
Determination of Total Phenolic Compounds and Antioxidant Activity
of Ethanolic Extracts of Propolis Using ATR–FT-IR Spectroscopy
and Chemometrics

Cleidiane da Silva1 & Anaclara Prasniewski1 & Matheus A. Calegari1 & Vanderlei Aparecido de Lima1 &

Tatiane L. C. Oldoni1

Received: 30 September 2017 /Accepted: 14 January 2018 /Published online: 14 February 2018
# Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Fourier transform mid-infrared spectroscopy equipped with attenuated total reflectance (FT-IR–ATR) combined to partial least
squares (PLS) regression was used for the quantification of total phenolic contents (TPCs) and antioxidant activities in 98
samples of ethanolic extract of propolis (EEP) from the southwest region of Paraná, Brazil. The Pearson’s correlation coefficients
were applied, and results ranged from 0.96 to 0.88 and showed higher correlation coefficients among TPC and ferric-reducing
antioxidant power (FRAP) followed by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) ABTS and 2,2-diphenyl-1-
picrylhydrazyl hydrate (DPPH). Calibration was performed using a Savitzky-Golay filter (15 pt) and first derivative as well as
standard normal variate (SNV) and mean center correction pretreatments. The determination coefficient in the calibration models
ranged from 0.95 to 0.87. The range error ratio (RER) indicates the quality of estimation of the models and the results obtained
were 10.0, 8.11, 16.8, and 8.99 for TPC, DPPH, ABTS, and FRAP, respectively. Thus, the results obtained for calibration and
prediction parameters indicated that the models for DPPH, FRAP, and TPC have a low predictive capacity which complicates the
data modeling. However, the ABTS model is validated and can be used for quantification of antioxidant activity of new extracts
of propolis, being useful as an alternative to rapid analysis, reducing waste generation and cost, and indicating that the mid-
infrared spectroscopy associated with PLS regression can be used to predict ABTS radical scavenger.
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Introduction

Propolis is a resinous material produced by bees by mixing
salivary enzymes (β-glucosidase), wax, pollen, and collected
natural resins used to fill gaps and to seal parts of the hive
(Silva-Carvalho et al. 2015; Daneshmand et al. 2015) and can
be considered a nutraceutical and functional ingredient in food
products (Salami et al. 2013; Pasupuleti et al. 2017). Almost all
ancient civilizations used bee-derived products as resources in
their medicine due to its pharmacological properties (Tiveron
et al. 2016). Propolis has characteristics that are beneficial to
human health, such as antioxidant (Oldoni et al. 2011; Calegari

et al. 2017), anti-inflammatory (Luis-Villaroya et al. 2015),
antifungal (Siqueira et al. 2015), antiviral, anticariogenic, and
antibacterial properties (Bankova 2009). The chemical compo-
sition of propolis is very complex, varying according to the bee
species, the seasonality, and the flora of the region. Because of
the plant variability found in South America, the chemical
composition of Brazilian propolis is completely different from
the other parts of the world (Bankova 2009; Calegari et al.
2017; López et al. 2014).

In propolis, there are several bioactive compounds and it is
possible to emphasize the presence of aromatic acids, esters,
chalcones, phenolics, and terpenoids (Park et al. 2002; Soltani
et al. 2017; Zabaiou et al. 2017; Al-Ghamdi et al. 2017).
Among the phenolic compounds identified, the presence of
chrysin, galangin, pinocembrin, pinostrobin, caffeic acid
phenethyl ester (Vargas-Sánchez et al. 2015), caffeic acid, p-
coumaric acid, acid benzoic (Schnitzler et al. 2010), and
Artepilin C (Veiga et al. 2017) is common. Flavones,
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flavonols, flavanones, and dihydroflavonols are also present
in samples of propolis, as reported by Popova et al. (2017).
These bioactive compounds, mainly phenolic acids and
flavonoids, act directly as collaborators of the pharmaco-
logical properties, contributing mainly to the antioxidant
activity.

The compounds with antioxidant capacity are able to in-
hibit the oxidative stress caused by the presence of free radi-
cals in the organism (Castro et al. 2014). Free radicals consist
of reactive oxygen and nitrogen species generated by cellular
metabolism, which are beneficial at moderate levels but at
higher concentrations can damage tissues by oxidative stress
caused by an imbalance between pro- and antioxidants,
resulting in a loss of biological functions and homeostasis
issues (Vasconcelos et al. 2007; Barbosa et al. 2010). The
human body has several mechanisms to prevent oxidative
stress by the neutralization of free radicals by antioxidant
compounds, which are produced naturally in the body or sup-
plied externally through food or supplements (Pham-Huy
et al. 2008).

