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Abstract
A NMR-based metabolomics method was developed to semiautomatically quantify the main components of wine. The method
was applied to discriminate wines from two regions of China, Shanxi and Ningxia, which were produced by 6 wineries and for 6
vintages. Two different cultivars, Cabernet Sauvignon and Beihong, were used for winemaking. The method allowed the
quantification of 33 metabolites including sugars, amino acids, organic acids, alcohols, and phenolic compounds. Depending
on the compounds, the LOD values were in the range of 0.6 to 116 mg/L. The results showed that NMR-based metabolomics
combined with multivariate statistical analysis allowed wine separation as a function of terroir and cultivar. Nevertheless, wine
differentiation as a function of wineries and ageing would need to be examined more carefully.
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Introduction

Food fraud is a critical issue that affects health and the econo-
my. According to the Grocery Manufacturers Association,
about 10% of the food sold in commerce would be counterfeit.
Alimentary fraudwould affect various foods such as milk, olive
oil, fish and alcohols. In this context new approaches such as
metabolomics are increasingly used to analyse food composi-
tion, quality and adulterations. The recent technological ad-
vances in various analytical chemistry systems together with
the implementation of powerful data processing software have
allowed the development of metabolomics studies. According
to the desired objective, metabolomics has the advantage of
giving access to different information that can be quantitative,
discriminant, or predictive (Cubero-Leon et al. 2014).

Interest for NMR-based metabolomics grew rapidly since
2000, reflected by the increasing number of publications on this

subject (Larive et al. 2015; Pauli 2000). NMR is a fast and highly
reproducible spectrometric tool allowing the acquisition of spectra
containing a rich amount of information concerning the analysed
sample. This technique allows the identification of major compo-
nents in complex mixtures in a single analysis. Quantitative in-
formation is obtained by a simple rule: the signal intensity is
directly proportional to the number of nuclei. NMR has several
advantages compared to usual methods of metabolomics: easy
sample preparation, relatively short analysis times, great repro-
ducibility and adequate specificity (Simmler et al. 2014).

The control of wine traceability is a major objective of the
vine-growing sector (OIV Strategic Plan 2015–2019). NMR
spectrometry has found applications in quality control and
authentication of wine (Amargianitaki and Spyros 2017).
The quantitation of multiple components or a metabolite fin-
gerprinting approach allowed controlling terroir impact
(López-Rituerto et al. 2012; Son et al. 2009), grape variety
(Ali et al. 2011; Godelmann et al. 2013), vintage (Lee et al.
2009) or wine-making processes (Anastasiadi et al. 2009; De
Pascali et al. 2014; López-Rituerto et al. 2009).

The global aim of our current research is to propose a
universal, fast and simple method to quantify a large number
of compounds in wine semi-automatically. The quantitative
NMR (qNMR) method was developed and validated in terms
of limits of detection (LODs), limits of quantification (LOQs)
and coefficients of variation (CVs) for replicated
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measurements. In order to check the validity of the method,
comparisons with TITRIVIN reference material were per-
formed. The described method has been applied to carry out
the metabolomics characterisation of Chinese wines from dif-
ferent regions, vintages and grape varieties.

Materials and Methods

Wine Samples

A total of 19 Chinese commercial red wines were analysed
(Table 1). These wines were produced in two different regions
of China: Shanxi, in northwestern China, and Ningxia, one of
the youngest vine-growing regions in China. Eighteen wines
were produced with the Cabernet Sauvignon variety. Six were
produced in Shanxi region by Château Rongzi. Twelve wines
were produced in Ningxia region and provided by 4 producers
for 3 vintages. A single sample, from Ningxia region (vintage
2014), was produced with the Beihong variety, an interbreed-
ing between Muscat Hamburg (Vitis vinifera L.) and wild V.
amurensisRupr. generated by the Institute of Botany (Chinese
Academy of Sciences) and approved as a new grape cultivar in
China in 2008. This variety is resistant to cold and diseases.

