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Abstract
Red meat is an important source of nutrients and plays a significant role in human diet. With the development of people’s living
standard and relative change of dietary structure in recent years, people propose more requirements for meat. Quality, safety, and
classification are three crucial themes related with meat and they are important issues for consumers, retailers, as well as the
whole meat industry. However, most of the traditional analytical methods for meat evaluation are time-consuming, laborious,
tedious, and destructive, which make them inappropriate for fast analysis and early detection, especially under fast-paced
production and processing environment. In contrast to conventional approaches, spectral techniques including near infrared
spectroscopy (NIRS), hyperspectral imaging (HSI), and Raman spectroscopy (RS) have emerged and considered as promising
tools for meat assessment. The innovative optical sensing techniques can facilitate simple, fast, accurate, and simultaneous
measurements of multiple meat attributes. Recently, these techniques have achieved rapid development and attracted more
attention of the public. Hence, the goal of this article is to give an overview of the current progress of the spectral techniques
for evaluation of fresh red meat (pork, beef, and lamb). The spectral techniques are described in terms of their basic working
principle, fundamental configurations, analysis process, as well as applications on meat inspection. In addition, the problems to
be tackled and future potential trends of these spectral methods are also discussed in this paper.
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Introduction

Meat, particularly red meat, is of utmost importance in
human’s diet as it includes high content of easily digestible
protein, essential fatty acids (FAs), and other micro-nutrients
that are beneficial to health (Wojnowski et al. 2017).
According to Food and Agriculture Organization (FAO) of
the United Nations, the total amount of global meat produc-
tion is about 3.207 million t in 2016, which indicates the meat
industry’s immense potential for development. In the last few
decades, meat consumption patterns have changed and con-
sumers are increasingly demanding meat that is of higher in-
trinsic quality, guaranteed safety, and having increased func-
tional and nutritional properties (Papadopoulou et al. 2011).

This has resulted in research interests in techniques that deter-
mine the quality, safety, and classification, which are three
crucial aspects related with meat.

In many studies, safety is regarded as part of quality.
However, we consider these aspects independently. Quality
is analyzed in the context of how humans perceivemeat, while
safety is evaluated with respect to threats to health (Alander
et al. 2013). Quality encompasses eating quality attributes and
chemical attributes (Miller 2017). Eating quality attributes in-
clude color, marbling, flavor, tenderness, juiciness, and water
holding capacity (WHC), which determine the sensory or
masticatory impression on meat. Chemical attributes, such as
water, protein, intramuscular fat (IMF), and FA, describe the
main compositions of meat and are closely related to its nutri-
tional value. Of all the chemical attributes, FA profiles are
increasingly drawing attention owing to the effect of the
amount and type of FA on eating quality, such as tenderness
and flavor (Gonzalez-Martin et al. 2005), as well as its close
relationship with cardiovascular diseases. Meat safety is a top
priority as it is associated with human health. Safety could be
challenged in various ways (Saucier 2016), of which micro-
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organism-associated issues are the most serious threat in terms
of both foodborne illness and product recalls (Lianou et al.
2017). This is because meat provides a suitable growing envi-
ronment for spoilage and foodborne pathogens. Microbial con-
tamination may occur in the process of production, storage, dis-
tribution, retailing, and consumption. Furthermore, chemical
contaminants and residues, such as veterinary drug and pesticide
residues, may also impact meat safety. The contaminations may
be caused by man-made, natural, or mineral toxins, which pose
great health risks to humans (Dasenaki and Thomaidis 2017).
Another aspect that caught our attention was the classification
of meat, which includes the authenticity issues and discrimina-
tion based on the quality attributes. According to Ballin (2010),
authentication can be divided into four major categories, namely
identification of meat origin, meat substitution, meat processing
treatment, and non-meat ingredient additions. The discrimination
involves the differentiation of red firm non-exudative (RFN)
meat, pale soft exudative (PSE) meat, and dark firm dry (DFD)
meat, the distinction between tender and tough meat, and so on.

Traditional analytical methods, such as sensory evaluation,
chemical analysis, and micro-biological analysis, have been
used for decades. They are considered effective, reliable, and
capable of providing consistent results (Peng and Dhakal
2015). However, these methods require well trained assessors
or are generally time-consuming, tedious, labor-intensive, and
destructive (Alander et al. 2013). To satisfy demands of pro-
ducers, manufacturers, distributors, retailers, and especially
consumers, the meat industry requires innovative technologies

to realize objective and reliable meat evaluation at all stages of
the commodity chain. Spectroscopic techniques have emerged
as possible methods, and they have exhibited many advan-
tages over traditional methods such as easy handling, high
speed, cost efficiency, and the capacity of automated measure-
ments for repetitious tasks. Besides, they are also potential
tools for on-line or in-situ detection owing to their capacity
for high throughput analysis, which is an attractive factor from
the industrial point of view. Among, near infrared spectrosco-
py (NIRS), hyperspectral imaging (HSI), and Raman spectros-
copy (RS) are three commonly used techniques for meat in-
spection (Chen et al. 2013).

A number of reviews have been published on their appli-
cations for food evaluation as summarized in Table 1, which
involves the quality and safety assessment of meat, fish, bev-
erage, and so on. The papers demonstrated that such spectral
methods have been implemented as alternatives to conven-
tional methods. Considering the importance of red meat, a
systematic introduction to the recent applications of spectro-
scopic methods in red meat is urgently needed. Besides, the
published reviews cover only one aspect of the applications, a
comprehensive review on the applications of three crucial as-
pects of quality, safety, and classification is lacking.

Therefore, the specific goal of this article is to present an
overview of the current research progress and applications of
three spectroscopic techniques (NIRS, HSI, and RS) for mon-
itoring quality, safety, and classification in fresh red meat
(pork, beef, and lamb). The specific objectives of this review

Table 1 Summary of the applications of spectral technology in food evaluation

Technology Product Target attributes Reference

NIRS Food Quality Davies and Grant (1987)

NIRS Food and agriculture Component concentration Martin (1992)

NIRS Meat Chemical composition and quality Prevolnik et al. (2004)

NIRS Food Quality Cen and He (2007)

NIRS Food and beverages Quality Woodcock et al. (2008)

NIRS Meat and meat products Quality Prieto et al. (2009a)

NIRS Muscle food Quality and safety Weeranantanaphan et al. (2011)

NIRS Intact muscle Quality Reis and Rosenvold (2014b)

NIRS, HSI, RS, and infrared
thermal imaging

Meat Quality Troy et al. (2016)

HSI Agro-product Quality and safety Peng and Zhang (2013)

HSI Food Quality and safety Wu and Sun (2013)

HSI Red meats Quality Xiong et al. (2014b)

HSI Pork, beef, and lamb Quality attributes Xiong et al. (2014a)

HSI Raw and processed agricultural
and food products

Microbial contaminants He and Sun (2015)

HSI Meat, poultry, and fish Contamination, adulteration, and authenticity Kamruzzaman et al. (2015)

HSI Muscle Quality attributes, muscle classification Cheng et al. (2017)

RS Fish and meat Quality assessment Herrero (2008)

RS Agricultural products and food Quality assessment Yang and Ying (2011)
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are as follows: (1) to introduce their basic working principle,
fundamental configurations, and analysis process and focus
on the recent advances and applications in meat assessment
especially after 2010; (2) to discuss the problems and chal-
lenges that must be addressed for further application; and (3)
to analyze the development and application tendency of these
three spectral techniques.