Generally, the methods for determining the chemistry and
biological activities of propolis involve conventional tech-
niques such as UV, TLC, GC, and HPLC (Silva et al. 2007;
Alves and Kubota 2013; Castro et al. 2014; Morlock et al.
2014; Rufatto et al. 2017), which are very useful in the iden-
tification and quantification of various chemical compounds
in propolis (Wu et al. 2008). For the analysis of the total
phenolic content (TPC), the Folin–Ciocalteu colorimetric
method has been used in different types of samples. This
method is based on a chemical reduction of a reagent, a mix-
ture of tungsten and molybdenum oxides yielding a bluish
compound that is measured at 740 nm (Singleton et al.
1999). For antioxidant capacity determination, indirect mea-
surements such as 1,1-diphenyl-2-picrylhydrazyl (DPPH),
2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS), and ferric reducing antioxidant power (FRAP) as-
says have been used because of their capacity to scavenge
species of radicals and reduce Fe 3+ to Fe 2+ with the produc-
tion of species that absorb at 517, 734, and 595 nm, respec-
tively (Jurd and Geissman 1956; Brand-Williams et al. 1995;
Re et al. 1999). These methods become infeasible if numerous
samples are required to be analyzed. As a result, the develop-
ment of a faster and simpler analytical method for high-
throughput screening of propolis material is necessary.

As an alternative to colorimetric methods, spectroscopic
fingerprint coupled with multivariate regression analysis has
been proposed herein. The vibrational spectroscopy Fourier
transform mid-infrared spectroscopy (FT-MIR) is a technique
that expresses a unique Bfingerprint^ for a complex system of
different samples. When FT-IR is equipped with an attenuated
total reflectance (ATR) device, it enables the acquisition of
spectra of both liquid and solid samples in which a light is
totally internally reflected and the sample interacts with the

evanescent wave. Because of the small light, penetration depth
is ideal for highly absorbing samples, such as aqueous solu-
tions, and for surfaces and thin film measurements (Wilson
and Tapp 1999; Grdadolnik 2002). This spectroscopic tech-
nique presents some advantages, such as versatility, low cost,
efficiency, and speed, with minimal or no sample preparation
and without the use of expensive reagents, making it an attrac-
tive alternative for traditional analytical methods (Rodriguez-
Saona and Allendorf 2011).

Partial least squares (PLS) regression enables correla-
tion between two matrices. PLS is useful when the number
of predictors (i.e., spectral peaks) is much higher than the
number of samples in the dataset. Studies related the use of
FT-NIR for quantification of compounds in propolis (Cai
et al. 2012; Xu et al. 2013; González-Martín et al. 2017;
Revilla et al. 2017) but there are few studies (Wu et al.
2008) on propolis using FT-IR–ATR and PLS, and the
studies on Brazilian propolis that show a complex chemi-
cal composition are still limited and scarce (Picoli et al.
2016; Tiveron et al. 2016). Taking this into account, the
aim of this study was to apply and evaluate PLS and FT-
IR–ATR spectroscopy to quantify the total phenolic com-
position and antioxidant activity in ethanolic extract of
propolis (EEP) produced by Apis mellifera honey bees in
the south of Brazil.

Materials and Methods

Chemical Reagents

The reagents 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH),
gallic acid, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic
acid) (ABTS), 6-hydroxy-2,5,7,8 -tetramethylchroman-2-
carboxylic acid (Trolox), 2,4,6-tripyridyl-s-triazine (TPTZ),
Folin–Ciocalteu, and ethanol 99% were obtained from
Sigma Co. (St. Louis, MO).

