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Abstract
Partial least square (PLS) regression models were developed and compared in order to determine the total sugar content in soy-
based drinks using an infrared spectroscopy technique known as attenuated total reflectance Fourier transform infrared (ATR-
FTIR). On a spectrophotometer set for analyzing on the middle infrared region, spectral band of 1900 to 900 cm−1, commercial
samples of soy beveragewere analyzed, as well as samples with crescent water additions of 5, 10, and 20% v/v. Reference data for
total sugars were obtained using the Lane-Eynon method. To construct regression models, algorithms of interval partial least
square (iPLS) and synergy of interval partial least square (siPLS) were applied using iToolbox package on Matlab 8.1 environ-
ment. Kennard-Stone algorithm was used to the selection of calibration and prediction sets. Two models have been the best
obtained: the first was an iPLS with seven latent variables, which selected the spectral band of 1399–900 cm−1 and presented root
mean square error of cross-validation (RMSECV) = 0.1678% (w/w). The second best model was siPLS with six latent variables,
which selected spectral bands of 1025–1150 and 1151–1476 cm−1 and presented RMSECV = 0.1963% (w/w). The proposed
method presents advantages such as a small-required amount of sample for spectrum achievement, no sample destruction, and a
high analytical frequency.

Keywords Soy . Soy-based beverages .Multivariate analysis . Chemometrics

Introduction

The soy (Glycine max (L) Merril) is an essential component
on animal feeding and on human nutrition. Soy is a complete
food, because it has contents such as proteins (38%), carbo-
hydrates (27%), lipids (19%), moisture (11%), and ashes
(5%), which can present vitamins, mineral salts, and fiber
(Embrapa 2017). With soy, therefore, it is possible to produce
a diversity of products for human alimentation, e.g, cooked
soybeans, diet foods, non-greasy flour, soy butter, soy flakes,
and soy beverages (Rigo et al. 2015). Moreover, soy is an
alternative for biodiesel production (Castanheira et al. 2015).

Soy-based beverages (SBBs) are made from the
hydrosoluble soy extract (EHS) or from the isolated soy pro-
tein (PI), both different producing methods start with soy-
beans and end up producing toxic followed by the addition
of fruit juice and other additives. Soy extract comes from an
aqueous emulsion after soybean hydration, with an adequate
technological procedure aiming the preservation of proteins, a
part of soluble carbohydrates, unsaturated fats, vitamins, and
minerals naturally present on soy. It is possible to add some
ingredients to give color and different flavors, then turning the
product into a beverage similar to a juice, whereas isolated soy
protein results from degreased soy flour extraction, after a
previous removal of the grains with no protein content.
Isolated soy protein has approximately 90% of proteins in
dry base. Despite havingmore proteins than soy extract, being
more concentrated, diluting isolated soy protein not only
makes a consumable product but also basically gives the same
properties of EHS, and the final product offers protein
amounts similar to extraction by portion (Cabral et al. 1981).

Through the determination of major components, also
known as centesimal composition (moisture, protein,
ash, lipid, carbohydrates, and fiber), it is possible to
make the evaluation of nutritional quality on foods. In
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the case of soy-based beverage, regular analysis include
determination of volatile substances, ashes, lipids, pro-
teins, sugars, and food fiber (Zenebon et al. 2008);

hence, the importance of the determination of total
sugars. However, traditional methods of analysis are
usually slow, produce toxic residues, and require

Table 1 Descriptive statistics of the total sugars by method Lane-Eynon

Sampleb Brand Flavor Mean % (w/w)a Sampleb Brand Flavor Mean % (w/w)a

SBB01/00 A Pineapple 3.92 (± 0.05) SBB01/10 A Pineapple 3.50 (± 0.04)

SBB02/00 A Pineapple 3.56 (± 0.01) SBB02/10 A Pineapple 3.23 (± 0.01)

SBB03/00 A Yellow Fruits 3.87 (± 0.02) SBB03/10 A Yellow Fruits 3.48 (± 0.01)

SBB04/00 A Orange 3.75 (± 0.03) SBB04/10 A Orange 3.35 (± 0.04)

SBB05/00 A Orange with Mango 3.71 (± 0.01) SBB05/10 A Orange with Mango 3.34 (± 0.01)

SBB06/00 A Apple 3.80 (± 0.01) SBB06/10 A Apple 3.40 (± 0.02)