Spectral Methods and Techniques

Near Infrared Spectroscopy

NIRS is based on the absorption of electromagnetic radiation
in the range of 780~2526 nm. It is related with molecular
vibrations, especially the overtones and combination bands
of vibrational modes in the form of C-X, where X is carbon,
nitrogen, or oxygen (Cabassi et al. 2015; Kumar and
Chandrakant Karne 2017; Lohumi et al. 2015), and the com-
monly observed bonds in the NIR region are summarized in
Table 2 (Stuart 2005). A general NIRS systemmainly consists
of light source, optical detector, computer, and beam splitter
system, as shown in Fig. 1 (Cen and He 2007). Generally, NIR
measurements can be performed in reflectance, interactance,
or transmittance mode (Qin and Lu 2008). Meat is usually
recorded in the reflectance mode, in which case, the illuminant
and detector are placed on the same side of sample and the
reflected light is captured by the detector after repeated reflec-
tion, refraction, absorption, and diffraction (Gou et al. 2013).
Of all the optical technologies, NIRS is the most flexible as it
can separate the sampling position from the spectrometer by
means of a light-fiber probe, and this is the reason why NIRS
is suitable for on-line process monitoring (Ozaki 2012).

After acquisition of NIR spectra, chemometric tools are
usually required to relate them and reference values.
Pretreatment methods, such as smoothing, derivative, and
multiplicative scatter correction (MSC) are commonly used
methods to eliminate the adverse effects. Mathematical and
statistical tools including partial least square (PLS), multiple
linear regression (MLR), principal component regression
(PCR), and support vector machine (SVM) are required to
build models (Arvanitoyannis and van Houwelingen-
Koukaliaroglou 2003). In addition, sample grouping methods,
elimination of abnormal samples, and characteristic wave-
length selection approaches also play a crucial role in building
a robust model. A more detailed introduction about the mul-
tivariate analysis approaches was given by Porep et al. (2015).

The application of NIRS for meat detection can be traced
back to 30 years ago, when silicon detector was developed and
allowed acquisition of spectra in the range of 700~1100 nm.
This improvement enabled the analysis of meat, which is a
kind of high-moisture sample (Alander et al. 2013).
Subsequently, along with the evolution of optical instrument

and improvement of chemometrics methods, NIRS technolo-
gy has undergone rapid development. Numerous researches
which aimed at exploring the feasibility of NIRS in meat eval-
uation have been conducted, and satisfactory results were ob-
tained (Brøndum et al. 2000; Hoving-Bolink et al. 2005;
Prieto et al. 2006; Prieto et al. 2008). However, there are still
some problems to be tackled for its further application in meat
industry. Hence, in recent few years, most work focused on
improving the prediction accuracy and establishing robust and
practical models. Besides, another noteworthy improvement
is the development of portable or hand held spectrometer,
which has facilitated on-line or in-situ applications of NIRS.
It is worth mentioning that as the visible (Vis) region is com-
monly involved in NIR instrument, the following applications
also cover the visible region.

Quality Analysis Using NIRS

The potential of NIRS for prediction of quality traits has been
examined extensively, and in recent years, many researchers
are devoting themselves to improving the model robustness.
Zamora-Rojas et al. (2011) conducted a study on the develop-
ment, validation, and updating of NIRS models for routine
analysis of IMF, water, and protein in pork. The Global
(GH) and Neighborhood (NH) Mahalanobis were proposed
and used to select samples for recalibration, and good spectral
matching for muscles that were not included in the calibration
was observed. Further, the influence of muscle breeds and
types on the calibration models was reported by Mourot
et al. (2015). In their work, FA compositions of beef from four
breeds and three muscles were predicted with determination
coefficient of cross-validation (Rcv

2) > 0.86. Their study indi-
cated that including several types of muscles in a global cali-
bration model was necessary for industrial application. In an-
other study conducted by Zhang et al. (2012b), pig carcasses
of different breeds were collected from three markets for water
prediction. The comparison of modeling results showed that
SVM performed better than PLS with correlation coefficient
in the prediction set (Rp) of 0.87. The precision was lower than
that of Cheng et al. (2012), who used Fourier transform near-
infrared spectroscopy (FT-NIRS) to detect water in minced
pork. Muscles from three different parts were collected and
least square support vector machine (LS-SVM) model was
built, which gave an Rp of 0.90. The comparison of their
studies showed that the sample presentation had an effect on
the model results. This conclusion was verified by Guy et al.
(2011), who compared the results for FA compositions in
ground and intact lamb samples. Their study indicated that
the PLS models with ground samples performed better than
intact samples with higher Rcv

2. The reasons may be that ho-
mogenization would severely alter the muscles structure, and
the fiber arrangement is also destroyed and randomized. Then
the scattering effects caused by the fibers will be averaged,
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which result in better predictive performance for chemical
attributes (Barlocco et al. 2006). However, the destruction of
natural structure and randomized arrangement of muscle may
also result in the loss of muscle information, leading to poor
prediction performance for physical attributes, for example,
Warner-Bratzler shear force (WBSF) (Prieto et al. 2009b).
Besides, although the milling treatment may help guarantee
accurate prediction results, it is a time-consuming phase and
cannot satisfy the requirement of meat industry for non-
destructive and real-time analysis.

Hence, more attention was paid to improving models based
on intact meat. Tang et al. (2013) compared different pretreat-
ment and modeling methods to determine water content in
beef. The PLS model based on spectra after MSC yielded
the best result with Rp of 0.92 and standard error in the pre-
diction set (SEP) of 0.0047.More recently, in another study on
predicting beef water using NIRS, the authors tried cluster
analysis of particle swarm optimization (PSO) algorithm to
reduce computation complexity and optimal PLS model was
established with Rp of 0.9191 (Tang et al. 2014). Their
work showed that selection of appropriate pretreatment
methods and spectral range is conducive to improve spectral
interpretation capability and eliminate unwanted information.
In addition to these studies on algorithm, improvements
in hardware also contribute to the optimization of
models. To increase the sampling area and improve

spectral representativeness, Zheng et al. (2016) used a ring
light guide instead of a point light illumination to establish a
NIRS system in the range of 400~2450 nm. The comparison
of spectra and variation coefficient indicated that the former
performed better than the latter with more stable and
comprehensive spectral information. Dixit et al. (2016) report-
ed another study to evaluate the capacity of collimated light
and multipoint NIR spectroscopy system in estimating IMF,
protein, and water of beef. The spectrophotometer had four
channels, which enabled the simultaneous measurements of
four positions and overcame the drawback of lacking
representativeness for single-point measurement. They
obtained good results with determination coefficient in
the prediction set (Rp

2) from 0.90 to 0.97 for IMF, wa-
ter, and protein at three modes (static, slow rotational
motion, and fast rotational motion).

Other factors that influence the model results were also
discussed. Prevolnik et al. (2010) explored the effect of refer-
ence values analytical methods on the prediction capacity. The
authors used EZ drip loss, cooking loss, centrifuge force, and
tray drip loss for determination of WHC in pork. The best
results were achieved based on EZ drip loss and tray drip loss,
which gave Rcv

2 of 0.62 and 0.49, respectively. However, the
model precision was low, which restricted its implementation
at industrial level. The results also demonstrated that the reli-
able and repeatable reference values were critical for a robust

Reflector

Detector

Light
source

Beam splitter system

SampleComputer

Fig. 1 Basic composition of a
NIRS acquisition system

Table 2 Common near-infrared
bands of organic compounds
(Stuart 2005)

Wavelength (nm) Assignment

2200~2450 Combination C-H stretching

2000~2200 Combination N-H stretching, combination O-H stretching

1650~1800 First overtone C-H stretching

1400~1500 First overtone N-H stretching, first overtone O-H stretching

1300~1420 Combination C-H stretching

1100~1225 Second overtone C-H stretching

950~1100 Second overtone N-H stretching, second overtone O-H stretching

850~950 Third overtone C-H stretching

775~850 Third overtone N-H stretching
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model. In another study conducted by Liu et al. (2014b), they
discussed the influence of distance between fiber optical and
sample on prediction accuracy. Vis/NIR spectra at distances
from 4 to 18 mm were collected, and then PLS models for
tenderness were established and compared. The spectra at dis-
tance of 13 mm yielded the best result, and then other spectra
were calibrated to those at 13 mm. After calibration, the
Rp and SEP increased to the range of 0.83~0.90 and
4.80~5.75 N. The results implied that setting the exper-
imental parameters at the optimum state is the prerequi-
site for obtaining good results.

