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Abstract
The potential of mid-infrared (MIR), near-infrared (NIR), and low-field nuclear magnetic resonance (LF-NMR) techniques
combined with chemometrics for reliable and rapid determination of soluble solids content (SSC) and moisture in jams was
investigated. Forty-four different jam samples with SSC ranging from 17.49 to 73.91 (°Brix) and moisture ranging from 20.44 to
81.03%were used in this study. Principal component analysis (PCA) showed that the three spectroscopic techniques were able to
distinguish the jams based on the SSC and moisture content. Partial least squares (PLS) regression exhibited a good correlation
between the reference values and theMIR, NIR, and LF-NMR predicted ones, with low errors of prediction and high coefficients
of determination. An F test at 95% confidence level did not indicate significant differences between the accuracy of the PLS
models obtained using MIR and NIR spectroscopic techniques. However, significant differences were observed comparing MIR
with LF-NMR and NIR and LF-NMR. The residual prediction deviation (RPD) up to 2.5 indicated that all models are good.
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Introduction

Analytical instrumentation has provided simple, rapid, non-de-
structive, and, in some cases, automated methods for quality
control (QC) and quality assurance (QA) of food products in
all production stages in industry. Among these techniques,
mid-infrared (MIR) and near-infrared (NIR) vibrational spectros-
copies have received considerable attention due to the great po-
tential for on-line/at-line food quality control (Porep et al. 2015).
These techniques have been successfully applied to rapid assess-
ment of the quality attributes and/or authenticity of meat (Prieto
et al. 2009), fish (Cheng et al. 2013), dairy products (Karoui and
Baerdemaeker 2007), beverages (Cozzolino et al. 2011), fruits

and vegetables (Nicolai et al. 2007), and others (Karoui et al.
2010; Lohumi et al. 2015). All the results have demonstrated that
MIR and NIR are powerful analytical techniques for the devel-
opment of non-destructive, simultaneous, and environmentally
friendly (require no sample preparation) methods.

Low-field nuclear magnetic resonance (NMR) spectrome-
ters, based on benchtop instruments cryogen-free magnets, have
also been used in QC/QA in food industry for more approxi-
mately five decades (Colnago et al. 2014). However, a sharp
increase in applications has been seen in the last two decades
with the uses of relaxametric and diffusometric methods
(Guthausen 2016; Blumich 2016). These instruments are also
known as time-domain NMR (TD-NMR) because the analyses
are performed in time-domain signal, without Fourier transfor-
mation. Most of the analyses are performed with the Carr-
Purcell-Meiboom-Gill (CPMG) pulse sequence that yield an
exponential decay with a time constant T2 called transverse or
spin-spin relaxation times. This sequence has been used to pre-
dict the quality of fresh fruits (Pereira et al. 2013; Møller et al.
2013), meat (Micklandery et al. 2002), vegetable oil (Zhu et al.
2017; Santos et al. 2017), and dairy products (Castell-Palou
et al. 2013; Santos et al. 2016). Compared to the vibrational
spectroscopy, the main advantage of LF-NMR is that the anal-
ysis is not restricted to the sample surface and can be performed
through package (Santos et al. 2017; Pereira et al. 2015).
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Although MIR, NIR, and LF-NMR techniques have been
widely used in food analysis and some procedures have al-
ready accepted by the regulatory agencies, there are no reports
about the use of these techniques to evaluate the quality of
jam. Jam is one of the most popular shelf-stable products
made from fruit. The jam’s production is one way to minimize
fruit losses and increase its availability to consumers during
the off-season. Traditionally, jams are prepared by cooking
fruits with sugar, extracted acids, and pectin in adequate pro-
portions until reaching the required final soluble solids content
(SSC). SSC, a measurement based on grams of sucrose/100 g
of mixture, is usually performed in refractometers and
expressed in °Brix (AOAC 1990). Alternatively, SSC can be
measured using MIR, NIR, and LF-NMR. Currently, these
techniques have been successfully applied to determinate
SSC (°Brix) in a wide variety of fruit and juices, such as
apples (Giovanelli et al. 2014), strawberries (Sánchez et al.
2012), orange (Cayuela and Weiland 2010), tomatoes
(Ayvaz et al. 2016), and plums (Pereira et al. 2013).

The objective of this study was to develop calibration
models using MIR, NIR, and LF-NMR techniques to predict
the amount of SSC (°Brix) and moisture in jams. The perfor-
mances of the models were evaluated based on the root mean
square error of calibration (RMSEC), cross-validation
(RMSECV), and prediction (RMSEP), and residual prediction
deviation (RPD).