SBB07/00 A Passion Fruit 3.37 (± 0.02) SBB07/10 A Passion Fruit 3.04 (± 0.01)

SBB08/00 A Original Soy Milk 1.25 (± 0.02) SBB08/10 A Original Soy Milk 1.12 (± 0.01)

SBB09/00 A Peach 3.77 (± 0.02) SBB09/10 A Peach 3.36 (± 0.02)

SBB10/00 A Grape 4.00 (± 0.02) SBB10/10 A Grape 3.60 (± 0.03)

SBB11/00 B Orange 2.74 (± 0.02) SBB11/10 B Orange 2.46 (± 0.04)

SBB12/00 B Orange 7.92 (± 0.04)c SBB12/10 B Orange 7.13 (± 0.04)

SBB13/00 B Apple 2.63 (± 0.02) SBB13/10 B Apple 2.37 (± 0.01)

SBB14/00 B Strawberry 2.88 (± 0.01) SBB14/10 B Strawberry 2.59 (± 0.01)

SBB15/00 B Original Soy Milk 4.32 (± 0.04) SBB15/10 B Original Soy Milk 3.85 (± 0.03)

SBB16/00 B Peach 2.32 (± 0.02) SBB16/10 B Peach 2.09 (± 0.02)

SBB17/00 B Grape 2.81 (± 0.03) SBB17/10 B Grape 2.53 (± 0.01)

SBB18/00 C Apple 4.19 (± 0.03) SBB18/10 C Apple 3.77 (± 0.03)

SBB19/00 C Peach 4.16 (± 0.03) SBB19/10 C Peach 3.70 (± 0.03)

SBB20/00 C Grape 4.43 (± 0.02) SBB20/10 C Grape 3.98 (± 0.02)

SBB01/05 A Pineapple 3.72 (± 0.05) SBB01/20 A Pineapple 3.14 (± 0.02)

SBB02/05 A Pineapple 3.39 (± 0.01) SBB02/20 A Pineapple 2.85 (± 0.01)

SBB03/05 A Yellow Fruits 3.67 (± 0.02) SBB03/20 A Yellow Fruits 3.06 (± 0.02)

SBB04/05 A Orange 3.56 (± 0.03) SBB04/20 A Orange 3.00 (± 0.02)

SBB05/05 A Orange with Mango 3.52 (± 0.02) SBB05/20 A Orange with Mango 2.93 (± 0.01)

SBB06/05 A Apple 3.66 (± 0.01) SBB06/20 A Apple 3.04 (± 0.02)

SBB07/05 A Passion Fruit 3.20 (± 0.02) SBB07/20 A Passion Fruit 2.70 (± 0.01)

SBB08/05 A Original Soy Milk 1.19 (± 0.02) SBB08/20 A Original Soy Milk 1.00 (± 0.02)d

SBB09/05 A Peach 3.55 (± 0.02) SBB09/20 A Peach 3.01 (± 0.02)

SBB10/05 A Grape 3.85 (± 0.02) SBB10/20 A Grape 3.25 (± 0.02)

SBB11/05 B Orange 2.60 (± 0.03) SBB11/20 B Orange 2.19 (± 0.01)

SBB12/05 B Orange 7.53 (± 0.02) SBB12/20 B Orange 6.34 (± 0.03)

SBB13/05 B Apple 2.50 (± 0.02) SBB13/20 B Apple 2.10 (± 0.01)

SBB14/05 B Strawberry 2.74 (± 0.01) SBB14/20 B Strawberry 2.33 (± 0.01)

SBB15/05 B Original Soy Milk 4.11 (± 0.02) SBB15/20 B Original Soy Milk 3.46 (± 0.03)

SBB16/05 B Peach 2.25 (± 0.02) SBB16/20 B Peach 1.86 (± 0.02)

SBB17/05 B Grape 2.67 (± 0.01) SBB17/20 B Grape 2.25 (± 0.01)

SBB18/05 C Apple 3.95 (± 0.03) SBB18/20 C Apple 3.35 (± 0.02)

SBB19/05 C Peach 3.95 (± 0.01) SBB19/20 C Peach 3.33 (± 0.02)

SBB20/05 C Grape 4.21 (± 0.02) SBB20/20 C Grape 3.58 (± 0.02)

aMeans (three replicates) ± standard deviation
b Sample (identification/addition of water (%)
cMaximum value
dMinimum value
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materials, equipment, and many chemical reagents that
are dangerous for both analyst and environment.

