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Abstract
A quantitative method using ultra-performance liquid chromatography coupled with tandemmass spectrometry (UPLC-MS/MS)
was developed for the determination of 60 compounds, belonging to a variety of veterinary drug (VD) classes, in meat. The
included analytes belong to the following VD classes: β-agonists, sulfanilamides, quinolones, macrolides, tetracyclines, β-
lactams, nitroimidazoles, glucocorticoids, sex hormones, chloromycetins, sedatives, and olaquindox metabolite. The effective
PRiME pass-through cleanup procedure was used to ensure high extraction efficiency and good sample cleanup after a simple
liquid extraction of the meat samples with acetonitrile/water. The developed method was validated successfully. Mean recoveries
for all analytes ranged from 80 to 116%, with the relative standard deviations (RSDs) ≤ 7.8%. Limits of quantification were in the
range 0.05–3.0 μg kg−1 and limits of detection were in the range 0.1–10μg kg−1. Thematrix effect was evaluated for the different
meat matrices and was found to be markedly different in different matrices. The validated method was used in a pilot study to
analyze real samples of pork, beef, mutton, chicken, and pork liver, lambs’ liver, and chicken liver. Trace amounts of β-agonists,
oxytetracycline, quinolones, chloromycetin sulfadimidine, and 3-methyl-quinoxaline-2-carboxylicacid were detected in these
samples. In conclusion, this workflow can provide a simpler and more cost-effective alternative to conventional analytical
methods and is compatible with processing large sample numbers in a short time period.
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Introduction

Veterinary drugs (VDs), which are widely used in agriculture
and animal husbandry to prevent or cure diseases, to increase

production or as growth promoters, may leave residues in food
from treated animals, in animal excrement, and even in the
environment (Paiga et al. 2017; Teglia et al. 2017; Li et al.
2017; Zhao et al. 2017b). Especially with overdosing and
illegal use, VD residues and their metabolites pose a potential
risk to both animal and human health since long-term expo-
sure can cause cancer, anaphylactic shock, microbial resis-
tance, and reproductive disorders (Lúcia Santos et al. 2016;
Moreno-Gonzalez et al. 2017b; Qin et al. 2017).

To protect public health, pharmacologically active substances
are strictly regulated and monitored in food stuffs of animal
origin and several countries have established maximum residue
limits (MRLs) or tolerances. Commission Regulation (EU) 37/
2010 classified VDs in four annexes, on the basis of a scientific
assessment of safety (Commission 2010). CAC/MRL 2-2015
recommends MRLs and provides risk management recommen-
dations for residues of VDs, such as chloramphenicol, metroni-
dazole, and dimetridazole, in food (Commission 2015). In China,
announcement No. 235 of the Ministry of Agriculture also
established MRLs for different substances in food of animal
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origin (China 2002). In all cases, different international regula-
tions require that levels of residues in food should not harm
consumers. Because of the high number of VDs that need to
be controlled, it is important that regulatory monitoring laborato-
ries have access to multi-class multi-residue analytical methods
that permit analysis of a variety of drugs with a single procedure
(Mainero Rocca et al. 2017; Wittenberg et al. 2017).