Materials and Methods

Samples

A total of 44 commercial jam samples (26 traditional, 10
without sugar addition, 3 light, and 5 diet), from 21 commer-
cial brands and 4 different fruits (strawberry, grape, guava, and
raspberry), were used in this study. Among the 21 commercial
brands analyzed, 67%weremade in Brazil, 14%were made in
Italy, 9%were made in France, and the less 10%were made in
Poland and Turkey. The jams were obtained from a local mar-
ket (São Carlos, SP, Brazil) and stored at 5 °C.

SSC (°Brix) and Moisture Determination

SSC (°Brix) and moisture were determined according to the
analytical methods described by Association of Official
Analytical Chemists (AOAC). SSC (°Brix) was performed
using a refractometer (RX5000α, Atago, USA) at 25 °C
(AOAC 1990). Moisture content (grams of water per gram
of product) was determined by drying the sample to a constant
weight in a vacuum oven (440-2D, Nova Ética, Brazil) at
60 °C (AOAC 1990). All the samples were analyzed in
triplicate.

LF-NMR Measurements

LF-NMR experiments were evaluated in the SLK 100 TD-
NMR benchtop spectrometer (Spinlock Magnetic Resonance
Solution, Cordoba, Argentine) equipped with a 0.23-T perma-
nent magnet (8.9 MHz for 1H). 1H transverse relaxation time,
T2, of the samples was performed using CPMG pulse se-
quence with a π/2 pulse width of 6.0 μs, time between echoes
of 100μs, 3000 echoes, and a recycle delay of 3 s, in triplicate.

MIR Measurements

A Cary 630 FTIR spectrometer (Agilent Technologies Inc.,
USA) equipped with a single-bounce attenuated total reflec-
tance (ATR) diamond crystal interface, ZnSe beamsplitter, and
DTGS detector was used in the MIR measurements. MIR
spectra of the samples were acquired in the region 4000–
650 cm−1 with a resolution of 4 cm−1 and using 32 scans, in
triplicate.

NIR Measurements

NIR spectra were collected in the 100N FT-NIR spectrometer
(PerkinElmer, USA), using a NIR infrared reflectance acces-
sory (NIRA) (PerkinElmer, USA). The sample spectra were
collected in a frequency range of 10,000–4000 cm−1 using a
spectral resolution of 4 cm−1 and 32 scans, in triplicate.

Multivariate Analysis

TheMIR, NIR, and LF-NMR data were analyzed by principal
component analysis (PCA) and partial least squares (PLS)
regression using MatLab 7.2 (The MathWorks, Natick, MA,
USA) installed with the PLS toolbox version 6.5 (Eigenvector
Technologies, Manson, WA, USA). MIR spectra and LF-
NMR data were previously mean centered. The baseline de-
viations on the NIR spectra were corrected by applying the
first derivative with Savitzky-Golay smoothing (15 points in
the filter and first-order polynomial fit) and then, the spectra
were mean centered (Rinnan et al. 2009).

For the development of PLSmodels, the 132 (44 samples ×
3 triplicate) MIR, NIR, and LF-NMR data were divided into
99 for the calibration set and 33 for the validation set by using
the Kennard-Stone algorithm. A homemade routine was
employed for the detection of outliers (Silva et al. 2012).
The best number of latent variables (LV) was chosen by ran-
dom subset (20 splits and 20 iterations) cross-validation,
based on the value of RMSEC and RMSECV. The PLS model
evaluations were based on RMSEC, RMSECV, RMSEP, and
RPD. The RPD has been defined as the ratio of standard
deviation (SD) of reference values of the calibration and val-
idation sets by the RMSECV and RMSEP, respectively
(Botelho et al. 2010). It is useful for evaluating the
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performance of multivariate calibration models in absolute
terms.Models with RPD values higher than 2.4 are considered
desirable for good calibration equations, whereas equations
with RPD less than 1.5 are considered unusable (Botelho
et al. 2010). The presence of trends in the prediction residuals
was assessed by a nonparametric permutation test (Filgueiras
et al. 2014).

In order to compare the performance of the PLS models
obtained using the three spectroscopic techniques (MIR, NIR,
and LF-NMR), an F test was evaluated with a confidence
level of 95%. The F-values were obtained by the ratio of the
variances (RMSEP squared), where RMSEP1 > RMSEP2. If

Fcalculated is greater than the Fcritical
ν1;ν2;α, the two RMSEPs are

significantly different.

