(Materials Data, Inc., USA), FL Solutions 2.1 software
(Hitachi High-technology Co., Tokyo, Japan), and Image
J2x software (NIH, USA), respectively.

Results and Discussions
Characterization

The as-prepared UCNPs and MNPs were characterized by
TEM and XRD measurements. As shown in Fig. la and b,
the morphologies of the UCNPs and MNPs are all charac-
terized by well-dispersed with smooth surfaces. The aver-
age diameters of UCNPs and MNPs are approximately
100 nm and 20 nm, respectively. XRD measurement was
performed to characterize the crystal structure of UCNPs
and MNPs (Fig. Ic). The XRD pattern of UCNPs reveals
that they are hexagonal, which is consistent with standard
XRD results of 3-phase NaYF, crystals (JCPDS Standard
Card No. 16-0334) (Shikha et al. 2018). In the XRD pattern
of MNPs, six characteristic peaks (26) at 30.20°, 35.66°,
43.14°, 53.37°, 57.03°, and 62.76°, corresponding to (2 2
0),(311),(400),(422),(511),and (4 4 0) crystalline
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Fig. 2 Schematic diagram of the fabrication of the UCNPs-based aptasensor for sensitive detection of T-2 toxin
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Fig. 3 Typical recording output of the developed aptasnesor exposed with different concentrations of T-2 toxin (a) and the linear correlation between the
changed upconversion luminescent intensities and the concentrations of T-2 toxin (b)

planes, respectively (Wu et al. 2017), are observed, indicat-
ing that the MNPs synthesized in this work are well crys-
tallized. The structures of the synthesized MNPs are con-
sistent with the standard XRD diffraction pattern of Fe;0,4
(JCPDS Standard Card No. 75-1610).

Working Principle

The working principle of the novel assay for the quantitative
detection of T-2 toxin is schematically illustrated in Fig. 2. As
could be seen, T-2 aptamer and its complementary DNA (cDNA)
were attached on UCNPs and MNPs, respectively. By hybridiz-
ing the aptamer-UCNPs and cDNA-MNPs conjugates, stable
duplex structures were formed due to the complementary base-
pairing reactions. In the presence of T-2 toxin, T-2 aptamer pref-
erentially bounded to T-2 to form a 3D stem—loop structure and
dissociated from its cDNA, thereby liberating UCNPs and lead-
ing to the decrease of the fluorescence signal intensity of the re-
suspending solution after magnetic separation. Exonuclease-
catalyzed target recycling strategy was applied to further improve
the sensitivity of the developed assay. With the addition of exo-
nuclease I, which was specific to single-stranded DNA, T-2 toxin
was liberated from the digested T-2 aptamer and conjugated to
another aptamer conjugated on UCNPs. Thus, the sensitivity of
the proposed assay was dramatically enhanced.

Analytical Performance

Figure 3a illustrates the typical recording output for detecting
different concentrations of T-2 using the proposed assay. As
can be seen, the fluorescence signal intensities gradually decrease
with the increase of the T-2 concentration in the system. The
standard curve, in which the decreased fluorescence signal inten-
sity is plotted against the logarithm T-2 concentration over the
range of 0.1 ng/mL to 100 ng/mL (Fig. 3b), shows a good linear
relationship between changed fluorescence intensity and the T-2
concentration (y = 322.521gx + 447.80) with a correlation coeffi-
cient (R%) of 0.9988. In this work, the half maximal effective
concentration (EC50) value is calculated to be 2.07 ng/mL.
The detection limit (LOD) of the sensing system is as low as
0.035 ng/mL (S/N = 3). As shown in Table 1, compared with the
current existing methods, the proposed method is more sensitive.

To confirm the amplified effects of exonuclease-assisted
target recycling strategy for T-2 toxin detection, a general
aptasensor was fabricated under the same conditions but with-
out exonuclease I. As shown in Fig. 4, under the same con-
centration of T-2 toxin, the changed fluorescence intensity of
this assay was significantly bigger than that from the assay
without using target recycling detection strategy. The sensitiv-
ity of the developed assay was about 5.44-fold better than that
of the assay without using target recycling detection strategy.