Samples

The samples of propolis (98 samples) were directly collected
by beekeepers in south of Brazil, Parana state. The samples
were collected mostly with a mesh and by using the scraping
technique from different beekeepers. All samples were
cleaned, crushed with N2, homogenized, and stored at (−
6 °C) until used in the laboratory. The ethanolic extracts of
propolis (EEP) were prepared as described by Oldoni et al.
(2015) . Twenty five milliliters of ethanol/water (80:20 v/v−1)
was added to 2 g aliquot of sample, and extraction was sub-
sequently carried out in a water bath at 70 °C for 45 min. The
hydroalcoholic extract was filtered through Whatman grade
No.4 filter paper, and the liquid filtrated was transferred to a
volumetric flask.
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Reference Analysis

Total Phenolic Content

The total phenolic content (TPC) present in EEP was de-
termined by the Folin–Ciocalteu colorimetric method
(Singleton et al. 1999). In a test tube, 0.5 mL of EEP
(3.2 g L−1) and 2.5 mL of Folin–Ciocalteu (10 g L −1)
reagent were added. After 5 min, 2.0 mL of a NaCO3

(40 g L−1) solution was added. The solutions were incu-
bated at room temperature in the dark for 2 h, and subse-
quently, the absorbance was measured using a spectropho-
tometer (model UV–VIS Lambda 25, Perkin Elmer) at
740 nm. The gallic acid was used as a standard reference
in concentrations ranging from 5 to 100 mg L−1, and the
results were expressed in mg gallic acid equivalent (GAE)
g−1 dry weight (DW). All measurements were performed
in triplicate.

Antioxidant Activity Using 2,2-Diphenyl-1-Picrylhydrazyl
Hydrate-Free Radical Scavenging Method

The antioxidant activity was performed through the DPPH
method described by Brand-Williams et al. (1995); the
technique is based on the reaction of EEP 0.5 mL
(1.6 g L−1), 3 mL of ethanol P.A., and 0.3 mL of DPPH
radical solution (0.5 mmol L−1) in ethanol P.A. After
45 min in the dark, the absorbance was measured in a
spectrophotometer (UV–VIS model lambda 25, Perkin
Elmer) at 517 nm. The calibration curve was constructed
using Trolox as a standard in concentrations that ranged
from 15 to 200 μmol L−1. The results were expressed in
μmol of Trolox g−1 DW. All measurements were per-
formed in triplicate.

Antioxidant Activity Using 2,2′-Azino-Bis
(3-Ethylbenzothiazoline-6-Sulphonic Acid) ABTS. + Method

The determination of antioxidant activity was performed by
the ABTS method according to Re et al. (1999). The ABTS
radical was prepared from the reaction of 5 mL of ABTS
solution (7.0 mmol L−1) with 88 μL of potassium persulfate
(140 mmol L−1), incubated at 25 °C in the dark for 16 h. The
radical was diluted in ethanol and resulted in an absorbance
value of 0.700 ± 0.200 at 734 nm. Under dark conditions, a
solution of reaction was prepared with 30 μL EEP (16 g L−1)
and 3 mL of the radical solution. The calibration curve was
constructed using Trolox as a standard in concentrations that
ranged from 100 to 2000 μmol L−1. The results were
expressed in μmol of Trolox g−1 DW. All measurements were
performed in triplicate.

Antioxidant Activity Using the FRAP Method

Proposed by Benzie and Strain (1996), the FRAP reagent was
prepared from the mixture of 25 mL of acetate buffer solution
300mmol L−1at pH 3.6, 2.5mL of TPTZ solution 10mmol L−1,
and 2.5 mL of an aqueous ferric chloride solution
20 mmol L−1.The method consisted of a mixture of 100 μL of
the EEP (1.6 g L−1) with 3mL of the FRAP reagent; themixture
was incubated in a water bath (37 °C) in the dark for 30min and
then the absorbance was measured in a spectrophotometer
(model UV–VIS lambda 25, Perkin Elmer) at 595 nm. The
calibration curve was constructed using ferrous sulfate as a stan-
dard in concentrations ranging from 200 to 2000 μmol L−1. The
results were expressed in μmol of FeSO4 g

−1 DW. All measure-
ments were performed in triplicate.

Spectra Acquisition

The extracts were analyzed in a Fourier transform mid-
infrared spectrometer (FT-IR) Frontier from Perkin Elmer.
All MIR spectra were acquired between 4000 and 400 cm−1

using an optical resolution of 8 cm−1 and 32 accumulations.
For the signal horizontal ATR, the index of refraction (η) of
diamond was 2.4 and leads to a depth of penetration (Dp) of
1.66 μm, with data interval 1 cm−1 and scan speed 0.2 cm/s.
Approximately 0.05 ml of sample was placed onto the ATR
crystal, and after each analysis, the ATR crystal was washed
with deionized water and dried with non-abrasive wipe.