Another noteworthy progress was the miniaturization of
instruments, which has prompted the on-line and in-situ in-
spection. By means of a conveyor, Liao et al. (2010) devel-
oped an on-line system for prediction of IMF, protein, water,
pH, and shear force (SF) value. The Rp

2 for all traits were
above 0.757 except for SF value. Later, the authors improved
the model for pH by selecting characteristic variables with Rp

of 0.89 (Liao et al. 2012). More recently, Zhang et al. (2013)
designed an on-line real-time detection system which
consisted of spectrometers, multiplexer, fiber optical,
sensor, and conveyor to assess water in pork quality,
and an Rp of 0.903 was achieved. In addition,
Pullanagari et al. (2015) implemented NIRS under com-
mercial abattoir condition for quantitative prediction of
FA compositions in lamb. Based on the PLS models,
individual fatty acids (IFA), saturated fatty acid (SFA),
monounsaturated fatty acid (MUFA), and polyunsaturat-
ed fatty acid (PUFA) were predicted with Rcv

2 of
0.35~0.74. Although the results need further improve-
ment, it was still considered as a potential screening
tool for online determination of chemical compositions.

Apart from on-line detection system, further efforts were
also made on developing portable device. Zamora-Rojas et al.
(2013) compared a handheld micro-electro-mechanical sys-
tem (MEMS) spectrometer with a high-resolution NIRS
monochromator for prediction of main FAs in Iberian pig.
The reasonable results indicated that the handheld spec-
trometer with low cost, high speed, and simple sample
presentation would pave a new way for on-line applica-
tion. Based on a portable spectrometer, Lin et al. (2014)
and Sun et al. (2015) designed a portable detection de-
vice which was capable of non-destructively detecting
multiple quality attributes. The device included ARM
(advanced RISC (reduced instruction set computer) ma-
chines) processing unit, light source and detection unit,
spectral data acquisition unit, LCD (liquid crystal dis-
play) touch screen display unit, and the cooling unit.
Their work achieved the Rp of 0.88, 0.90, 0.97, 0.97,
and SEP of 0.19, 1.77, 1.17, and 0.63 for pH, L*, a*,
and b*, which therefore indicated the great potential of
the portable device for real-time detection directly at the
selling points for quality control.

Safety Analysis Using NIRS

Spoilage is a significant standard to measure whether the meat
meets with edible level and could synthetically reflect the
security of meat. It is caused by microbial activity and will
pose a great threat to human health. An important attribute for
spoilage status determination is total viable counts (TVC),
which is the collective name of psychrophilic micro-
organisms reproduced in meat. However, the studies on using
NIRS to predict microbial and chemical contamination in red
meats are scant. Gu et al. (2013) exploited its capability in
inspecting the TVC of pork stored at room and low
temperature and an Rp of 0.92 was obtained. Long et al.
(2014) applied NIRS over the spectral range of 460~940 nm
to identify the spoiled pork from fresh pork. In this work, the
authors tried different feature wavelength selection methods
and discrimination algorithms for model establishment. The
Fisher variance discrimination model based on 16 character-
istic wavelengths performed the best with accuracy of 96.88
and 90.91% in the calibration and prediction set, respectively.
The rare applications on the determination of microbial con-
tent and chemical pollutant concentration may be attributed to
two reasons. On one hand, micro-organisms and chemical
residues are unevenly distributed in meat, while the NIRS is
based on point measurement. Hence, it is difficult to cover the
comprehensive information of intact meat. On the other hand,
the capacity of NIRS for predicting micro-organisms lacks of
explanation, which has aroused many scholars’ suspicion.

Total volatile basic nitrogen (TVB-N) is another crucial
attribute to determine meat freshness, which is related with
shelf life. As storage days pass by, alkaline nitrogen such as
ammonia and amine was produced and combined with acidic
substances within the organization to form TVB-N (Li et al.
2015). Meat is deemed to be semi-fresh or putrid when the
TVB-N content is beyond 15 mg/100 g according to Chinese
standard GB 2707-2016 (Li et al. 2017). In an early paper on
this topic, Cai et al. (2011a) investigated the potential of FT-
NIR for TVB-N content determination. The authors compared
synergy interval PLS (siPLS) and classical PLS, and the re-
sults showed that si-PLS had incomparable superiority to PLS
for the removal of unwanted information and retention of
relevant variables. However, the model was not satisfactory
with Rp less than 0.8. Recently, another study on prediction of
TVB-N using feature wavelengths was reported Ma et al.
(2013). In this work, uninformative variable elimination
(UVE) and successive projections algorithm (SPA) were com-
bined to select characteristic variables. Eight out of 1571 var-
iables were then chosen, and high correlation with Rp = 0.925
was obtained using the LS-SVM method, which further
highlighted the importance of the exclusion of irrelevant var-
iables. In addition, as freshness is associatedwith storage time,
there has been a substantial effort in using NIRS to predict
storage time. For example, Wu et al. (2012b) conducted a
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study on using the NIRS in the range of 1000~2500 nm to
discriminate the storage time, and good agreement with an
average classification rate of 95% was observed.

Similar with the study of quality attributes, rapid, non-de-
structive, and real-time detection device for safety attributes
has merged. Using the dual-band spectra over the range of
400~2500 nm,Wang et al. (2016) designed a detection device,
which was equipped with hardware unit and software control
program. The device could collect, real-time process, calcu-
late, display, and preserve spectral information at the same
time. The model for TVB-N was built with Rp of 0.9363,
which indicated the great potential for further application.

Meat Classification Using NIRS

Authenticity is an important issue which has a negative impact
on economy, and it may also derive problems with regard to
religious laws or personal behaviors (Fontanesi 2017). NIRS
has been successfully employed for discriminant analysis in
early studies, such as identification of beef, pork, chicken and
lamb meat (Cozzolino and Murray 2004), and discrimination
among different types of ground beef (Prieto et al. 2008).