Validation of the NMR quantitation method was performed
by comparison with 6 TITRIVIN samples (AA1, AA2, AA3,
AA4, AA5, and BTA). These wines are products marketed by
the service Vine and Wine of the Chamber of Agriculture of
the Gironde. Contents of alcohol, acetic acid, malic acid, lactic

acid and sugars have been measured by 40 laboratories using
methods accredited by OIV.

NMR Spectroscopic Analysis of Wines

For NMR sample preparation, 120 μL of 1 M phosphate buff-
er (pH 2.6), 60 μL of 0.9 mM calcium formate and 5 mM of
trimethylsilylpropanoic acid sodium salt (TSP) were added to
420 μL of centrifuged wine. After solution mixing, 550 μL of
the preparation was transferred in a 5-mm NMR tube.
Deuterated water provided a field frequency lock and TSP
was used as a chemical shift reference (1H, δ 0.00 ppm).

1H-NMR spectra were manually recorded at 293 K on a
600 MHz AVANCE III spectrometer (Bruker, Wissembourg,
France) operating at 600.27 MHz using a 5-mm TXI probe
with Z-gradient coils. Three successive 1H-NMR experiments
were used for the acquisition, carried out a time domain (TD)
of 65,536 real data point (64 k) using a 20.0229 ppm
(12,019.23 Hz) spectral width (SW), a relaxation delay (RD)
set to 5 s and an acquisition time (AQ) requirement of 2.726 s.
Firstly, Bruker sequence ZGwas used to calibrate the suppres-
sion of water and ethanol signals.Water signal was suppressed
with an integration of 50 Hz (25 Hz on both sides of the signal
centre). Each ethanol signals were suppressed with an integra-
tion of 6 Hz (3 Hz on both sides of the signal centre). These
integrations were fixed to improve baseline and avoid defor-
mations due to excessive suppression. Secondly, classical wa-
ter suppression pulse program using presaturation (ZGPR)
was used to suppress water signal. Eight free induction delay

Table 1 List of wines
Name Winery Brand Vintage Variety Region

HLS12 Helanshan He Lan Shan 2012 Cabernet sauvignon Ningxia

HLS13 Helanshan He Lan Shan 2013 Cabernet sauvignon Ningxia

HLS14 Helanshan He Lan Shan 2014 Cabernet sauvignon Ningxia

YY12 Yangyang He Pai 2012 Cabernet sauvignon Ningxia

YY13 Yangyang He Pai 2013 Cabernet sauvignon Ningxia

YY14 Yangyang He Pai 2014 Cabernet sauvignon Ningxia

PR12 Pernod Ricard Helan Mountain 2012 Cabernet sauvignon Ningxia

PR13 Pernod Ricard Helan Mountain 2013 Cabernet sauvignon Ningxia

PR14 Pernod Ricard Helan Mountain 2014 Cabernet sauvignon Ningxia

XXW12 Xixiawang She Cang Ji 2012 Cabernet sauvignon Ningxia

XXW13 Xixiawang She Cang Ji 2013 Cabernet sauvignon Ningxia

XXW14 Xixiawang She Cang Ji 2014 Cabernet sauvignon Ningxia

RZ09 Rongzi Xiao Rongzi 2009 Cabernet sauvignon Shanxi

RZ10 Rongzi Xiao Rongzi 2010 Cabernet sauvignon Shanxi

RZ11 Rongzi Xiao Rongzi 2011 Cabernet sauvignon Shanxi

RZ12 Rongzi Xiao Rongzi 2012 Cabernet sauvignon Shanxi

RZ13 Rongzi Xiao Rongzi 2013 Cabernet sauvignon Shanxi

RZ14 Rongzi Xiao Rongzi 2014 Cabernet sauvignon Shanxi

ZK14 Zhongke Zhengrongjiazi 2014 Beihong Ningxia
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(FIDs) were collected. Thirdly, one dimensional 1H-NMR
pulse sequence with suppression of the water and ethanol
signals was used (NOESYGPPS1D). For this experiment,
NS = 64was used.When necessary, classical 2D-NMR exper-
iments including COSY, TOCSY, ROESY, HSQC and
HMBC were used for compound identification.