There have been several reports describing analysis of VDs
in many products of animal origin, including bovine muscle,
porcine muscle (Park et al. 2015; Zhang et al. 2016), chicken
(Yoshikawa et al. 2017), eggs (Piatkowska et al. 2017), milk
(Wittenberg et al. 2017), and honey (Jin et al. 2017). However,
multi-class methods for analysis of VDs in more than two ma-
trices are scarce because of the complexity of animal-origin
samples and the large number of analytes (Rizzetti et al.
2017). Although multi-class methods are the most efficient
way to maximize the number of analytes that may be simulta-
neously determined by a single analysis, most of the method-
ologies proposed in the literature can only be used for com-
pounds from the same class (Matus and Boison 2016; Qin
et al. 2017; Lu et al. 2016; Zhao et al. 2017a). There also is a
growing trend to develop multi-class multi-residue methods for
VD residues in food. Zanella et al. reported a simple extraction
procedure, using acetonitrile and trichloroacetic acid for protein
precipitation, coupled to liquid chromatography coupled with
tandem mass spectrometry (LC–MS/MS) for the analysis of 20
VD residues in bovine kidney and liver (Rizzetti et al. 2017).
Yoshikawa used a two-step extraction followed by a solid-
supported liquid extraction cleanup for LC-MS/MS analysis
of 37 VDs in seven different classes in two processed chicken
foods (Yoshikawa et al. 2017). A dispersive solid-phase extrac-
tion and LC-MS/MS have been used to develop a multi-class
method for determination of 30 VDs, belonging to three differ-
ent classes inmilk powder (Li andWu 2017). The simultaneous
detection of a large number of analytes at low concentrations
requires the use of a highly sensitive and selective technique.
LC–MS/MS has been widely used for this purpose and has
enabled the simultaneous analysis of several classes of VDs at
low concentrations, even in complex matrices such as bovine
muscle (Dasenaki et al. 2016). Taking into account the wide
variety of physicochemical properties of VDs and the complex-
ity of meat matrices, an important and complex issue is how to
simultaneously analyzemulti-class VDswith generic extraction
procedures (Yoshikawa et al. 2017). An effective sample ex-
traction technique that can essentially eliminate matrices is nec-
essary to achieve reliable results and maintain instrument per-
formance (Tian et al. 2016). Several extraction approaches,
such as the QuEChERS (Quick, Easy, Cheap, Effective,
Rugged and Safe) approach (Guo et al. 2016; Jin et al. 2017;
Paiga et al. 2017; Piatkowska et al. 2017; Turnipseed et al.
2017), solid phase extraction (SPE) (Jianfeng Wang et al.
2017; Turnipseed et al. 2017; Yoshikawa et al. 2017; Chen
et al. 2016), matrix solid phase dispersion (Zhang et al. 2017),

liquid–liquid extraction (Aguilera-Luiz et al. 2008; Pastor-
Belda et al. 2017), and molecularly imprinted polymers
(Doue et al. 2012; Samanidou et al. 2016) have been described.
Because of the complex nature of the matrices, SPE is one of
the most widely adopted cleanup steps for determination of
VDs in food samples. However, because of the narrow selec-
tivity of SPE, it is difficult to broaden the scope of the analytes
and this method is not capable of determining a large number of
compounds belonging to different classes (Guo et al. 2016).
Waters Corporation has released a new Hydrophilic-
Lipophilic Balance (HLB) sorbent called PRiME (process, ro-
bustness, improvements, matrix effects, ease of use), which we
have found to be highly effective for the removal of both fats
and phospholipids from meat extracts (Moreno-Gonzalez et al.
2017a). PRiME HLB sorbent has also been evaluated for the
determination of different families of antibiotics in a complex
matrix such as milk (Chen et al. 2016) and of multiclass VD
residues in fish, shrimp, eel, and swine waste (Turnipseed et al.
2017; Li et al. 2017). This special cartridge does not require
activation/equilibration or washing steps, and provides a better
cleanup effect than Oasis HLB (Chen et al. 2016). The PRiME
pass-through cleanup approach for different mechanisms of ac-
tion is simple to operate, has high efficiency, and is suitable for
high throughput analysis of analytes in complex samples.

In this study, different extraction solvents were investigated
and modifications were made to accommodate a variety of
target analytes. The efficiency of PRiME HLB was also com-
pared with conventional HLB. The performance of this meth-
od was validated by estimating specificity, linearity, trueness,
precision, analytical limits, and matrix effects. Finally, the
method was successfully used for the analysis of VDs in sev-
eral meat matrices.

Experimental

Chemicals, Reagents, and Solutions

HPLC grade methanol and acetonitrile were obtained
from Fisher Scientific, Inc. (Pittsburgh, PA, USA).
Formic acid of high-quality grade was purchased from
Sigma-Aldrich (St. Louis, MO, USA), (Bedford, MA,
USA). Oasis PRiME HLB extraction cartridges
(200 mg, 6 mL) were supplied by Waters (Milford,
MA, USA). The syringe filter was purchased from
Agela (Tianjin, China).