Recently, Cai et al. (2011b) carried out a study to differen-
tiate beef with different regions and feeding periods. The NIR
spectra showed significant difference, which paved the way
for its application in geographical origin assignment and trace-
ability. Mamani-Linares et al. (2012) investigated the potential
of NIR reflectance spectroscopy for recognizing cattle with
llama and horse meat. Meanwhile, the authors also used
transflectance spectroscopy to identify meat juice with differ-
ent species. PLS model based on the Bdummy^ variables gave
good discriminating models with accuracy of 94.94 and
96.55% for meat and meat juice, respectively. More recently,
Alamprese et al. (2013) compared the capacity of UV-Vis,
NIR, and mid-infrared (MIR) spectroscopy in detecting
minced beef adulteration with turkey meat. The results
showed that the fused UV-Vis-NIR-MIR data matrix yielded
the most satisfactory result than any single instrument.
However, the cost-benefit ratio needs to be taken into consid-
eration for further application. Apart from researches on fresh
meat, studies were also conducted on processed meat. Morsy
and Sun (2013) evaluated the potential of NIRS for detecting
and quantifying adulterants (pork, fat trimming, and offal) in
fresh and frozen-thawedminced beef. Satisfactory results with
accuracy of 100% were obtained for discrimination of two
types of meat. For the quantification of adulterants, good
agreements with Rp

2 of 0.96, 0.94, and 0.95 were obtained
for fresh meat, 0.93, 0.82, and 0.95 for frozen-thawed meat.
A similar study was conducted by Alamprese et al. (2016) to
identify minced beef adulteration with turkey meat using FT-
NIR spectroscopy and multivariate analysis. Samples were
presented as raw, frozen-thawed, and cooked, and then PLS
models were built with Rp

2 higher than 0.884 and SEP lower

than 10.8%. The results demonstrated that although the tech-
nological treatments may mask some possible interspecies
adulteration, it is still considered feasible to use NIRS for meat
identification in processed meat.

To discriminate meat based on their quality attributes using
NIRS was also studied. Liu et al. (2014a) combined NIRS
with PLS projection to discriminate RFN meat from PSE
and DFD meat. Thirteen feature wavelengths were selected
and employed for classification, and accuracy rates of 84.62,
94.11, and 84.62% were obtained. Reis and Rosenvold
(2014a) reported another study for early on-line classification
of carcasses in a commercial hot boning abattoir under routine
conditions. In this work, the ultimate pHu (48 h post-mortem)
with a threshold of 5.8 was used to segregate carcasses as
normal or high. Two separate models for bulls and non-bulls
(steers, heifers, and cows) were built, both of which gave good
results with classification accuracy of at least 90% for high
pHu carcasses. More recently, using the spectra from 400 to
1495 nm, Balage et al. (2015) conducted a study to categorize
samples into tender or tough and juicy or dry. Accuracy of 72
and 73% was achieved for the classification of tenderness and
juiciness class. Although their work demonstrated the great
potential of NIRS, supplementary research is required to
improve the prediction precision. In addition, portable
instrument was also employed for discrimination of meat.
Prieto et al. (2015) used a portable LabSpec®4 spectrometer
to segregate pork samples according to pig breeds.
Meanwhile, the authors also used it to discriminate moisture
enhanced sample from non-moisture enhanced meat.
Satisfactory results with accuracy of 97 and 99% for samples
aged 2 days and 94 and 95% for samples aged for 14 days
were obtained. However, the distinction of pork samples with
different diets or from different carcass chilling processes
needs further investigation.

Other applications of NIRS for detection of meat were
summarized in Table 3.

Hyperspectral Imaging Technology

HSI technology has been proved to be a powerful analytical
tool as it integrates both spectroscopic and imaging techniques
in one system to provide spectral and spatial information of
tested samples. A hyperspectral image contains much infor-
mation in a three-dimensional (3D) form called Bhypercube^
(Kamruzzaman et al. 2012a; Kamruzzaman et al. 2015),
among which two dimensions are coordinate information of
spatial pixel, which are expressed in x and y, and the third
dimension is wavelength information, which is represented
with λ. As a combination and extension of traditional spec-
troscopy and digital imaging, it provides a more detailed de-
scription of internal and external attributes (Ravn and Bro
2008). Another strategic advantage of HSI technique is its
capacity to generate chemical maps to show distributions of
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each ingredient in a pixel-wise manner, which makes the pre-
diction results more intuitionistic. As hyperspectral images
contain high-dimensional data, a simplified version derives
from it, namely multispectral imaging (MSI), which uses a
few (generally less than 10) wavebands that are extracted from
fundamental datasets of hyperspectral images. Instead of
obtaining continuous spectra in HSI system, discrete spectral
data are acquired by MSI technology.

A typical HSI system is shown in Fig. 2a, which mainly
consists of a charge-coupled device (CCD) camera and its
control unit, an imaging spectrograph, a specially assembled
light unit, a conveyer belt operated by a stepper motor, data
acquisition software, and a computer. When acquiring spatial-
ly resolved hyperspectral scattering images, the light source is
replaced by a point illuminant source (usually use a quartz
tungsten halogen lamp and an optical fiber) (Fig. 2b) (Peng
and Lu 2008). A more detailed description of the optical fun-
damentals of HSI and the most recent advances in the config-
urations was given by Huang et al. (2014a). The methods for
acquiring and analyzing spectral images and calibrating spec-
tral imaging systems were summarized by Qin et al. (2013).

As the original images contain thousands of multidimen-
sional data distributed over the measured area, further analy-
ses are needed by means of chemometric tools. For the spa-
tially resolved hyperspectral images, they undergo the follow-
ing processing as shown in Fig. 3a. After acquisition, scatter-
ing profiles are fitted using Lorentzian or Gompertz function
(Lu and Peng 2006). Then Lorentzian parameters (a, asymp-
totic value; b, peak value; c, full width at b/2; d, slope) or
Gompertz parameters (α, asymptotic value; β, upper value,
ε, full scattering width; δ, slope) are acquired and formed
multiple Bcharacteristic spectra,^ which can be used to char-
acterize the sample properties. Figure 3a shows the fitting
process using Lorentzian function, and parameters a, b, and
c at each wavelength were extracted. For the reflectance infor-
mation, the step-by-step analysis procedure is shown in
Fig. 3b. After acquisition of meat images at wavelength λ1
to λn, image correction, image segmentation, and range of
interest (ROI) selection are conducted. Then spectral data
are extracted from the ROI and used for model establishment
(ElMasry and Nakauchi 2016). A more detailed introduction
about the analysis procedure was given by Iqbal et al. (2014)
and Feng and Sun (2012).

The applications of HSI technique cover various agricul-
tural products, such as meat and meat products, fish,
fruit, vegetables, and grain. It was verified to be capable
of accomplishing various routine inspection tasks. Here,
we provide a specific summary about the applications of
hyperspectral scattering profiles and reflectance informa-
tion in evaluation of quality and safety attributes and
classification of fresh red meat. It is hoped that the
review would contribute to an in-depth understanding
of the hyperspectral application in meat industry.T
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Quality Analysis Using HSI

The potential of scattering profiles for quality inspection was
explored and significant correlations were found. An early
paper on this topic was given by Wu et al. (2010), in which
hyperspectral scattering technique was employed to predict
beef tenderness, pH, and color (L*, a*, and b*). MLR models
were established based on Lorentzian parameters a and bwith
correlation coefficient of cross validation (Rcv) of 0.86, 0.86,
0.92, 0.90, and 0.88. Subsequently, the authors investigated its
capacity to predict tenderness and color (L*, a*, and b*) of 7-
day aged beef samples. Lorentzian parameters a&b&c at fea-
ture wavelengths were used to build MLR models with Rcv of
0.91, 0.96, 0.96, and 0.97 (Wu et al. 2012a). Later, Tao et al.
(2012) turned to the study of tenderness prediction for pork.
Likewise, MLR models based on individual parameter and
combined parameters of (b − a), (b − a) × c, (b − a) / c and
Ba&b&c^ were developed and compared. The results showed
that the models using parameters a, b, (b − a), and (b − a) / c
performed better with Rcv of 0.831, 0.860, 0.856, and 0.930,
respectively. Meanwhile, the authors also applied Gompertz
function and found that integrated parameter α&β&ε&δ was
superior to individual parameter with Rcv of 0.949 for pork
tenderness (Tao and Peng 2014).