1H-NMR spectra were processed using both Topspin soft-
ware version 3.2 (Bruker Biospin, Germany) and
MestReNova NMR software version 11.0.3 (Mestrelab
Research, Spain). FIDs were multiplied by an exponential
function corresponding to a line broadening (LB) of 0.3 Hz
prior to the Fourier transformation. All spectra were manually
phased, and baseline was corrected automatically using the
MestReNova software. Each spectrumwas aligned by shifting
the TSP signal to zero to perform by MestReNova a semi-
automatic quantification with simple mixture analysis
(SMA) plug-in. The spectral peaks were assigned by compar-
ing chemical shift and multiplicity with the literature and by
metered addition in wine of the various standards. Peak
deconvolutions were performed using the global spectral
deconvolution (GSD) method (Cobas et al. 2011;
Schoenberger et al. 2016). For quantification, appropriate an-
alyte signals were evaluated according to the following for-
mula (Godelmann et al. 2016):

mx ¼ MWx

MWstd
� nstd

nx
� Ax

Astd
� mstd � CF

where mx and mstd are the masses (g), MWx and MWstd the
molecular weights (g/mol), nx and nstd the numbers of protons
and Ax and Astd the integral values of the analyte and the
standard, respectively.

The signal-to-noise ratio (SNR) was estimated, for each
quantified compound, with the Mnova script SNR peak cal-
culation according to SNR = Y/noise, where BY^ is the ampli-
tude of the peak and Bnoise^ is the root-mean square deviation
calculated in a signal-free area of the spectrum. Limits of
detection (LODs) and quantification (LOQs) were obtained
by multiplying the SNR by 3 or 10 respectively. The confi-
dence interval was ascertained using two wines. Each wine
sample was prepared and analysed once a day for 8 days to
obtain interday coefficients of variation (CVs).

Statistical Analysis

Statistical analyses resulting from the quantifying data obtain-
ed from 1H-NMR spectra were carried out using the R soft-
ware and Simca 15.0 (Umetrics, Sweden). Unsupervised prin-
cipal component analysis (PCA) was carried out using the
FactoMineR and Factoextra plug-in. PCA was used to sepa-
rate useful information from noise and to try to discriminate
wines of different geographical origin, grape varieties or vin-
tage. The quality of the models was estimated by R2 and Q2

values (Lee et al. 2009). R2 is defined as the proportion of
variance in the data explained by the models and indicates
goodness of fit, and Q2 is defined as the proportion of variance
in the data predictable by the model and indicates predictabil-
ity. One-way analysis of variance (ANOVA) was applied to
determine which molecules were responsible of the differ-
ences or similarities observed between each compared wine
group (by analysing the calculated Fisher’s F).

Results and Discussion

Method Development

NMR-based metabolomics is a useful technique for metabo-
lite quantification in complex mixtures (Simmler et al. 2014).
In wine, several publications report the use of qNMR for wine
authentication (Amargianitaki and Spyros 2017; Fotakis et al.
2013). One major problem is the pH adjustment, because pH
variation induces chemical shift modifications. Chemical shift
variations preclude automatic analysis of NMR spectra. The
most common solution consists to adjust the pH using auto-
mated titration and specific solvents (Godelmann et al. 2013;
Godelmann et al. 2016). One of the main goals of this study
has been to develop a simple and direct method to perform a
semi-automatized qNMR analysis of wines.