Regional Spectral Data Preprocessing

In order to transform the data into a form suitable for analysis,
data are often pre-treated, avoiding baseline drift, light scat-
tering, and other factors during the process of sampling. In
commonly used spectral pretreatment methods, first derivative
(1D) can be used to correct the baseline drift and spectral
rotation in the background of this system, Savitzky-Golay
(SG) smoothing can filter out the high-frequency noise in
the spectral data and effectively preserve the authenticity of
the original signal, and standard normal variate (SNV) is a
filter based on individual observation and is less sensitive to
peculiarities in the raw data, mainly used for the scattering
correction of spectra (Tan et al. 2018). This study adopted
the SNV, 1D, SG smoothing, and their combination methods
to preprocess the original spectral data.

Data Analysis

All samples were subjected to multivariate analysis by PLS.
PLS-toolbox 5.8 of Matlab version 7.8.0.347 (MathWorks.
Inc. USA) was used for the chemometric analysis. The 98
spectra were divided into two datasets: calibration set (69
samples) and test set (29 samples). In this work, the developed
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models were evaluated through root mean square error of
cross-validation (RMSECV), root mean square error of pre-
diction (RMSEP), ratio of performance to deviation (RPD),
range error ratio (RER), and coefficient of determination (R2).

The RMSEP value can be obtained from Eq. (1):

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑Ip
i¼1

� yi−~yi
� �2

Ip

v

u

u

t ð1Þ

where ỹi is the predicted value for set sample i, yi the measured
value for predicted sample I, and Ip is the number of observa-
tions in the prediction set (Viegas et al. 2016).

The RMSECV was calculated as follows:

RMSECV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

IC−1
∑I c

i¼1 ŷ̂i−yið Þ2
r

ð2Þ

where ŷi is the predicted value of the ith observation, yi the
measured value of ith observation, and Ic is the number of
observation in the calibration set (Viegas et al. 2016).

The coefficient of determination (R2) between the experi-
mental and predicted values was calculated using Eq. (3),
where n is the number of observations in the calibration and
prediction sets; ŷi, yi are the predicted and measured values of
sample i in the calibration and prediction sets, and y̅ the mean
of the reference measurement results for all samples in the
calibration and prediction sets (Viegas et al. 2016).

R2 ¼ 1−
∑n

i¼1 ŷ̂i−yið Þ2

∑n
i¼1 yi−y

� �2 ð3Þ

The range error ratio (RER) can be determined using E q. (4):

RER ¼ ymax–yminð Þ
RMSEV

ð4Þ

being (y max − y min) the calibration range, and RMSEV the
validation error (RMSECVor RMSEP). RER values above 10

are indicative of models with good estimate (Páscoa et al.
2013). The RPD is the relationship between the standard de-
viation of values measured by the conventional method and
the standard validation error. For RPD values above 2, the
calibration equations are considered good (Dal Zotto et al.
2008). In order to avoid overfitting in models, the choice of
the number of PLS latent variables was based on the minimi-
zation of the error, calculated by means leave-one-out cross-
validation (Laghi et al. 2011; Martins and Ferreira 2013).

Results and Discussion

The results obtained by the referenced methods for the total
phenolic content, the antioxidant capacity (determined by
FRAP, ABTS, and DPPH) of the propolis analyzed are shown
in Table 1. The samples were divided into two datasets, that of
calibration (69 samples) and that of external validation (29)
and Table 1 shows the mean, minimum, maximum, standard
deviations, and coefficient of variation for both groups. The
observed range for total phenolic content (5.3 to 50.4mg EAG
g−1) and antioxidant activity evaluated by the DPPH method
(11.68 at 275.2 μmol Trolox g−1) were similar to those report-
ed by Tiveron et al. (2016) and Picoli et al. (2016) for propolis
produced in the south of Brazil. With regard to antioxidant
activity determined by the ABTS method, the results showed
a wide range of scavenging capacity from 19.0 to 1077 μmol
Trolox g−1, and the values obtained by the FRAP method
ranged from 66.74 to 1164 μmol FeSO4 g

−1.
Currently, there is a great variety of in vitro assays because

it is unrealistic to expect a single assay to be able to determine
the total antioxidant activity in the screening of numerous
samples. It is well known that each assay has particularities,
especially with respect to the radicals and reagents involved,
so ideally, the choice should cover a mix of methods based in
hydrogen atom transfer (HAT) and/or single electron transfer
(SET), encompassing different antioxidant mechanisms.