Clenbuterol, salbutamol, ractopamine, mabuterol,
cimbuterol, terbutaline, penbutolol, tulobuterol, fenoterol,
c lorprenal ine, sul famerazine , sul famethoxazole ,
sulfadimidine, sulfadimethoxine, sulfamonomethoxine,
sulfaquinoxaline, sulphacetamide, sulfapyridine,
sulfisoxazole, sulfamethizole, sulfadoxine, sulfathizole,
sulfaphenazole, sulfadiazine, sulfamethoxypyridazine,
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sulfameter, sulfachloropyridazine, enrofloxacin, ciprofloxa-
cin, sarafloxacin, danofloxacin, flumequine, ofloxacin,
norfloxacin, erythromycin, lincomycin, tetracycline, oxytetra-
cycline, chlorotetracycline, doxycycline, amoxicillin, ampicil-
lin, benzylpenicillin, cloxacillin, dimetridazole, metronida-
zole, betamethasone, dexamethasone, methyltestosterone,
trenbolone, testosterone, mengestrol, chloromycetin,
thiamphenicol, florfenicol, chlorpromazine, acetylpromazine,
azaperol, phenylethanolamine A, and 3-methyl-quinoxaline-
2-carboxylicacid were all purchased from Dr. Ehrenstorfer
(Augsburg, Germany) or Sigma-Aldrich.

According to their classification and stability, the
aforementioned compounds were divided into 12 different
groups: β-agonists (10), sulfanilamides (17), quinolones
(7), macrolides (2), tetracyclines (4), β-lactams (4),
nitroimidazoles (2), glucocorticoids (2), sex hormones
(4), chloromycetins (3), sedatives (4), and olaquindox me-
tabolites (1).

Stock solutions of each compound (~ 1000 mg L−1) were
prepared in different solvents and stored at − 20 °C in brown
glass containers for a maximum period of 6 months. The
analytes were dissolved and diluted with an appropriate sol-
vent (acetonitrile, methanol, or water), based on their solubil-
ity properties.

Individual stock standard solutions were prepared by
weighing approximately 10 mg of all compounds into
10-mL volumetric flasks. Depending on the specific solubility
properties, the compounds were dissolved in acetonitrile or
methanol. Multi-compound working standard solutions were
prepared by diluting an appropriate amount of the standard
solutions with methanol. The mixtures were stored at 4 °C
in the dark and were stable for 2 weeks.

Instrumentation

A Waters Acquity™ ultra high-performance liquid chroma-
tography system, equipped with a Waters Acquity
autosampler and binary solvent management system, together
with a Triple Quad™ 5500 mass spectrometer (AB Sciex,
Framingham, USA), with an electrospray ionization source,
were used for the analyses. A 3K-30 high speed refrigerated
centrifuge (Sigma-Aldrich), MS3 basic vortex mixer (IKA,
Germany), and KQ-250-E ultrasonic instrument (Kun Shan,
China) were used for sample preparation.

Chromatographic separations were performed using
Waters ACQUITY UPLC™ BEH C18 analytical columns
(100 × 2.1 mm i.d., 1.7 μm particle size) maintained at
40 °C. Nitrogen (purity ≥ 99%), generated using a nitrogen
generator (Peak Scientific, Billerica, MA, USA), was used in
the ESI source. Chromatographic separation was carried out
with gradient elution at a flow rate of 300 μL min−1, using
water (eluent A) and methanol (eluent B), both containing
0.1% formic acid (v/v). The gradient elution was performed

as follows, 95–80% A (0–3.0 min); 80–50% A (3.0–5.0 min);
50–0% A (5.0–8.0 min); 0% A (8.0–10.0 min); 0–95%A
(10.0–10.1 min); and 95–95% A (10.1–12.0 min).