Method Description

Wines were directly analysed after addition of deuterated wa-
ter, the chemical shift reference (TSP), the quantification ref-
erence (calcium formate) and phosphate buffer. Calcium for-
mate was used as internal standard for absolute quantification
because it is compatible for qNMR experiments, water soluble
and gives a typical chemical shift at δH 8.30 ppm, a region of
the wine spectrum relatively empty of proton signals (Ando et
al. 2010). The signals of water and ethanol were suppressed by
a shape pulse specifically designed for a multiple solvent sup-
pression (Godelmann et al. 2013). To avoid the effects of wine
pH variations on the chemical shifts of compound signals,
different processes can be applied: (i) masking the pH effect
by using an exponential function with a high value of line
broadening prior to the Fourier transformation (Duarte et al.
2004), (ii) processing the data with specific methodologies
such as spectral alignment (Stoyanova et al. 2004) or (iii)
controlling the pH using buffered solutions and/or pH adjust-
ment (Godelmann et al. 2013; Lee et al. 2009). In this study,
the pH was stabilised using a phosphate buffer (pH 2.6) with-
out adjustment. The molar concentration of the buffer was
selected to reduce the wine pH variation with a weak spectral
broadening effect (width at half height under 2 Hz for TSP
signal). In preliminary assays (data not shown), whatever the
wine, the pH variation was less than 0.2 inducing a chemical
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shift variation under 0.01 ppm. This approach combined with
the global deconvolution method (Cobas et al. 2011;
Schoenberger et al. 2016) allows the semiautomatic quantifi-
cation of the main individual metabolites in each wine
spectrum.

Identification of Wine Compounds

Figure 1 presents the typical 1H-NMR spectrum obtained for a
wine. Structural assignments of the main wine compounds
were conducted following this global process: in a first ap-
proach, the spectra were compared to literature data allowing a
preliminary screening (Fotakis et al. 2013) and application of
2D-NMR experiments to avoid the signal overlapping ob-
served in wine spectra (Hu et al. 2015; Lee et al. 2009); sec-
ondly, because experimental conditions (solvent, pH, concen-
tration, ionic strength, temperature, etc.) induced some chem-
ical shift variations, pure chemical standards were added di-
rectly to the wine in an appropriate amount to confirm the
identification. Using this procedure, 33metabolites were iden-
tified in different wines. 1H-NMR data (chemical shift, proton
multiplicity and coupling constant) for each compound are
listed in Table 2.

Assessment of the Method

The accuracy of the qNMR method is illustrated in Fig. 2.
This figure shows the comparison between the NMR mea-
surements and the reference values of TITRIVIN samples.
The TITRIVIN AA series supplies a range of ordinate values
for the most common parameters of wines. The obtained re-
sults show a good convergence between the NMR measure-
ments and the official methods for acids and sugars. However,
divergences appear for some compounds such as for the alco-
hol content. The quantification using qNMR experiments
leads to coefficients of variation (CVs) values ranged from 2
to 16% (Table 3). The lowest value was found for acetic and
lactic acids, glycerol, proline, and tyrosine. The highest values
were obtained for ethyl acetate, fructose, epicatechin, pyruvic
acid, and alcohol content (16, 13, 12 and 11%, respectively).
These high relative values could be related to the signal ac-
quisition, treatment and deconvolution in the regions present-
ing numerous resonances.

Limits of detection (LODs) and quantification (LOQs)
were evaluated according to the instructions of OIV resolution
OENO 7/2000 (Estimation of the detection and quantification
limits of a method of analysis. OIV resolution OENO 7/2000).
The results are reported in Table 3. The LODs values were in
the range of 0.6 to 116 mg/L, the lowest values being found
for trigonelline and syringic acid (0.6 and 0.7 mg/L, respec-
tively) and the highest value being determinated for malic acid
and proline (116 and 62 mg/L, respectively). The LOQs
values were in the range between 2 mg/L (trigonelline) and

384 mg/L (malic acid). These orders of magnitude are com-
parable to those obtained by Godelmann et al. (2016) in their
collaborative study.

Case Study

Nineteen wines from China (listed in Table 1) were studied to
evaluate the potential of NMR to discriminate wines from: (i)
different origins (Shanxi and Ningxia regions), (ii) different
grape varieties (Cabernet Sauvignon and Beihong) (iii) and
different vintages. Each of them were analysed in triplicate
and the 33 metabolites listed in Table 2 were quantified.
Principal component analysis (PCA) was used to obtain an
overview on the present dataset and influential variables.
PCAwas successfully employed for NMR metabolite finger-
printing in grape-derived products (Fotakis et al. 2013). PCA
score and loading plots of the variables associated with the
first two principal components based on NMR data are shown
in Fig. 3. In addition, one-way analysis of variance ANOVA
was performed in order to highlight which compounds allow
the discrimination of sample groups.