Researches based on reflectance spectra are more than
those with scattering profiles, especially when spatial distri-
bution of quality attributes is needed. An early trial was re-
ported by ElMasry et al. (2011, 2012), who realized non-
contact measurement of WHC, surface color, pH, and tender-
ness of fresh beef. Image processing algorithms were applied
to each pixel, thus the distribution of components con-
tent can be visualized by producing pseudo-color images
in which different colors represent different concentrations.
Subsequently, the authors developed a laboratory-based
push-broom HSI system in the range of 900~1700 nm for
determination of major chemical compositions in beef
(ElMasry et al. 2013). PLS models were built, yielding Rp

2

of 0.89, 0.84, and 0.86 for water, fat, and protein content,
respectively. In another study, Barbin et al. (2013d) compared
the capability of HSI technology and computer vision imagery
for predicting beef tenderness. The results indicated that the
PLS model using spectral information alone performed better
than that using features extracted from computer vision
images and Rcv

2 increased to 0.75 when combining
information together. In addition to using only the spectral
information, Liu and Ngadi (2014) proposed a new method
by calculating the proportion of IMF content fleck areas at
critical wavelengths to predict IMF content in pork.
Comparison of PLS and MLR models indicated that PLS
model outperformed other methods with Rp

2 of 0.97. Based
on his research, Huang et al. (2016) reported another approach
to predict the IMF content and marbling score (MS) of fresh,
frozen, and frozen-thawed pork. Comparison of prediction
results using raw and Gabor-filtered spectra showed that
Gabor filter technique could extract critical features of IMF
and MS, but more work is needed to improve the prediction
accuracy of frozen-thawed pork. Subsequently, the authors
compared three different processing methods (Gabor filter,
gray level co-occurrence matrix (GLCM), and wide line de-
tector) for determination of IMF content of rib end, and the
best model was obtained based on the Gabor-filtered mean
spectra (Huang et al. 2017). In addition, the application of
HSI for marbling evaluation was also conducted by
Velasquez et al. (2017). The authors firstly attempted the de-
cision tree method for agricultural product, and satisfactory
result was obtained with a classification error of 0.08% in
the building stage.

In addition to these applications on pork and beef, numer-
ous studies have also been conducted for the prediction
of lamb. The potential of HSI in the NIR range of
900~1700 nm was firstly investigated by Kamruzzaman et al.
(2012b) for prediction of chemical compositions in lamb
meat. Six feature wavelengths were selected and used to create
PLS models. Rp

2 of 0.84, 0.87, and 0.82 were obtained for
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Fig. 2 Schematic of a hyperspectral imaging system: a for reflectance, b for scattering
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water, fat, and protein, which confirmed its prediction capa-
bility for lamb. Further, based on the same instrument, the
authors continued to exploit its capacity in predicting other
quality attributes. Satisfactory result was obtained for L* with
Rcv

2 of 0.91, and reasonable good prediction performance was
achieved for pH and drip loss with Rcv

2 of 0.65 and 0.77,
respectively (Kamruzzaman et al. 2012c). More recently, the
authors firstly attempted to use HSI technique for determina-
tion of both instrumental and sensory tenderness in lamb. PLS
models were built with Rcv of 0.84 for WBSF and 0.69 for
sensory tenderness. Although the models needed further im-
provement, it was still considered to be an interesting

screening tool to quickly categorize meat into tender and
tough classes (Kamruzzaman et al. 2013a). Meanwhile, the
capability of hyperspectral images in the range of
400~1000 nm was also examined. Kamruzzaman et al.
(2016a) conducted an exploratory study on real-time monitor-
ing of WHC in red meat. Eight characteristic wave-
lengths were selected to build LS-SVM model, which
gave a good prediction result with Rp

2 of 0.93. All the
aforementioned results have demonstrated the great po-
tential of HSI technology for lamb quality assessment,
which also laid foundation for the development of mul-
tispectral equipment.
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Besides the laboratory study, HSI technology was also im-
plemented under commercial conditions for real-time detec-
tion of quality attributes. Konda Naganathan et al. (2016)
developed a prototype on-line system to collect images of
ribeye muscle on hanging beef carcasses in beef packing
plants. Experimental results showed that principal component
analysis (PCA) combined with Fisher’s linear discriminant
(FLD) gave the best performance with tender certification
accuracy of 86.7% and accuracy index value of 66.8%. The
results were better than spectroscopic system and beefcam,
which was developed by Colorado State University for ten-
derness prediction. In another study reported by Craigie et al.
(2017), the possibility of HSI technology for lamb quality
assurance within a processing plant environment was evaluat-
ed. Lamb M. longissimus lumborum were collected over two
sampling years to predict FA compositions and pH. This re-
search also highlighted the importance of ongoing calibration
and validation for improving model robustness.

Safety Analysis Using HSI

The ability of spatially resolved hyperspectral scattering pro-
file for spoilage evaluation has already been investigated and
satisfactory results were found. Peng et al. (2011) conducted a
study on using two-parameter Lorentzian function to fit the
spectral scattering profiles at individual wavelengths. Then
MLR model was built to relate the combined Lorentzian pa-
rameters and TVC content, which yielded a good prediction
result with Rp

2 of 0.95. Three-parameter Lorentzian function
was then employed by Tao et al. (2012) to determine the
Escherichia coli contamination in pork. Individual parameter
a and combined parameters Ba&b&c^ gave high Rcv of 0.877
and 0.841, respectively. Subsequently, the authors explored
the feasibility of modified Gompertz function to extract the
scattering characteristics of pork. The comparison of individ-
ual Gompertz parameter (α, β, ε, and δ) and the combined one
(α&β&ε&δ) showed that better result was obtained for E. coli
based on the combined one with Rcv of 0.939 (Tao and Peng
2014). A similar conclusion was given by Song et al. (2014)
who compared the capability of Gompertz and Lorentzian
function for fitting the scatter profile of pork. In this work,
TVC was well predicted using the combined Gompertz
parameter with Rp of 0.92. Followed by the research, Tao
et al. (2015) proposed an optimal approach to detect low levels
of TVC contamination in beef. Based on the individual and
combined Lorentzian parameters, three modeling methods
which consisted of PCR, PLS, and back propagation neural
network (BPNN) were applied, and the BPNN model was
deemed the best with Rp of 0.90. The results also verified
the preponderance of combined parameters in predicting safe-
ty attributes in meat. However, as we know, no work has been
published on prediction of safety attributes in lamb using the
scattering profile.

Based on reflectance spectra, a few studies have been con-
ducted to quantify TVC. Barbin et al. (2013a) explored the
feasibility of HSI in the range of 900~1700 nm to determine
TVC and psychrotrophic plate count (PPC) in pork stored in
aerobic conditions at two temperatures (0 and 4 °C). PLS
models were established which gave Rp

2 of 0.86 and 0.89.
By applying the models to each pixel in the images, spatial
visualization maps were produced from which the magnitude
of microbial contamination in the sample could be observed.
Huang et al. (2013) reported another study by using light
diffuse reflectance for accurate determination of TVC. Good
agreement was achieved with Rp

2 of 0.8308 when combing
spectral variables and image variables, which showed superior
to any single information.