Results and Discussion

SSC (°Brix) and Moisture Content

Table 1 shows the results of SSC (°Brix) and moisture content
obtained for the 44 commercial jams. As can be observed, a
significant difference for both properties was observed among
the four types of jams: traditional, without sugar addition, diet,
and light. The results showed that the differences among the
different kinds of jams (traditional, without sugar addition,
diet, and light) were more important than the observed within
the group.

Traditional jams showed the highest SSC, ranging from
55.44 to 73.91 °Brix (mean = 63.97 and SD = 3.82) and the
lowest values to moisture, ranging from 20.44 to 40.18%
(mean = 30.84 and SD = 4.21). Conversely, diet samples
showed the lowest SSC, ranging from 17.49 to 32.90 °Brix
(mean = 27.00 and SD = 6.59) and highest moisture, ranging
from 65.56 to 81.03% (mean = 71.21 and SD = 7.09).

Exploratory Analysis

The MIR and NIR spectra and the CPMG relaxation curves
obtained with the 44 commercial jams, gray-scaled colored
according to the SSC (°Brix), are shown in Fig. 1a–c together
with the corresponding PCA score plots (Fig. 1d–f).

Table 1 Moisture and SSC of the commercial jelly samples

Samples SSC (°Brix) Moisture (%)

Max Min Max Min

Traditional 73.91 55.44 40.18 20.44

Without sugar addition* 52.85 37.56 60.24 42.85

Light 31.70 31.08 67.85 65.79

Diet 32.90 17.49 81.03 65.56

*Sugar is provided by addition of apple juice
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Fig. 1 Raw data obtained with a MIR, b NIR, and c LF-NMR techniques and their corresponding PCA score plots (d–f)
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Figure 1a shows that the main changes in the MIR
spectra of traditional, light and diet jam samples are
highlighted in the fingerprint region (1500–900 cm−1),
where it is possible to observe an increase in absorption
in the samples with high SSC (°Brix) (i.e., traditional
jams). This region contains unique information about the
carbohydrate absorption, including several bands that
could be associated with C–C and C–O stretching modes
(1180–900 cm−1) and C–O–H, C–O–C, and O–C–H bend-
ing vibrational modes (1500–1200 cm−1). The MIR spec-
tra also showed two prominent absorption bands centered
at 3274 and 1643 cm−1 associated with the strong O–H
stretching vibrations (Ayvaz et al. 2016).

NIR reflectance spectra (Fig. 1b) show strong bands be-
tween 7200 and 6400 cm−1 and between 5400 and
4900 cm−1 which are associated with the first overtone of
O–H stretching and O–H combination bands of water, re-
spectively. Other small features in the spectral regions be-
tween 5800 and 5400 cm−1 and between 4900 and
4000 cm−1 are related to the first overtone of C–H stretching
and C–H + C–H and C–H + C–C combination bands, re-
spectively, both attributed to vibrations of the molecules of
sugars (Giovanelli et al. 2014).

LF-NMR experiments showed that the samples with high
sugar concentration (i.e., traditional jams) had significantly
lower T2 values than the samples with low sugar concentration
(i.e., diet jams) (Fig. 1c). This is in agreement with some
previously published studies (Pereira et al. 2013), which
showed that the increase of SSC (°Brix) restricted the motion
of the water molecules, due to exchange with sugar OH
groups, and resulted in a lower relaxation time. Thus, the short
T2 of jams samples could be assigned to the water that is
strongly associated with the carbohydrates, while the long
T2, obtained for the diet jellies, could be attributed the most
mobile water.

Figure 1d shows the score plot of the first (PC1) and the
second (PC2) principal components obtained with MIR spec-
tra. PC1 explains 93.17% of the total variance and clearly
separates the traditional jam samples (positive side of PC1)
from the jams without sugar addition, light, and diet (negative
side of PC1). Inspection of the graph of loadings of the first
PC (Fig. S1, supplementary material) revealed that the main
peak responsible for the sample distribution along this PC is
associated with the sugar signal (band around 1030 cm−1) in
the fingerprint region.

The PCA score plot obtained with NIR spectra (Fig. 1e)
and CPMG relaxation curves (Fig. 1f) showed similar per-
formance than that obtained with MIR spectra (Fig. 1d),
allowing the discrimination of the jams in two groups: (1)
traditional and (2) jams without sugar addition, light, and
diet. Traditional samples were grouped at one end of PC1,
whereas jams without sugar addition, light, and diet were
grouped at the other end. The NIR loadings (Fig. S2, sup-
plementary material) showed that the regions effecting the
sample distribution are related to sugar (4900–4000 cm−1)
and water (5400–5200 cm−1) absorption bands. In the LF-
NMR loading plot (Fig. S3, supplementary material), it is
possible to observe that samples with T2 higher than 0.05 ms
(jams without sugar addition, light, and diet) show positive
scores for PC1. Conversely, samples with T2 lower than
0.05 ms (traditional jams) show negative scores for this PC.