Terroir and Vineyard Impact

The classification of wines according to their terroir was pre-
sented in Fig. 3a. Only the wines produced with grape variety
Cabernet Sauvignon were analysed to discriminate the geo-
graphical origin. The PCA score plot derived from compound
quantification using 1H-NMR data indicates a clear separation
between the two regions. These results indicate that NMR-
based metabolomics are able to separate wine terroir within
the same country. Several compounds were pointed out to
explain this observation. ANOVA statistical test allowed
highlighting the compounds making possible to discriminate
both regions, even if the wines come from different producers
and vintages. The main discriminating factors in this study
were proline, tyrosine, choline and gallic acid. In agreement
with our results, a study on Italian wines indicated that the area
of production could be discriminated on the basis of the con-
tents in proline, but also succinic acid, 2,3-butanediol and
glycerol (Viggiani and Morelli 2008). In another study on
Cabernet Sauvignon wines from different countries
(California, Australia and France), data showed that among
the compounds responsible for the separation, such as glycer-
ol, 2,3-butanediol and proline are the most important (Son et
al. 2008). In this study, 2,3-butanediol and glycerol are also
found as minor discriminating factors. However, the relevance
of including them seems unjustified because their concentra-
tions depend mainly on fermentations and not on terroir.
Nevertheless, these results suggest that wine origin could be
discriminated by NMR analysis by measuring a combination
of viticultural and winemaking parameters.
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To observe if NMR-based metabolomics is able to separate
wines from the same area, the Cabernet Sauvignonwines from
Ningxia were analysed alone. These samples represent four
different wineries from the same region and 3 vintages of the
same wine (2012, 2013 and 2014) per winery. The attempted

discrimination of the four wineries is unsuccessful by PCA
(results not shown). Concerning ANOVA analysis, differ-
ences were found between concentrations of many com-
pounds such as amino acids (proline, alanine), 2,3-butanediol,
ethyl acetate, organic acids (acetic, lactic, and syringic),

Fig. 1 Typical wine 1H-NMR spectrum including the selected signals for quantification listed in Table 2
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acetoin, isobutanol, isopentanol or phenylethyl alcohol.
However, these significant differences do not allow discrimi-
nation of the wines of the four studied wineries. The discrim-
ination between nearby wineries seems to be delicate using
only NMR-based metabolomics. It could be useful to add
other data coming from different techniques such as inductive-
ly coupled plasma mass spectrometry for the measurement of
rare earth elements (Šelih et al. 2014) or isotope ratio mass
spectrometry (Guyon et al. 2011).

Classification of Grape Varieties

The influence of the grape variety on wine metabolome
was carried out on the different wines from Ningxia
stemming from two varieties: Beihong, a local grape
variety, and Cabernet Sauvignon. PCA results were
shown in Fig. 3b. This analysis clearly separates the
Beihong wine and the Cabernet Sauvignon wine group
even if these wines are neither of the same vintage nor

Table 2 1H-NMR chemical shifts
used for organic compound
identification in wine. The signals
chosen for quantitation are
underlined

Compound δ1H in ppm (multiplicity, J in Hz, assignment)

1 2,3-butanediol 1,13 (d, 6.2, 2CH3); 3,61 (m, 2CH)

2 Acetic acid 2,06 (s, CH3)

3 Acetoin 1,37 (d, 7.0, CH3); 2,21 (s, CH3); 4,42 (m, CH)

4 Alanine 1,48 (d, 7.2, CH3); 3,76 (q, CH)

5 Alcohol content 1,17 (t, 7.2, CH3), 3,65 (q, CH2)

6 Arginine 1,70 (m, CH2); 1,89 (m, CH2); 3,23 (q, CH2); 3,75 (t, 6.5, CH)

7 Caffeic acid 6,43 (d, 16.0, CH), 7,69 (d, 16.0, CH)

8 Choline 3,19 (s, 3CH3); 3,51 (dd, CH2); 4,05 (m, CH2)

9 Citric acid 2,53 (d, 15.6, CH); 2,65 (d, 15.6, CH)

10 Epicatechin 6.07 (d, 2.2, CH), 6.10 (d, 2.2, CH)

11 Ethanal 2,23 (d, 3.0, CH3); 9,67 (q, CH)

12 Ethyl acetate 1,26 (t, 7.2, CH3); 4,12 (q, CH2)

13 Fructose 4,11 (m, 2CH2); 4,00 (dd, 12.8 and 0.8, CH2)

14 Fumaric acid 6,71 (s, 2CH)

15 Gallic acid 7,13 (s, 2CH)

16 γ-Aminobutyric
acid

2,50 (t, 7.3, CH2)