Besides using HSI technology, there are plenty of studies
conducted on usingMSI technology for contamination assess-
ment. Dissing et al. (2012) used a rapid MSI device for spoil-
age detection of pork stored at different temperatures (0, 5, 10,
15, and 20 °C) and package types (aerobic and modified at-
mosphere). The TVC was predicted with SEP of 7.47%,
which demonstrated the potential of the setup for microbial
count prediction in minced meat. Subsequently, another study
was carried out by Panagou et al. (2014), who used the MSI
technology for microbial count determination in aerobically
packaged beef at different storage temperatures (0, 4, 8, 12,
and 16 °C). Average estimation deviations of 11.6, 13.6, and
16 . 7% we r e a ch i e v ed fo r Pseudomona s s pp . ,
B. thermosphacta, and TVC, respectively. Besides, the au-
thors also classified samples into three classes according to
TVC (< 5.5, 5.5–7.0, and > 7.0) with accuracy rate of
80.0%. More attention should be paid to the color stability
for further application of MSI technology in micro-
biological monitoring. Recently, Tsakanikas et al. (2016) ex-
tracted contamination Bsignature^ spectra for TVC contami-
nation assessment using MSI technique. Aerobically pack-
aged beef stored at 2, 8, and 15 °C were discriminated into
two classes based on TVC with a threshold of 2 log10CFU/g
(colony forming units, CFU). The classification accuracy was
80.8%, and quantitative analysis result was determination co-
efficient in the calibration set (Rc

2) = 0.98, which verified the
existence of contamination signature spectra.

With regard to TVB-N, Li et al. (2012) designed a portable
device based on MSI technique for real-time detection of
TVB-N in intact pork. The device consisted of single-chip
micro-computer control unit, light source unit, image acquisi-
tion system, data processing unit, and liquid crystal display
unit. Combined with the self-developed software, the device
could accomplish detection in less than 10 s. More recently,
Huang et al. (2015) developed a MSI system based on three
characteristic wavelengths (1280, 1440, and 1660 nm).
GLCM was employed to extract feature variables from the
images, and BPNN adaptive boosting method was proposed
for model establishment with Rp of 0.8325. Their work
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indicated that theMSI systemwas capable of predicting TVB-
N content with reasonable result and the research would
facilitate its practical usage in meat industry. Instead
of using a few wavelengths, Li et al. (2016b) adopted
a 650-nm laser and acquired scattering images for fresh-
ness monitoring. Samples were divided into fresh, sec-
ondary fresh, and stale based on their TVB-N and TVC
contents. Then GLCM was used to extract the texture
features and qualitative model was built with discrimi-
nation accuracy of 100%.

Apart from TVB-N, other attributes related with
freshness were also trialed using HSI technology. A
laboratory investigation on predicting biogenic amine
index (BAI) value in pork, which are products of bac-
terial growth and metabolism, was reported by Cheng
et al. (2016a). Likewise, they extracted characteristic
wavelengths using regression coefficient for model de-
velopment, and excellent MLR model was built with Rp
2 of 0.957. However, the authors pointed out that the
determination of BAI was based on the physiochemical
changes related with BAI generation rather than a direct
determination of its content. The authors also reported a
further study on another important attribute K value,
which was an indicator calculated based on the adeno-
sine triphosphate (ATP) related compounds (Cheng et al.
2016b). In their work, spectral information and texture
data were extracted by GLCM and fused by the inter-
mediate level fusion (ILF) method, which was known as
the integration of the feature variables from each sensor
(Huang et al. 2013). The comparison of results showed
that the fused data performed better than any single data
with an improvement of 17.5%. For a more condensed
overview of current trends, these applications are further
summarized in Table 4.

Meat Classification Using HSI Technology

Similar with NIRS technology, classification of meat based on
HSI technology also relies on spectral differences as well as
various discriminant analysis methods. Liu et al. (2010) used
image texture features to differentiate four main levels of pork
quality (RFN, PFN, PSE, and RSE). Spectral features were
extracted from Gabor-filtered and raw images and then com-
pressed into principal components (PCs) using PCA. The lin-
ear discrimination analysis (LDA) model yielded an average
accuracy of 84 ± 1% by five Bhybrid^ PCs, which were creat-
ed by combining PCs from raw and Gabor-filtered images.
Another type of HSI system in the NIR spectral range of
900~1700 nm was employed by Barbin et al. (2012a) to cat-
egorize meat with different quality. The author used a
Bdancing pixels^ method to select ROI, which could exclude
interfering information and acquire characteristic spectra.
Then PCA was conducted based on six significant

wavelengths with the accuracy of 96% for PSE, DFD, and
RFN meat. The study also laid the foundation to the further
introduction of MSI instrument for meat quality assessment.

The potential of HSI technology for the identification of
meat species was also carried out to prevent meat fraud or
adulteration. Kamruzzaman et al. (2012a) combined HSI,
multivariate analysis, and image processing to identify pork,
beef, and lamb. Partial least square discrimination analysis
(PLS-DA) models were established based on six important
wavelengths with an overall classification accuracy of
98.67%. Then the authors exploited its possibility for quanti-
fication of adulteration in minced lamb (Kamruzzaman et al.
2013b). Minced pork in the range of 2~40% (w/w) was added
into lamb at 2% increments.MLRmodel based on four feature
wavelengths yielded a satisfactory result with Rcv

2 of 0.98.
The visual distribution map showed obvious spatial variation
between different adulteration levels. More recently, the au-
thors tested the aptitude of HSI in tandemwith machine learn-
ing for detection of chicken adulteration in minced beef
(Kamruzzaman et al. 2016d). PLS models were built based
on reflectance, absorption, and Kubelkae-Munck spectra with
Rp

2 of 0.97, 0.97, and 0.96, respectively. Another study was
reported by Ropodi et al. (2015) who used MSI to detect
minced beef substituted with pork and vice versa for the first
time. A 10% adulteration with pork in beef and vice versa
were identified and recognized as the quantitative detection
limit. An independent validation indicated that the PLS-DA
model could discriminate all the pure and adulterated samples
of nine adulteration levels correctly. Further, the authors eval-
uated its possibility in detecting horsemeat adulteration in
minced beef (Ropodi et al. 2017). The independent test
yielded an overall correct classification of 95.31%, which
was worse than previous study (Ropodi et al. 2015) due to
the influence of color changes during storage.

Other authenticity issues, such as the discrimination of
fresh and frozen-thawed meat, were conducted Barbin et al.
(2013c). Based on the optimal wavelengths that are related to
the main chemical changes caused by freezing and thawing
processes, PLS-DA models were established. Then a set of
independent samples were used to validate the models and
achieved an overall correct classification of 100%. More re-
cently, in another study, the feasibility of MSI for identifica-
tion of water-injected beef was conducted by Liu et al. (2016).
PLS model was built based on spectral data and feature infor-
mation extracted from RGB (red, green, blue) data with Rp =
0.946, which was better than that using only spectral data (Rp

= 0.923).

Raman Spectroscopy

RS is another form of analytical vibrational spectroscopy, and
it is an obvious inelastic scattering effect discovered by C.V.
Raman in 1928 (Raman and Krishnan 1928). When the
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sample is exposed to a laser beam, most of the incident pho-
tons (99.9999%) undergo Rayleigh scattering (also called
elastic scattering), in which case, the incident light energy
and scattered energy are not changed. Only a very small part
(0.0001%) of incident light produced inelastic Raman signals,
in which case, the shift in the energy level between incident
and scattered beam is observed (Yaseen et al. 2017). If the
photons scattered from molecular centers have greater energy
than the exciting radiation, it is called anti-Stokes scattering.
Conversely, it is named Stokes scattering (Tao and Ngadi
2017). The change in the energy state in wave number
(cm−1) is called Raman shift, which can be defined as
Bchemical fingerprint^ of the samples, and this is the theoret-
ical basis for characterization of structures and qualitative
identification of Raman spectra.