MS was performed using a Triple Quadrupole Mass
Spectrometer, equipped with an ESI source working in posi-
tive ion mode (ESI+) as follows: ion spray (IS) voltage,
5500 V; curtain gas, 30 psi; nebulizer gas (GS1), 55 psi; aux-
iliary gas (GS2), 55 psi; and source temperature, 400 °C.
When working in negative ion mode (ESI−), the same param-
eters were used, except the IS voltage, which was set at −
4500 V. Nitrogen was used for nebulization and collision. To
optimize the mass spectrometer parameters for each com-
pound, the compounds were infused separately using selective
reaction monitoring (SRM) mode, with a continuous flow of
10 μL min−1 and a concentration of 1 mg L−1. The Analyst
1.6.2 software (AB Sciex) was used for data acquisition and
processing. Optimal values of declustering potential (DP), en-
trance potential (EP), collision energy (CE), collision cell exit
potential (CXP), and SRM for each analyte used for identifi-
cation of VD residues are summarized in Table 1.

Meat Samples

Samples of pork, beef, mutton, chicken, pork liver, lambs’
liver, and chicken liver were purchased from a local supermar-
ket. The samples were minced using a meat grinder and stored
at − 18 °C until analysis.

Sample Preparation

A meat sample (2.50 ± 0.01 g) was weighed into a 50-mL
conical centrifuge tube. Ten milliliters acetonitrile/water (80/
20, v/v) was added and the tube was vortexed for 10 s. The
sample was sonicated for about 30 min then centrifuged at
7000 rpm at 4 °C for 5 min. The resulting supernatant solution
was slowly transferred into a 15-mL centrifuge tube. AWaters
Oasis PRiME HLB cartridge (200 mg, 6 mL) was set up for
pass-through filtration. The extraction mixture (5 mL) was
passed through the cartridge under gravity and collected in a
15-mL centrifuge tube. The extract was concentrated to near
dryness under nitrogen at 45 °C. The extract was then
reconstituted with 20% acetonitrile-water (1mL) and vortexed
for 30 s. Finally, the extract was pressed through a 0.22-μm
syringe filter into a vial and analyzed by UPLC-MS/MS.

Validation Procedure

The method was validated by evaluating linearity, the limits of
detection (LODs), limits of quantification (LOQs), accuracy,
repeatability and reproducibility, and matrix effect using
UPLC-MS/MS. The linearity of the methodwas demonstrated
using blank matrix-matched calibration standard for each an-
alyte. A calibration curve was prepared for blank meat matrix
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with six different concentration ranges at levels of 0.1–
1000 μg kg−1 for analytes, shown in Table 1. For each com-
pound, the matrix-matched calibration curve was obtained by
plotting the ratio of each analyte quantitative ion peak area (y)
versus the corresponding mass concentrations (x). LODs and
LOQs were estimated by fortifying blank samples with the 60
analytes and applying the extraction procedure before chro-
matographic determination. For each analyte, LODs and
LOQs in meat samples were defined as the concentration giv-
ing a signal to noise ratio of 3 and 10, respectively.

The accuracy of the method was evaluated based on the
recoveries of VD residues. The blank meat samples spiked
with all analytes were prepared at three levels ((LOQ) (low),
20 × LOQ (medium), and 50 × LOQ (high)), then processed
and measured under the experimental conditions.
Repeatability and reproducibility was determined in six repli-
cates at each level by measuring corresponding relative stan-
dard deviations (RSDs). Matrix effect (ME) was evaluated by
comparing the response of each VD residue obtained from a
standard solution in solvent and that from a matrix at the same
concentration.

Results and Discussion

Optimization of Analytical Conditions

Various LC conditions, including different chromatography
columns, mobile phases, modes of elution, flow rates, and
column temperatures, were evaluated to obtain good response,
peak shape, and separation. A comparison of acetonitrile and
methanol as the organic solvent showed that higher intensities
and better peak shapes were obtained for most analytes using
methanol. Addition of 0.1% formic acid to both the aqueous
phase and the organic phase enhanced the response of most
analytes in positive ion mode and gave an outstanding re-
sponse for chloromycetins (negative ion mode), with negligi-
ble suppression of the response. As a result of these prelimi-
nary studies, 0.1% formic acid in methanol and water using a
BEH C18 column were chosen as the best LC conditions for
further investigations.