With that said, attenuated total reflectance Fourier trans-
form infrared (ATR-FTIR), combined with a multivariate
analysis by partial least square regression methods, is an alter-
native for physical-chemical analysis of soy-based beverages,
which are fast, with low cost, without chemical reagents, and
without sample preparation. There are examples on literature
where quantitative determination of antioxidants in agricultur-
al products happens after the combination of those techniques
cited above (Cozzolino 2015): nitrogen rate determination on
soy sauce (Xu 2016), soy content measurement that is added
onmeat (Jiang et al. 2017), and quantitative analysis of lectine
adulteration with soy (Monakhova et al. 2015).

The difficulty of using medial infrared to the quantification
of analytes in complex matrices is that there are
overpositioning of spectra bands. To solve this withdraw, we
applied multivariate calibration methods, as the technique of
partial least square (PLS). Once using deterministic algo-
rithms, i.e., interval partial least square regression (iPLS)
and synergy of interval partial least square (siPLS), it is

possible to select relevant spectral regions, improving then
the efficiency of the multivariate calibration technique applied
on infrared data. In this way, it is feasible to make regression
models with better efficiency and fewer errors on calibration
and prevision (Muller et al. 2011; Muller et al. 2012; Almeida
et al. 2015; Ruschel et al. 2015; Hu et al. 2017).

According to Instituto Adolfo Lutz, the determination of
total sugars in soy-based beverage is currently done through a
titration method called Lane-Eynon (Zenebon et al. 2008).
Once this method is slow, needs many chemical reagents,
turning the analysis expensive, and not environmentally
friendly, an alternative is the focus of the present work, which
aims to develop a method to determine total sugars by ATR-
FTIR associated to multivariate calibration, on raw sample, in
other words, not using any pretreatments on the beverage. In
order to produce models with fewer prevision errors of total
sugars, we applied selection methods of variables as iPLS and
siPLS.

Material and Methods

Twenty (n = 20) soy-based beverages of different brands (n =
3) and flavors (pineapple, orange, orange with mango, apple,
passion fruit, peach, grape, strawberry, yellow fruits, and orig-
inal soy milk) were obtained in the local market. The 20 sam-
ples acquired represent more than 80% of the samples that can
be found in Brazil. From each one of the bought samples,
three more samples were prepared with a crescent addition

Table 2 Descriptive statistics of the total sugars by Lane-Eynonmethod

Minimum
value
% (w/w)

Maximum
value
% (w/w)

Mean
% (w/
w)

Standard
deviations
% (w/w)

Relative
standard
deviations

Sam-
ples

1.00 7.92 3.35 1.18 35.16

Fig. 1 Infrared spectra of the 80
soy-based beverage (SBB)
samples
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of water (5, 10, and 20%), summing 80 samples. Water was
added to expand the detection range of total sugars in the
products, since the drinks can be diluted as fraud, and thus,
we can quantify within the range that we are acting.

Reference data to total sugar rate, expressed in percentage
(w/w) of total sugars in glucose, were obtained through the
reference method Lane-Eynon (Zenebon et al. 2008); the
method is based on the digestion of the protein-free beverage
sample, followed by titration against the boiling Fehling A
and B solutions, until they pass from blue to colorless.

The analysis of all samples happened on a Fourier trans-
formed infrared spectrometer (FTIR) Perkin Elmer Spectrum
400, with resolution of 1 cm−1 and 16 scanning with accessory
of attenuated total reflectance on medial infrared region, spec-
tral range of 1899 to 900 cm−1. Analysis happened in triplicate.
The pretreatment consisted in spectrum smoothing using
Savitsky-Golay (13 points window, polynomial of first degree),

then normalizing it, applying the first derived (using Savitsky-
Golay with a window of 13 points, polynomial of first degree)
and calculating the average for all triplicates through
ChemoStat® software (Helfer et al. 2015). With algorithms
of PLS, iPLS, and siPLS, we constructed the regression models
by employing iToolbox package in Matlab 8.1 environment.
By applying Kennard-Stone algorithm, calibration and predic-
tion sets were selected (Kennard and Stone 1969).