17 Glucose 5,22 (d, 3.7, CH); 4,61 (d, 7.9, CH)

18 Glycerol 3,55 (dd, 11.8 and 6.5, CH2)

19 Isobutanol 0,87 (d, 6.7, CH3); 1,73 (m, CH); 3,36 (d, 6.7, CH2OH)

20 Isopentanol 0,88 (d, 6.7, CH3); 1,43 (q, CH); 1,64 (m, CH2); 3,61 (t, 6.7, CH2OH)

21 Lactic acid 1,38 (d, 7.0, CH3); 4,31 (q, CH)

22 Malic acid 2,71 (dd, 16.3 and 7.0, CH); 2,82 (dd, 16.3 and 4.5, CH); 4,45 (s, CH)

23 Mannitol 3,75 (m, CH); 3,79 (d, 9.0, CH2); 3,83 (dd, 11.9 and 2.6, CH2)

24 Methanol 3,35 (s, CH3)

25 Myo-inositol 3,27 (t, 9.7, CH); 3,52 (dd, 10.0 and 2.8, 2CH); 3,61 (t, 2.8, 2CH); 4,05 (t, 2.8, CH)

26 Phenethyl
alcohol

2,76 (CH2); 3,74 (CH2OH); 7,28 (m, CH); 7,34 (m, CH)

27 Proline 1,99 (m, CH2); 2,06 (m, CH); 2,33 (m, CH); 3,32 (dt, 14.0 and 7.1, CH); 3,42 (dt, 11.6
and 7.0, CH); 4,11 (dd, 8.6 and 6.4, CH)

28 Pyruvic acid 2,35 (s, CH3)

29 Shikimic acid 6,81 (m, CH)

30 Succinic acid 2,62 (s, α,βCH2)

31 Syringic acid 3,84 (s, 2CH3); 7,24 (s, 2CH)

32 Tartaric acid 4,41 (s, CH)

33 Threonine 1,33 (d, 6.7, CH3)

34 Trigonelline 8,07 (m, CH); 8,82 (m, 2CH); 9,11 (s, CH)

35 Tyrosine 6,89 (m, 2CH); 7,17 (m, 2CH)

36 Valine 0,99 (d, 7.3, CH3); 1,03 (d, 7.3, CH3)
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of the same vinery. In agreement with the studies on
white wines using high-performance capillary electro-
phoresis (Chabreyrie et al. 2008), grape varieties could
be differentiated on the basis of the contents in proline
and shikimic acid. In addition to these two metabolites,
compounds which bear grape variety were amino acids
(proline, alanine, threonine, tyrosine and valine), organic
acids (shikimic, succinic and fumaric acids), methanol
and phenylethyl alcohol. In international wines obtained
from three grape varieties (Cabernet Sauvignon, Shiraz

Fig. 2 Comparison between qNMR data (empty circle) and reference
values (filled circle) of the TITRIVIN wines (AA1 to AA5, and BTA)
for acetic acid, malic acid, lactic acid, alcohol content and sugars.
Acceptance intervals correspond to the maximal value that a laboratory
can accept for the reference value when it analyses TITRIVIN for the first
time

Table 3 Limits of detection (LODs) and quantification (LOQs) and
coefficients of variation (CVs) in wines

Compound LOD (mg/L) LOQ (mg/L) CV (%)