The MS ESI parameters were optimized for both positive
and negative ion modes by direct infusion of standard solu-
tions of each target compound. For most compounds, the pro-
tonated ion [M +H]+ was present as the base peak and was
selected as the precursor ion for quantif icat ion.
Chloromycetins, however, gave the deprotonated ion [M-
H]−. Cone voltage and collision energy were optimized to
acquire two product ions and two transitions for each com-
pound in SRM mode. The higher abundance transition with
less interference was used for quantification and the other
transition was used for identification. The MS parameters,T
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cone voltage, collision energy, and SRM transition selected
for each analyte are shown in Table 1.

Optimization of Sample Preparation

Sample Extraction

One of the greatest challenges faced was to develop extraction
conditions suitable for a wide range of VD analytes in a single
extraction procedure and to eliminate the complex interfer-
ences in meat tissue matrices. Acetonitrile, methanol, and wa-
ter mixtures are frequently used in the extraction step in the
analysis of VD residues. Acetonitrile gave less co-extraction
of matrix and facilitated protein precipitation.

Various extraction solvent combinations were investigated
in terms of the absolute recoveries obtained for each individ-
ual analyte. In the present study, we tested different
acetonitrile/water ratios (50:50, 80:20, and 100:0, v/v) for the
extraction step in the analysis of VD residues. Acetonitrile/
water (80/20, v/v) extracted the most drug from the spiked
samples, providing acceptable absolute recoveries of 80–
110%. The recoveries obtained under the different test condi-
tions are presented in Fig. 1. Recoveries were very low (<
10%) for tetracyclines and too high (> 120%) for β-lactams
and glucocorticoids when 100% acetonitrile was used as the
extraction solvent for our list of analytes. Increasing the
amount of water in the extraction solvent gave more co-
extraction of matrix. Acetonitrile/water (50/50, v/v) was not
compatible with all the compound classes, and absolute

recoveries were outside the acceptable range for certain β-
lactams, nitroimidazoles, glucocorticoids, sex hormones,
chloromycetins, and for olaquindox metabolite.

Addition of 1 or 2% formic acid to the extraction solvent
gave acceptable recoveries for most analytes, but low recov-
eries for β-agonists, macrolides, glucocorticoids, and
olaquindox metabolite. Taking into account the different
chemical properties of VD analytes, we decided not to use
acid in the extractions.

The volume of the extraction solvent was then optimized
by evaluating the difference between 5, 10, and 15mL of 80%
acetonitrile–water. When 5 mL of solvent was used, the re-
coveries of most analytes were very low since extraction was
inadequate and the protein may not have precipitated
completely. Although a slight improvement in recoveries
was observed when the volume of the extraction solvent was
increased, the improvement did not justify the higher amount
of solvents needed and the increased time needed for the evap-
oration step. To avoid increasing the cost and decreasing the
rapidity of the developed method, 10 mL was chosen as the
best volume for the extraction solvent.

Selection of Procedures for Cleanup

The suitability of this pass-through SPE for analyzing multi-
residue VDs was evaluated in various meat matrices. Several
cleanup procedures, including no clean-up, MCX, HLB, and
PRiME HLB, have previously been used in the determination
of VDs. The performance of different purification technologies

Fig. 1 Recoveries for different
classes of veterinary drugs with
different extracting solution
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was evaluated by spikingmeat samples with 50μg kg−1 of VDs
to choose the best eluting mixture. The recovery (%RE) was
determined by comparing the response area by the spiked sam-
ple (Ab), the blank matrix (As), and theoretical addition (M)
using Eq. 1. The PRiME HLB SPE cartridge was the most
efficient sorbent for purifying the extracts for most VDs
(Fig. 2). With the Oasis PRiME HLB, most compounds had
recoveries between 80 and 116%, with all the relative standard
deviations (RSDs) < 7.8%, shown in Table 2. Higher variability
was seen with other cleanup methods. Without cleanup, the
recovery of sex hormones was > 150%, which is unsatisfactory.
With the Oasis MCX, low recoveries were obtained for almost
all glucocorticoids, sex hormones, sedatives, and for
olaquindox metabolite, although the β-agonists had better re-
coveries (85–116%). The common RP C18 SPE, Oasis HLB
gave good recovery for most analytes, with the exception of
glucocorticoids and sex hormones.