The iPLS is an extension developed for the PLS, where a
partial least square regression is made at each equidistant in-
terval over the full extent of the spectrum. In this way, the
importance of the information in the different spectral subdi-
visions is evaluated, from where it is possible to identify and
select the interval whose variables show the most important
information. A PLS model is built for each interval, and the
results are presented in graph form, thus facilitating compari-
son with the entire spectral range (Xiaobo et al. 2010).

Fig. 2 Infrared spectra of a
sample to show the effect of the
dilution. a Sample in nature, no
water added. b Sample with
addition of 5% water. c Sample
with addition of 10% water. d
Sample with addition of 20%
water

Table 3 Merit figures for the
different partial least square (PLS)
models

Model Selected
interval

Latent
variables RMSECVa

% (w/w)

R2
cal

a

RMSEPa

% (w/w)

R2prev
a

PLS Global 9 0.1770 0.9821 0.1199 0.9492

iPLS 2 2 7 0.1678 0.9839 0.1326 0.9320

siPLS
8a

6 and 7 6 0.1963 0.9779 0.1325 0.9337

RMSEP root mean squared error of prediction, RMSECV root mean square error of cross-validation, R2
cal

calibration determination coefficients, R2 prev prediction determination coefficients
a Chosen mode
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The siPLS is an extension of the iPLS algorithm. This
algorithm consists of the division of spectrum into equidistant
regions (intervals) followed by combinations of these inter-
vals, allowing models to obtain better determination coeffi-
cients (R2) and smaller calibration errors and prediction errors
than those found by iPLS.

To obtain models of calibration and prevision, regression
techniques of PLS, iPLS, and siPLS were applied. In order to
use all spectrum information, PLS was applied over the whole

spectrum (1899 to 900 cm−1). On the iPLS algorithm applica-
tion, spectra were divided into two, four, and eight equidistant
intervals, whereas on siPLS, the spectra were divided into
eight intervals and combined in 2 by 2, 3 by 3, and 4 by 4.

The models were determined by the lower values of
RMSECV and root mean square error of prediction
(RMSEP) and higher determination coefficients (R2). In order
to choose the number of latent variables (LVs), we evaluated
the error of the internal cross-calibration RMSECV models.

Fig. 3 a Root mean square error of prediction (RMSEP) values versus
number of LVs and b root mean square error of cross-validation
(RMSECV) values versus number of LVs for interval partial least
square (iPLS) model, using the interval 2, which corresponds to a range

of 1399–900 cm−1, on the determination of total sugars in soy-based
beverages (SBBs) through attenuated total reflectance Fourier transform
infrared (ATR-FTIR)

Fig. 4 a Root mean square error of prediction (RMSEP) values versus
number of LVs and b root mean square error of cross-validation
(RMSECV) values versus numbers of LVs for synergy of interval
partial least square (siPLS) model using intervals 6 and 7, which

correspond to spectra intervals 1025–1150 and 1151–1476 cm−1, on the
determination of total sugars in soy-based beverages (SBBs) by
attenuated total reflectance Fourier transform infrared (ATR-FTIR)

1990 Food Anal. Methods (2018) 11:1986–1993



To evaluate the predictive capacity between the models, we
use the RMSEP external forecast set error (Ferreira 2015).

Results and Discussion

The descriptive statistics of the total sugars can be found in
Tables 1 and 2. According to reference method Lane-Eynon,
sample results range from 1.00 to 7.92% (w/w) of total sugars
in glucose.

Infrared spectra from all 80 samples of SBB used to devel-
op regressionmodels are shown in Fig. 1. In Fig. 2, we can see
the effect of the dilutions with increasing water addition (5,
10, and 20%) in a sample, which extends the detection range
of total sugars. Table 3 shows the values of RMSECV,
RMSEP, R2

cal, R
2
prev, and number of latent variables (LVs)

from the best-developed methods.
To the PLS regression, which makes use of the spectral

region from intended studied sets, the best result presented a
RMSECVof 0.1770% for 9 LVs and R2

cal of 0.9821. For the
prevision samples, PLS model got RMSEP of 0.1199% and
R2

prev of 0.9492.