A typical RS system consists of a monochromatic light
source (usually laser), spectrometer, CCD, optical fiber probe,
and computer. After acquisition of Raman spectra, the data are
calibrated first, and then ROI is selected. Noise filtering is a
necessary step before further analysis as the presence of noise
increases the complexity as well as reducing the signal to
noise ratio (SNR). There are various digital filter methods,
and Savitzky-Golay (SG) smoothing is the widely used one.
Fluorescence background interference is another challenge as
Raman scattered signals are weak and the presence of strong
fluorescence background increases the difficulty in qualitative
and quantitative analysis. Several algorithms have been put
forward for subtraction of fluorescence background, such as
iterated polynomial fitting and adaptive iteratively reweighted
penalized least squares (airPLS). Then qualitative analysis is
performed based on identification of the spectral peak, which
represents the fingerprint of target attributes. Quantitative
analysis is done based on the correlation of spectral signal
intensity and reference values.

RS has many advantages: (1) Raman bands have a good
SNR and they are non-overlapping, thus providing obvious
Raman fingerprint of target attributes; (2) no special sample
preparation is required and the absence of contact with sample
gains its importance in meat analysis; (3) RS technology can
complete the analysis in a few seconds, which makes it feasi-
ble for real-time detection (Yang and Ying 2011); (4) Raman
spectra exhibit well-resolved bands of fundamental vibration-
al transitions, thus providing a fair amount of molecular struc-
ture information of several components (Herrero 2008); and
(5) Raman effect is insensitive to water, which is favorable for
meat analysis as it contains a high water content of about 75%.

The applications of RS for inspection of meat were rela-
tively less compared with NIRS and HSI techniques. In the
last few years, technical progress in spectrometer, detector,
and filter technology, combined with the development of in-
novative chemometric approaches, has triggered the develop-
ment of RS technology and paved ways for an increasing
number of applications. Hence, a summary of recent research

progress of RS for quality, safety, and classification of meat is
necessary to get a glimpse of current application of RS
technology.

Quality Analysis Using RS

The preliminary investigations on the application of RS were
carried out by Beattie et al. (2004, 2006, 2008) and Olsen et al.
(2007), which demonstrated the feasibility and potential of RS
in quality control programs for fresh red meat. However, they
all used a bench top instrument with a 785 nm in their studies.
To satisfy the requirement of industrial application, a handheld
and compact device based on a laser diode emitting light at
671 nm was developed by Schmidt et al. (2009). Then the
author investigated its potential in estimating the SF and
cooking loss of cooked meat (Schmidt et al. 2013). Raman
spectra of raw sheep meat from two different origins (second
cross lambs and first cross lambs) were collected and used for
build PLS models. The results showed that models based on
single origin performed better than that based on the combined
one. For the two sample origins, Rc

2 of 0.79 and 0.86 were
obtained for SF; 0.79 and 0.83were achieved for cooking loss,
respectively. One reason for this may be due to the offset in
spectral background between both sites. Using the same
device, Fowler et al. (2014a) conducted a study for the first
time to investigate the potential of RS to predict SF of fresh
lamb M. semimembranosus (topside, whose product identifi-
cation number is HAM 5077). Based on PLS method, they
achieved the best prediction result with Rcv

2 of 0.27. The
authors also found that tough and tender lamb meat can be
discriminated effectively using the intensity of spectral peaks
at 826, 853, and 930 cm−1. Besides, given the economic value
of the M. longissimus lumborum (LL), the authors also con-
ducted a study to predict SF in LL (Fowler et al. 2014b).
However, a poor result with Rcv

2 of 0.06 was achieved, but
they believed that these conclusions were restricted to LL
excluded other muscles and traits. Then the authors studied
its possibility in predicting IMF and FA in LL. The results
demonstrated its potential in prediction PUFA (Rc

2 = 0.93),
MUFA (Rc

2 = 0.54), and SFA that had been adjusted for
IMF content (Rc

2 = 0.54) (Fowler et al. 2015).
Based on the portable Raman system, studies on predicting

quality traits in pork were also carried out. Scheier et al.
(2014) used it to predict pH45 (pH measured 45 min post-
mortem), pH24 (pH measured 24 h postmortem), L*, a*, b*,
drip loss, and SF after 24 and 72 h under real-life conditions in
the cooling house. Promising correlations were found for
pH45, pH24, and L* with Rcv

2 of 0.65, 0.68, and 0.64; better
correlations were built for b*, drip loss, and SF after 72 h with
Rcv

2 of 0.73, 0.73, and 0.70. However, the results for a* and
SF after 24 h needed further improvement. Subsequently, the
authors tried to measure and predict quality traits of intact
muscles at the slaughtering process for the first time (Scheier
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et al. 2015). Likewise, the prototype handheld Raman device
was employed to collect RS of intact muscles 30~60 min post-
mortem at the veterinarian line of a commercial abattoir. Then
PLS models for pH35 (pH measured 35 min postmortem),
pH24, and drip loss were built with Rc

2 of 0.75, 0.58, and
0.83. The results confirmed the applicability of RS to predict
important quality traits, but further improvement should be
made in terms of analysis speed and robustness of predictive
model. Nache et al. (2016) continued his work and introduced
ant colony optimization (ACO) metaheuristics to predict pH45

and pH24 for the first time. The results indicated that informa-
tion about pH45 and pH24 was inherently contained in the pre-
rigor and post-rigor Raman spectra. However, further research
needed to be conducted as more Raman spectral information
about the nature of metabolism was still uncovered.

With respect to beef, few studies were conducted. One
study was reported by Bauer et al. (2016) who first used the
aforementioned 671-nm Raman system to evaluate SF values
of beef. PLS models for beef aged at − 1 and 7 °C were built
with Rcv

2 of 0.33 and 0.79 at two storage temperatures.
Besides, the authors also discriminate the samples into tough
and tender with validation accuracy rates of 59~80% accord-
ing to thresholds between 30 and 49 N. Recently, Nian et al.
(2017) made a further study on using RS technology to predict
eating quality related with physico-chemical traits of bull beef.
Different from the previous studies, homogenized samples
from different types of muscle and aging times were used.
Rcv

2 values of 0.75, 0.77, 0.85, 0.91, 0.70, 0.79, 0.79, and
0.88 for WBSF, cook loss, IMF, moisture, crude protein con-
tent, total collagen, hydroxyproline content, and collagen sol-
ubility were achieved. In addition, the authors also exploited
its capacity to discriminate samples with different ages and
muscles; accuracies of 100 and 86.70% were obtained, which
demonstrated its application potential.

Safety Analysis Using RS

The employment of Raman spectra to monitor the biochemi-
cal and physical changes during storage was investigated by
Sowoidnich et al. (2012). In their study, the authors described
the aforementioned portable 671-nm Raman sensor system in
detail and demonstrated its capacity in discriminating edible
from spoiled meat. Argyri et al. (2013) compared the FT-IR
spectroscopy and RS for micro-biological and sensory assess-
ment of minced beef samples under different packing condi-
tions (aerobic and modified atmosphere packaging). Several
machine learning and evolutionary computing methods were
employed and compared, and the genetic algorithm-artificial
neural network (GA-ANN) model gave a classification accu-
racy of 96.15 and 81.08% for fresh and spoiled sample.

Using the surface enhanced Raman spectroscopy (SERS)
technique, Zhai et al. (2017) attempted the feasibility to detect
salbutamol in muscle tissues and liver. SG smoothing and

airPLS were employed to eliminate the noise and fluorescence
background. 621, 814, 1253, 1489, and 1609 cm−1 were iden-
tified as the characteristic peaks and used for monitoring the
salbutamol levels. The detection limit for salbutamol in mus-
cle tissues and liver samples was 0.01 and 0.02 mg/kg, and Rp
2 of 0.912 and 0.921 was obtained for quantitative analysis.
Their study provided a possible method for evaluation of
harmful additives in animal product sample.