%RE ¼ Ab−Asð Þ
M

� 100 ð1Þ

Method Validation

Matrix Effect

The ME is widely used to evaluate the performance of
sample pretreatment methods. ME was investigated by

comparing the peak areas of drugs in blank matrices
(Am) to those of aqueous standards (Ae), using Eq. 2
(Yoshikawa et al. 2017):

ME %ð Þ ¼ Am

Ae
−1

� �
� 100 ð2Þ

An ME(%) value between − 20 and 20% indicates an ac-
ceptable matrix effect, a value <− 20% indicates ion suppres-
sion, and a value > 20% indicates an enhancement effect
(Valese et al. 2017).MEs were evaluated for the different meat
matrices (Fig. 3). It is noteworthy that ME is different in dif-
ferent matrices. All 60 compounds had an acceptable ME in
pork, beef, mutton, and chicken whereas, in the liver samples,
most compounds had a large ME because of the complex
matrix. Some analytes that showed > 20% false negatives,
especially sex hormones, exhibited apparent signal suppres-
sion, with ME values > 40%. Quinolones and chloromycetins
showed matrix enhancement, ranging from 10 to 50%, and
quinolones gave significant matrix enhancement (> 40%),
which is in agreement with a report that all quinolones are
subject to signal enhancement (Ortelli et al. 2009).

Removal of Phospholipids

Because of their special physical and chemical properties,
phospholipids co-extract with analytes, caused ionization
suppression in the LC-ESI-MS analysis and an obvious

Fig. 2 Comparison of extraction
efficiencies of different cleanup
strategies for all analytes
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matrix effect of analytes (José Ángel Salatti-Dorado et al.
2017). Since they are strongly retained on the chromato-
graphic column, phospholipids can also produce shifts in
retention time, increased baseline noise, and poor
precision.

Both phosphatidylcholine (PC) and sphingomyelin
(SM) have a phosphocholine head group and would be
fragmented to generate a characteristic ion at m/z 184.
The total amount of PC and SM in the sample can be
determined by measuring the total precursor ion signals
that generate product ion with m/z 184. This value can
then be used in lipidomic studies (Chao et al. 2017). The
removal of phospholipids was evaluated in a single injec-
tion by measuring the positive precursor ion scan at m/z
184 after sample extraction with no cleanup or cleanup
using PRiME HLB. Large amounts of phospholipids were
detected in positive ion mode in both muscle and yolk
extracts, when no cleanup was carried out. A PRiME
HLB cleanup step completely removed phospholipids
(Fig. 4). PRiME HLB cartridges have a packed bed of a
novel water-wettable reversed-phase SPE sorbent, de-
signed for the gross level removal of phospholipids from
biological tissue prior to UPLC-MS/MS analysis.

Accuracy, Repeatability, and Reproducibility

To evaluate the trueness of the proposed method, three
concentrations, limits of quantification (LOQ) (low),

20 × LOQ (medium) and 50 × LOQ (high) for each ana-
lyte, were analyzed in seven meat samples. Each analysis
was repeated six times in parallel. Repeatablility was
evaluated at three levels as previously described, with
six replicates at each level. The percentage recovery
and precision results expressed as RSDs are given in
Table 2. All of the compounds had recoveries between
80 and 116% in various meat and tissue samples.
Although recoveries were slightly lower in the liver sam-
ples, these also met the quantitative requirements. The
RSDs of all compounds, in all investigated matrices,
was < 7.8%, indicating that the method can be carried
out with a satisfactory level of precision. The results also
indicate that good recoveries can be obtained using the
developed method. Total ion current (TIC) chromato-
grams of blank and spiked pork samples were showed
in Fig. 5.