On other hand, iPLS divides the spectrum in equidistant
regions and develops a model for each subinterval. Therefore,
iPLS model indicates which spectrum region is more relevant
and eliminates spectral regions that does not have relevant
information about the researched analyte. The best iPLS pre-
sented smaller value of RMSECV when compared against
PLS model, however a bigger value of RMSEP. The model
constructed with the interval corresponding to a range of
1399–900 cm−1 (interval 2 of the spectrum divided into two
parts) produced the best values, with RMSECV of 0.1678%
for seven LVs and R2cal of 0.9839. To the samples of previ-
sion, PLS model got RMSEP of 0.1326% and R2

prev of
0.9320. The selected spectral region includes axial C-O
stretching absorption that are characteristically from sugars
(since they are polyalcohols), ranging from 1260 to
1050 cm−1 (Pavia et al. 2009), showing that it is the most
representative band on total sugar determination on samples
of soy-based beverages. Thus, it is not possible to determine
that the model used the specific region, because the band is
very wide.

By the fact that the iPLS regression model present a limi-
tation of not ensuring selectivity, since it does not evaluate
information distributed in more than one interval and the

Fig. 5 Reference values by Lane-
Eynon method versus expected
values from interval partial least
square (iPLS) model for total
sugars using interval 2, interval
that corresponds from 1399 to
900 cm−1

Fig. 6 Reference values by Lane-
Eynon method versus expected
values from synergy of interval
partial least square (siPLS) model
for total sugars using intervals 6
and 7, spectral bands 1025–1150
and 1151–1476 cm−1

Food Anal. Methods (2018) 11:1986–1993 1991



best-selected interval was wide, the regression by siPLS turns
to be a good alternative, because it allows interval combina-
tions that are either continuous or not. In comparison with
previous models, this one present smaller error, as a result of
the interval synergism that enables intervals’ selection where
places better specific absorption of the studied analyte.

The best siPLS model was the one that divided the spec-
trum in eight parts and combined the subintervals 6 and 7
(corresponding to spectral intervals of 1025–1150 and 1151–
1476 cm−1, with 6 LVs), which selected intervals and present-
ed RMSECV = 0.1963%, RMSEP = 0.1325%, and determi-
nation coefficients (R2

cal and R2
prev) of 0.9779 and 0.9337,

respectively. Selected intervals included axial C–O stretching
absorption bands (1260–1050 cm−1), characteristic of sugars
and polyalcohol itself (Colthup et al. 1990; Pavia et al. 2009).
Then, it indicates that this is a representative band on the
determination of total sugars on samples of soy-based bever-
ages, because it selected a specific absorption region of the
analytes.

On the presented results basis, iPLS with seven LVs and
siPLS with six LVs are the most adequate models to use on
total sugar determination, expressing results in percentage (w/
w). As previously presented on graphics of LVs versus
RMSECV and LVs versus RMSEP (Figs. 3 and 4), it is clear
that the error reduces largely, and then stabilizes, indicating
adequate number of LVs for the studied models, and also
because the errors decrease is inexpressive when new LVs
are included on the model, which could super adjust it. It is
important to say that the matrix of analysis (SBB) is definitely
complex component wise: proteins, vitamins, fats, metals,
flavoring, dyes, and sugars such as fructose, glucose, sucrose,
thickeners as gum and other carbohydrates, which increases
the model number of LVs.

Other fact that justifies choosing such models is that the
chosen absorption region includes the C–O stretch absorption
band, majoritarian chemical function on molecules studied
samples.

Figures 5 and 6 present a correlation between real value
and expected value of iPLS and siPLSmodels here developed:
in Fig. 5, on interval 2, and on Fig. 6, on the subintervals 6 and
7, which show themselvesmodels with the best percentage (w/
w) determination capability of total sugars in soy-based
beverages.

Conclusion

After combining ATR-FTIR spectroscopy with regression al-
gorithms as PLS, iPLS, and siPLS, developing multivariate
models became possible on the determination of total sugars
on soy-based beverage, without sample pretreatment.
Algorithms iPLS and siPLS showed to be the most suitable
on the variable selection, then combining them to regions with

more relevant information for the intended quantification.
Both iPLS and siPLS were efficient, although RMSECV val-
ue remained on the same magnitude, there was a reduction on
the number of LVs, improving robustness of the model. The
proposed model may be considered as simple, fast, and envi-
ronmentally friendly, because it does not requires chemical
reagents. Therefore, turning it a low-cost model is useful on
the percentage (w/w) determination of total sugars in glucose
on SBB.
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