Table 1 Comparison of the

fabricated aptasensor with other Methods Analytical range LOD Recovery (%) References

methods for T-2 toxin detection
UPLC 25-100 pg/kg 8 ng/kg 91-103 Pascale et al. (2012)
LC-MS 0.1-1.0 ng/mL 0.05 ng/mL 63.5-75.8 Flores-Flores and

Gonzalez-Pefias (2015)

ICA 0.25-5 pg/kg 0.15 ug/kg 79.8-120 Kong et al. (2016)
UPLC-MS/MS 0.4-4000 pg/kg 2 ug/kg 95.8-97.3 Soleimany et al. (2012)
IMB-ELISA 5-75 ng/mL 2.53 ng/mL 86-99 Deng et al. (2017)
Fluorescent bioassay 0.23-17.49 pg/mL 0.19 pg/mL 93.6-106.0 Chen et al. (2014)
FPI 26-135 ug/kg 20 ug/kg 101-107 Porricelli et al. (2016)
MNPs-UCNPs assay 0.1-100 ng/mL 0.035 ng/mL 95.97-104.00 This work
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Table2  The determination of T-2 toxin in beer samples by ELISA and
2500 the proposed method
—— Blank
20004 - - - Without exonuclease I Background Spiked Detected content (ng/mL) (mean + SD)
,;' -~ With exonuclease I (This assay) content levels
& (ng/mL) (ng/mL) ELISA This method  Recovery
z 1500 ratio (%)
S|
ﬁ 1000 - 221 1 316+ 025 324+0.17 100.93
2 221 10 12.42 £ 0.73 1236 £0.89 101.23
§ 5004 221 50 50.02 £2.67 50.11 £3.63 9597
8 17.49 1 19.07 £ 1.16 19.23 £ 1.28 104.00
é 0 17.49 10 27.73 +£1.75 27.59 £2.01 100.36
17.49 50 66.90 + 5.82 66.78 + 4.41 9895
T T 38.63 1 40.28 +2.51 4041 +3.02 101.97
300 600 700 38.63 10 4747 +3.38 47.55+3.12 97.78
38.63 50 98.78 £9.75 99.15 + 10.87 100.53

Wavelength (nm)

b
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!
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Fig. 4 Fluorescence spectra collected in the absence and in the presence
of exonuclease 1 (this assay) when the concentration of T-2 toxin was
100 ng/mL (a) and comparison of the changed upconversion luminescent
intensities (A7) recorded in the absence and in the presence of exonucle-
ase I (this assay) (b)

OTA

FBI

Evaluation of Specificity

To evaluate the specificity of the proposed assay for target ana-
lyte, the selectivity experiment was conducted by detecting fluo-
rescence signal intensities when T-2 and other biotoxins (i.e.,
AFB 1, ZEN, OTA, and FB 1) were introduced to the constructed
system. As shown in Fig. 5, obvious response (fluorescence
intensity change) is obtained in the presence of T-2, while much
less responses are observed in the presence of the other targets,
although their concentrations (1.0 ng/mL) are ten times higher
than T-2 (0.1 ng/mL). These results demonstrate the excellent
selectivity of the proposed assay to T-2 toxin.

Real Sample Analysis
The feasibility of the proposed bioassay for detecting T-2 con-

tents in beer samples was evaluated by determining the recov-
eries of T-2 with a standard addition method. The results of

2000
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1700 -

Fluorescence Intensity (a. u.) <

T-2 AFBI1 ZEN OTA FBI1

Blank

Fig. 5 Chemical structures of T-2 toxin and other toxins (a) and specificity of the proposed fluorescence bioassay platform toward T-2 toxin

against other toxins (b)

@ Springer



Food Anal. Methods (2019) 12:625-632

631

recoveries and standard deviations (SD) are summarized in
Table 2. As can be seen, the calculated T-2 concentrations in
beer samples are almost identical to the real concentrations.
All of the four spiking levels applied show good recoveries,
ranging from 95.97 to 104.00%. In addition, food samples
spiked with T-2 at three levels were analyzed by commercial
ELISA kits to verify the practicability of the developed assay.
No significant difference (p < 0.05) between the results ob-
tained by the applied method and that obtained from ELISA
method is observed indicating that the aptasensor developed
here is reliable for the detection of T-2 in food system.

Conclusions

Summarily, we successfully developed a sensitive UCNPs-based
aptasensor for fluorescence sensing of T-2 toxin. The novel strat-
egy benefited from the unique photo-physical properties of
UCNPs and high specificity of T-2 aptamer. This aptasensor
demonstrated broad linear scope, ultralow detection limit, and
excellent specificity for T-2. In addition, this method was suc-
cessfully applied to the determination of T-2 in real food samples.
These satisfactory results demonstrated that the novel fluorescent
method developed on this work had great potential in sensitive
and economic detection of T-2 in food samples. This novel assay
could be prolonged for analysis of other poisonous ingredients in
food with a substitution of specific aptamers.
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