Linearity and Limit of Detection

Because of the difference in sensitivity of the analytes in the
LC/MS, linearity of the analytical methodwas evaluated using
matrix- matched calibration curves for each compound in
blank meat samples at six different concentration levels, and
for different compounds over different concentration ranges.
All 60 compounds showed good linear regression, with R2

values > 0.995 (Table 1).

Fig. 3 Matrix effects in HPLC-
MS analysis of VDs in different
matrix samples
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Fig. 4 Parent scan mass spectrum at m/z 184 of pork blank with PRiME HLB (A) and no purification (B)
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Fig. 5 Total ion current (TIC) chromatograms of blank and spiked pork samples
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The LODs and LOQs were determined as explained in
the BValidation Procedure^ section. Concentration levels
with signal to noise ≥ 3 were defined as LODs and con-
centration levels with signal to noise ≥ 10 were defined
as LOQs. As shown in Table 1, the LODs and LOQs for
60 analytes ranged from 0.2 to 3 μg kg−1 and 0.5 to
10 μg kg−1, respectively, indicating the satisfactory sen-
sitivity for the proposed analytical protocol.

Application to Real Samples

The developed method was used for the analysis of VDs
in 280 meat samples, including pork, beef, mutton, pork
liver, lambs’ liver, and chicken liver. Three β-agonists
(clenbuterol, salbutamol, ractopamine) were identified in
samples of mutton, beef, lambs’ liver, pork, and chicken
with concentrations ranging from 0.90 to 410 μg kg−1.
Oxytetracycline, enrofloxacin, ciprofloxacin, and
chloromycetin were also found in chicken and chicken
liver samples, with the concentrations < 222 μg kg−1.
S u l f a d im i d i n e a n d 3 -m e t h y l - q u i n o x a l i n e - 2 -

carboxylicacid were detected in a pork and pork liver
s amp l e , a t c on c en t r a t i o n l e v e l s o f 607 and
2.73 μg kg−1, respectively. The typical SRM chromato-
grams of positive samples were presented in Fig. 6.
These results are consistent with previous studies.
Several analytical methods for the determination of dif-
ferent groups of VDs in meat samples have been devel-
oped by LC-MS/MS and applied in real meat samples. A
method was developed for detecting sulfonamides,
tilmicosin, and avermectins residues in animal samples,
and sulfamethazine (sulfadimidine) was detected at con-
centration levels of 15 and 72 μg kg−1 in 2 bovine meat
samples (Qin et al. 2017). LC-MS/MS had also been ap-
plied in 137 pilot meat samples and ractopamine had been
identified with the concentration ranging from 1.8 to
6.3 μg kg−1 and 0.6 to 64 μg kg−1 in 12 bovine muscle
and 15 bovine liver samples, respectively (Matus and
Boison 2016). For all positive samples, the differences
between values obtained using the new method and those
obtained using the National Standard Method of China
were < 7.78%, which are presented in Table 3.

Fig. 6 SRM chromatograms of nine VDs in real samples (clenbuterol, salbutamol, ractopamine, oxytetracycline, enrofloxacin, ciprofloxacin,
chloromycetin, sulfadimidine, and 3-methyl-quinoxaline-2-carboxylicacid)
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Conclusion

The Oasis PRiME HLB UPLC-MS/MS method described
here is a reliable procedure for the simultaneous determi-
nation of 60 VD residues in different meat samples. The
new method was satisfactorily validated in terms of line-
arity, sensitivity, precision, repeatability, and MEs. The
use of acetonitrile/water (80/20, v/v) and Oasis PRiME
HLB for extraction and cleanup gave excellent recovery
and purification. Oasis PRiME HLB, when used as a pass-
through cleanup SPE, can remove most of the phospho-
lipids from biological tissues prior to LC-MS analysis.
Notably, the properties of the pass-through SPE technique
mean that more compounds in more food matrices could
easily be included in the future.
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