Table 1 Reference chemical data of ethanolic extract of propolis samples in calibration and validation set

Model Calibration (69 samples) External validation (29 samples)

Min Max Mean SD CV Min Max Mean SD CV

TPCa 5.294 50.41 18.68 11.09 59.36 5.430 49.75 18.15 11.38 62.69

DPPHb 11.68 275.2 49.57 46.67 94.14 13.67 228.9 58.11 46.50 80.02

ABTSb 19.03 875.4 133.5 143.7 107.6 24.00 1077 166.8 214.2 128.4

FRAPc 66.74 987.0 287.7 197.3 68.58 80.97 1164 325.7 249.1 76.51

SD standard deviation (n = 3), CV coefficient of variation, EAG equivalent to gallic acid
amg EAG g−1

bμmol Trolox g−1

cμmol FeSO4 g
−1
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Thus, to ensure a better evaluation of the antioxidant activity
of extracts of propolis, we used a combination of assays which
cover different antioxidant mechanisms and radicals: TPC and
FRAP assays are based in SET mechanism and DPPH and
ABTS assays are based in both SET and HAT mechanisms.

The Pearson’s correlation coefficients (PCCs) among the stud-
ied antioxidant reference analysis are shown in Table 2, being a
measure of the strength and direction of a linear relationship
between two random variables (Zhou et al. 2016). In this paper,
significant positive correlations (p ≤ 0.01) were observed be-
tween all variables, PCC ranged from 0.96 to 0.88, and higher
correlation coefficients were obtained between TPC and FRAP,
followed by ABTS and DPPH. Revilla et al. (2017) reported
correlation coefficients lower than those observed in this study.

FT-IR–ATR Spectroscopy

Figure 1 shows the IR spectra of the 98 ethanolic extracts of
propolis obtained using Fourier transform middle infrared (FT-
MIR) equipped with an attenuated total reflectance (ATR) de-
vice. In the range of 900–690 cm−1, bands can be seen related to
the stretching and bending vibrations of C–H from aromatic
rings, related to phenolic compounds (Soares 2002; Sousa et al.

2007). The range of 3000–2800 cm−1 is the location of bands
connected with asymmetric and symmetric stretching modes of
C–H: νas (CH3), νs (CH3), νas (CH2), and νs (CH2), arising from
methyl and methylene groups. Two intense bands between 1300
and 1000 cm−1 represent C–O stretching and C–OH bending
originated from alcohols, ethers, esters, and carboxylic acids,
which are functions present mainly in phenolic acids and flavo-
noids (de Cardoso et al. 2017; Cao et al. 2017) which are found
in extracts of propolis (Soltani et al. 2017; Bankova 2005;
Menezes 2005; Banskota et al. 2001; Chang-Bravo et al. 2014).

The vibration of the carbonyl group arising from the
stretching vibration of the carbonyl group and C=C from the
stretching of aromatic rings are located at 1680–1630 cm−1 and
1680–1600 cm−1, respectively (Pavia et al. 2010). The same
stretching was observed in extracts of red propolis Chang-
Bravo et al. (2014). In the 3400 cm−1 region, a very intense
band is present which represents the absorption of the OH func-
tional group (Pavia et al. 2010), which represents alcohols. This
band was already expected, since EEP is prepared with ethanol
as described in samples in the BMaterials andMethods^ section.

Partial Least Square Regression Modeling

The calibration model was implemented with MIR spectra and
reference analysis. The best prediction models were obtained
using the Savitzky-Golay filter (15 pt) and first derivative as
well as standard normal variate (SNV) and mean center prepro-
cessing, and the statistical descriptors are shown in Table 3. The
number of latent variables used for the construction of these
models was determined from the cross-validation (CV) in order
to avoid overfitting the data (Martins and Ferreira 2013).