Table 2 Analytical figures of merit for the calibration models

Parameter MID NIR LF-NMR

SSC Moisture SSC Moisture SSC Moisture

RMSEC 0.97a 1.33b 1.27a 1.72b 2.33a 2.85b

RMSECV 1.06a 1.41b 1.49a 2.09b 2.43a 2.98b

RMSEP 1.16a 1.50b 1.50a 1.87b 2.65a 3.16b

RPDCal 11.44 9.48 9.28 6.94 5.40 4.91

RPDVal 10.76 9.42 8.12 8.40 4.69 4.30

a °Brix
b g per 100 g
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Fig. 2 PLS plots for prediction of SSC (°Brix) in commercial jam samples using aMIR, bNIR, and c LF-NMR data. (●) Calibration and (○) validation
sets
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Calibration Models

MIR, NIR, and LF-NMR techniques allowed the development
of calibration models for quantification of SSC (°Brix) and
moisture in jams. All PLS models for SSC (°Brix) determina-
tion were developed using two latent variables that describe
94.41, 94.68, and 99.26% of the data variance using MIR,
NIR, and LF-NMR techniques, respectively. PLS models for
moisture determination were also developed using two latent
variables and describe 95.45, 94.55, and 99.22% of the data
variance applying MIR, NIR, and LF-NMR techniques, re-
spectively. The results obtained with the three spectroscopic
techniques are summarized in Table 2. It is possible to observe
that all models exhibited excellent results, with low prediction
errors. The MIR, NIR, and LF-NMR calibration models for
SSC (°Brix) determination gave values of RMSEP equal to
1.16, 1.50, and 2.65 °Brix, respectively. For moisture deter-
mination, RMSEP values range from 1.50 to 3.19%.

An F test at 95% of confidence level indicated that the differ-
ences in the RMSEP values of the PLS models obtained with
MIR and NIR spectroscopic techniques were not significant dif-

ferences either for SSC (°Brix) (Fcritical
ν1¼23;ν2¼29;α¼0:05 = 1.91 >

Fcalculated = 1.67) or moisture (%) (Fcritical
ν1¼23; ν2¼29;α¼0:05 = 1.91

> Fcalculated = 1.55) models. However, comparing the perfor-
mance of the PLS models obtained using MIR and LF-NMR
spectroscopic techniques revealed that the differences in the

RMSEP values are significant (Fcalculated > Fcritical
ν1;ν2;α ). The F test

evaluated with the RMSEP values obtained in the MIR and LF-
NMR PLS models exhibited Fcalculated values of 5.22 and 4.44
for SSC (°Brix) and moisture (%), respectively, and

Fcritical
ν1¼26; ν2¼29;α¼0:05 = 1.88. Similar results were obtained com-

paring the PLS models obtained using NIR and LF-NMR. An F
test evaluated with the RMSEP values obtained in the NIR and
LF-NMR PLS models exhibited Fcalculated values of 3.12 and
2.86 for SSC (°Brix) and moisture (%), respectively, and

Fcritical
ν1¼23;ν2¼29;α¼0:05 = 1.99. These results indicated that the

MIR andNIRmodels present better accuracy than those obtained
with LF-NMR. Although the models showed different accuracy,
all the models showed RPD> 2.5; it is considered good for

calibration equations. In particular, MIR and NIR techniques
showed RPD up to 6.5, indicating that the models are adequate
for quality control and process monitoring (Igne andHurburgh Jr
2010).

The PLS regression curves for prediction of SSC (°Brix)
and moisture content are shown in Figs. 2 and 3, respectively.
Good agreement between the measured values and those pre-
dicted from models was observed, with coefficient of deter-
mination near 1 in all the cases. Nonparametric permutation
test confirmed that there are no trends in residuals, with p-
values greater than 0.05 for all PLS models.

Conclusion

Fast, simple, and accurate methods for determination of SSC
(°BRix) and moisture content in jams were demonstrated by
using MIR, NIR, and LF-NMR techniques combined with
multivariate analysis. Both infrared (MIR and NIR) tech-
niques generated PLS models with superior performance than
those obtained with LF-NMR, as shown in the results obtain-
ed from F test at 95% of confidence level. RPD higher than
2.4 indicated that all models are good. Comparing the three
spectroscopic techniques, the main advantage of LF-NMR is
the possibility of a direct measurement through glass or plastic
vials, allowing the costumer to check the product quality be-
fore buying.
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