Meat Classification Using RS

Few attempts have been carried out for classification of meat
using RS technology. Boyaci et al. (2014) proposed a novel
method to discriminate beef and horsemeat using RS com-
bined with chemometrics. PCAwas conducted on Raman data
of pure fat samples and adulterated beef samples with
horsemeat in 0, 25, 50, 75, and 100% by weight. The high
accuracy, short analysis time, and straightforward sample
preparation demonstrated that RS technology can be a
potential tool for adulteration recognition. More recently,
Biasio et al. (2015) reported another study about using
micro-RS to discriminate different meat types including
chicken, pork, turkey, beef, horse meat, and mutton. The re-
sults indicated that the discrimination between white and red
meat was easy to do. However, more sophisticated analysis
methods were required when classifying samples within the
red meat class as the error rate is up to 15%. As far as the
present result is concerned, although useful information to
discriminate meat was obtained, much work still needed to
be done for industrial meat sorting.

Challenge and Future Trends

Despite the rapid development of NIRS, there are several
drawbacks facing this technology. Firstly, the establishment
of precise models depends on laborious calibration proce-
dures, which makes it time-consuming and costly at the be-
ginning. Much effort should be taken to relate spectra and
reference values and build an accurate model. Besides, the
model updating also requires substantial time, energy, and
funds. Secondly, the model robustness is a significant chal-
lenge for NIRS as it is susceptible to acquisition parameters
and environmental conditions. Acquisition parameters such as
scanning times, distance between sample and detector, as well
as environmental factors such as ambient temperature, humid-
ity, illumination conditions, and sample temperature would
influence the spectra collection. Hence, to build a robust mod-
el in the presence of variable interferences, much work still
needs to be done. Thirdly, the lack of uniformity between
optical instruments is another important issue, which makes
the calibration models obtained using one device not be read-
ily used on another. The rebuild of models would be heavy
work in this case and increase the difficulty in application.
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Last but not the least, as the acquired spectral profiles usually
contains large amounts of information, hence, elimination of
redundant information to reduce multicollinearity problem is
necessary. Various algorithms for characteristic wavelengths
selection have emerged. However, the feature wavelengths
chosen by different methods are not consistent even for the
same set of spectra, and the lack of interpretability for some
feature wavelengths is another puzzling problem.

With respect to HSI technique, except for the foregoing
limitations, there are other barriers that it suffers from. As
spectral and spatial information are obtained simultaneously,
the high dimensional nature of hyperspectral data bring many
barriers in data acquisition and processing. To speed up the
image analysis by identifying the most influential wave-
lengths and eliminating the irrelevant information remains a
challenging task. With such massive raw image data, it is
difficult for HSI systems to be widely implemented for on-
line and real-time application. In addition, the HSI instrument
is relatively expensive compared with conventional methods,
thus increasing the cost of commercial detection and impeding
its broader adoption.

As to RS, which is considered as a fast and convenient
method with high sensitivity and fine application prospect,
there is still a long way to go. Fluorescence background has
been deemed as one of the major factors that limit its applica-
tions. Selection of appropriate excitation wavelength and use
of fluorescence quenching agent are possible tools to elimi-
nate fluorescence. Other features such as the laser power, scan
times, and sample orientation can jeopardize accurate quanti-
fication (Yang and Ying 2011). These problems especially the
elimination of fluorescence interference issues still need to be
further solved and studied for on-line or real-time application.

In fact, some effort has been taken to overcome these dif-
ficulties facing the spectral methods. Several recent studies
have been conducted as possible solutions in response to these
disadvantages. For instance, new algorithms are being pro-
posed to eliminate the undesired effects and noise produced
during the data acquisition. Qiao et al. (2015) employed sin-
gular spectrum analysis (SSA), which is commonly used for
time series analysis, as a pre-processing approach for
hyperspectral data. The experimental results indicated that
the method could remove the instrument noise effectively
and improve model performance. In addition, some academic
groups are working on understanding the absorption and scat-
tering behaviors of diffuse reflectance to develop better algo-
rithm for extraction of relevant information, which allows for
the removal of various interference. Meanwhile, the manufac-
turers are working on methodologies to diminish manufactur-
ing variability, which would improve the transfer issues.

However, in spite of such drawbacks, the enhancement in
instrumental development in combination with the availability
of high-speed computer and the development of appropriate
chemometric procedures will facilitate this technique to be

dominant in the future. Firstly, with the increasing demand
for meat assurance, on-line and real-time detection systems
for multiple attributes are in urgent need. These optical sys-
tems which could realize an instantaneous knowledge of meat
components should be the main future trend and would play a
crucial role in increasing the profitability of meat industry.
Early efforts have achieved initial successes; however,
the implement of on-line inspection still requires more
investigation. In fact, on-line measurements have been
claimed by a number of studies but rarely perform
them. Hence, much effort needs to be taken for further
large-scale online studies to verify the reliability and
accuracy under industrial processing condition.

Secondly, with the simplification and great diffusion of
these spectral methods, efficient portable, handheld, and
micro-optical instruments with multifunction and low cost
are becoming available, which offers possibility to perform
analysis outside from laboratories (Alamprese et al. 2016;
Ayvaz and Rodriguez-Saona 2015). The development of
low-cost, miniature, fit-for-purpose detection device for meat
has the potential to completely change the conventional instru-
mentation lifecycle. Once implemented, the easy-to-use de-
vice directly at the point of interest (e.g., supermarket,
farmer’s market, selling point, and restaurants) should be un-
doubtedly a guarantee for the public.

Thirdly, one should also bear in mind that both hardware
system with good performance and efficient chemometrics
tools are the precondition and foundation of obtaining
a robust model. Hence, to develop instruments with
higher sensitivity and resolution and to improve the al-
gorithm stability would be research focus for the years
to come. For example, for RS technology, the develop-
ment of fast detectors to separate fluorescence and
Raman scattering in time is expected to avoid fluores-
cence interference, and superconducting nanowire
single-photon detector may be one alternative.

In addition, as meat is a complicated sample and single-
inspection method may acquire limited information, it would
be interesting to combine spectral technology and other
emerging technologies to make full use of multivariate
information and realize comprehensive evaluation of meat.
In fact, some scholars have been working in this direction.
Barbin et al. (2013d) developed PLS models to predict slice
SF of pork by combining the spectral information collected by
HSI system and image features acquired by a computer vision
system. A result with Rcv

2 = 0.75 was obtained, which was
better than using any individual information. Huang et al.
(2014) conducted another study to evaluate freshness using
NIRS, computer vision, and electronic nose techniques. An
Rp

2 of 0.9527 was obtained based on the integrated informa-
tion, which showed superiority of multidata fusion technolo-
gy. Similarly, Li et al. (2015) integrated HSI technology
and colorimetric sensor to predict TVB-N content in
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pork using a non-linear data fusion method and an Rp

of 0.932 was achieved.

Conclusion

This review summarized the recent progress of spectral
methods and techniques (NIRS, HSI, and RS) in rapid deter-
mination of quality (color, pH, tenderness, WHC, drip loss,
cooking loss, fat, protein, water content, FA, etc.), safety
(mainly TVB-N and TVC), and classification in fresh red
meat (pork, beef, and lamb). The results from different studies
may have some difference due to the influence of external
factor, such as instrument performance and statistical methods
employed. In general, these promising results have demon-
strated the great potential for application in meat industry.
All these advantages offered by spectroscopic methods and
techniques open a wide range of possibilities to act as an
adequate tool in the meat industry.
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