For CV, the leave-one-out technique was applied; one sam-
ple was removed from the calibration model and the remain-
ing samples were then used to predict the value corresponding

Fig. 1 MIR spectra of ethanolic extracts of propolis in the range 4000–400 cm−1. a Spectra without preprocessing. b First derivative + SNV preprocessing

Table 2 Pearson’s correlation coefficients between the antioxidant
activities and total phenolic content (reference analysis) of propolis

ABTS DPPH FRAP TPC

ABTS 1

DPPH 0.954* 1

FRAP 0.9323* 0.934* 1

TPC 0.882* 0.926* 0.963* 1

*Significant correlations at p ≤ 0.01
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to the removed sample. This process was repeated until all
calibration samples were removed once (Silva et al. 2014).
Results of CV showed higher RMSECV values than
RMSEC obtained in calibration. The equations developed
for the determinations of TPC, DPPH, ABTS, and FRAP
showed high values for the R2 coefficient (0.95–0.87), indi-
cating that the results of the calibration adjustment were good
for these parameters.

The predictive capacity of the models was verified by
means of external prediction. Figure 2 shows the correlation
of the values obtained in the laboratory (reference value) with
regard to those predicted by the FT-IR for TPC and antioxidant
activity. The values of R2 closer to 1 indicate a higher proba-
bility that the FT-IR-predicted value (y-axis) is related to the
reference analysis (x-axis) (Silva et al. 2014). As shown in
Table 3, the best model was obtained for ABTS, in which

the calibration and validation parameters were the best, with
a R2

cal of 0.95, lowest RMSEP, highest RER (16.8), and R2
pred

(0.74) and RPD above 2, suggesting a good practical utility
(Fagan et al. 2007; Dal Zotto et al. 2008; Kapper et al. 2012).

The determination coefficients and RPD obtained for DPPH,
FRAP, and TPC were lower than 0.72 and 2, respectively, sug-
gesting a low correlation of these parameters with the calibration
models, indicating a low predictive capacity. The estimated
range and high RMSEP values obtained (Table 3) also support
these observations. As suggested by Silva et al. (2014), the low
prediction obtained for antioxidant activity models can be attrib-
uted to the fact that the range of data references used in this
study was not representative for the respective models.

Another important parameter that impacts the quality of
PLS models is the presence of outliers, which are as important
as the determination of principal components employed in the

Fig. 2 Correlation between predicted and experimental a TPC, b ABTS, c DPPH, and d FRAP by the PLS

Table 3 Statistical descriptors of calibration and validation by MIR

Number of samples Mean SD Est. Min Est. Max LV RMSEC R2
cal RMSEP R2

pred RPD

TPCa 68 18.7 10.54 3.36 50.3 11 3.41 0.90 9.15 0.71 1.21

DPPHb 68 49.6 44.0 2.94 223 12 15.4 0.89 24.86 0.72 1.88

ABTSb 69 133 140.3 4.65 874 12 31.1 0.95 63.60 0.74 2.26

FRAPc 67 287.9 199.7 30.1 1032 10 80.3 0.87 128.57 0.59 1.53

SD standard deviation, LV latent variables, RMSEC root mean square error of calibration,RMSEP root mean square error of prediction, R2 determination
coefficient, Est. Min and Est. Max minimum and maximum value estimated by the model developed
amg GAE g−1

bμmol Trolox g−1

cμmol FeSO4 g
−1
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model. The quality of the calibration set should ensure that
samples produce a homogenous set by removing atypical
values from the dataset. In this study, the leverage vs residuals
graph (Fig. 3) was used for detection of outliers. The
studentized residuals as a function of leverage for the ABTS,
DPPH, FRAP, and TPC datasets showed that there were no
influential values for the ABTS, FRAP, and TPC responses,
because the studentized residuals values are between − 2.5 and
+ 2.5. The same case no. is verified for the DPPH response,
because there exists a value (sample 1) considered influent
close by − 3.5 for the studentized residuals.

In general, some samples may present values with some influ-
ence in ours PLS models. Our models were constructed to detect
wide range values of ABTS, DPPH, FRAP, and TPC. However,
some models were prejudiced to present extremes values.

Conclusions

Our primary objective in this work was to develop, for the
first time, a reliability method using FT-IR–ATR spectros-
copy for the determination of antioxidant activity of
ethanolic extract of propolis. The results obtained for cal-
ibration and prediction parameters indicated that the

ABTS model is validated and can be used for quantifica-
tion of antioxidant activity of new extracts of propolis.
The models for DPPH, FRAP, and TPC indicated a low
predictive capacity which complicates the data modeling.
However, for application purposes, further investigation is
required to develop a mathematical model to control and
predict the optimization parameters of the antioxidant ac-
tivity. Green extraction techniques are a useful alternative
to rapid analysis, reducing waste generation and cost.
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