2,3-Butanediol 1 3 7

Acetic acid 2 5 2

Acetoin 2 4 5

Alanine 3 10 7

Alcohol content (% alc.vol.) 2 (0.2) 7 (0.8) 11

Arginine 6 18 6

Caffeic acid 1 3 8

Choline 5 17 5

Citric acid 21 68 3

Epicatechin 3 10 12

Ethanal 0.6 2 4

Ethyl acetate 1 3 16

Fructose 34 112 13

Fumaric acid 1 3 6

Gallic acid 4 14 5

γ-Aminobutyric acid 1 3 7

Glucose 38 126 6

Glycerol 17 42 2

Isobutanol 14 46 8

Isopentanol 24 80 7

Lactic acid 33 110 2

Malic acid 116 384 3

Mannitol 15 48 10

Methanol 16 54 3

Myo-inositol 60 197 4

Phenethyl alcohol 3 9 3

Proline 62 205 2

Pyruvic acid 2 5 12

Shikimic acid 6 20 6

Succinic acid 55 181 7

Syringic acid 0.7 3 8

Tartaric acid 35 117 4

Threonine 2 5 6

Trigonelline 0.6 2 3

Tyrosine 4 13 2

Valine 0.7 3 6

Food Anal. Methods (2018) 11:3425–3434 3431



and Campbell Early), the compounds contributing to the
separation were assigned to be 2,3-butanediol, lactate,
acetate, proline, succinate, malate, glycerol, tartrate, glu-
cose, and phenolic compounds (Son et al. 2008). These

results indicate that NMR spectra analysis gives a good
prediction of grape varieties based on various parameters
depending on the studied variet ies and growth
conditions.

Fig. 3 PCA score and loading plots of the variables associated with the
first two principal components derived from qNMR analysis of wines:
comparison between Ningxia and Shanxi wines (a, d). Comparison

between the grape varieties (b, e). Comparison between the three
vintages (2012, 2013, and 2014) of Ningxia wineries (c, f)

3432 Food Anal. Methods (2018) 11:3425–3434



Influence from Vintages

Growth conditions, including weather, climate and viticul-
tural practices, affect wine quality. So, vintage is crucial
both for trading and customers. Figure 3c presents PCA
score plots based on NMR-extracted data of Cabernet
Sauvignon wines from Ningxia from three vintages
(2012, 2013 and 2014). All the wines were analysed by
NMR in 2017. In this region, the 2012 vintage was a bad
year for grape growing, with heavy rainfall and significant
disease pressure. On the contrary, 2013 and 2014 were
considered as good years, with little rainfall and a
favourable climate. Whereas a statistically significative
separation was observed between wines produced in
2012 and 2014, no difference was observed concerning
metabolite levels between 2013 and 2014. The wines pro-
duced in 2013 do not constitute an isolated group. The
main discriminant factors were methanol, gallic acid, glu-
cose, fructose, myoinositol and tyrosine levels. These re-
sults indicate that the NMR-based metabolomic ability to
separate wines from different vintages seems to be influ-
enced by growth conditions. In a NMR analysis of
Amarone wines produced in Italia (Consonni et al.
2011), NMR-based metabolomics combined to multivari-
ate analysis clearly separated wines obtained from 3 years
of harvesting (2005, 2006 and 2007). Close to our data,
the main metabolites involved for wine separation were
amino acids, sugars and aromatic compounds. Similar re-
sults were obtained between the 2006 and 2007 vintage
on grape wines from a Korean region (Lee et al. 2009).
These results indicate that NMR-based metabolomics al-
lows the separation of wine profiles according to the vin-
tage year. Nevertheless, the vineyard growth conditions
need to be taken into account to separate vintages.

Conclusion

1H-NMR-based metabolomics is effective to quantify diverse
metabolites from several families of compounds in a complex
mixture such as wine. The method proposed in this study is
relatively fast, without extraction or pre-processing methods,
and with good reproducibility. Targeted NMR spectrometry
along with multivariate statistical analysis can discriminate
wines from different regions, grape varieties and vintages.
Different chemical markers such as alcohols, organic and ami-
no acids are effective in these cases. Nevertheless, wine is a
living matrix continuously evolving. It would be relevant to
ensure that the analyses made today will still be valid tomor-
row regarding the same wines.
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