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Abstract A sensitive method has been established by using
activated carbon as an adsorbent for extraction of indole-3-
acetic acid (IAA) and indole-3-butyric acid (IBA) from bean
sprout, tomato, potato, cucumber, and wheat grain prior to
field-amplified sample injection-micellar electrokinetic capil-
lary chromatography (FASI-MEKC) detection. Parameters af-
fecting FASI and solid-phase extraction (SPE) were optimized
in detail. Under the optimal conditions, the sensitivity of SPE-
FASI-MEKC for IAA and IBAwas respectively improved by
32.5 and 29.7 times as compared with the direct MEKC. The
detection limits were 4.1 for IAA and 5.3 ng mL−1 for IBA
with 4.9–5.2% RSD (n = 9, C = 0.03 μg mL−1). The new
method has been successfully applied to detect IAA and
IBA in bean sprout, tomato, potato, cucumber, and wheat
grain with the recoveries of 81.7–110%.

Keywords Field-amplified sample injection . Indole-3-acetic
acid . Indole-3-butyric acid .Micellar electrokinetic capillary
chromatography . Solid-phase extraction

Introduction

Plant hormones are a series of trace organic compounds and
produced within plant. They are vital links of endogenous

plant development and integrate extracellular signals and play
a very important role in regulating and optimizing plant
growth and performance at very low levels (Stuepp et al.
2017). With different chemical structures, they serve as differ-
ent specific and vital functions in plant metabolism, such as
senescence, responses to stress, tropism, apical dominance,
cell differentiation, cell elongation, and division (Zhang
et al. 2017). Hence, a simple and sensitive method for deter-
mination of plant hormones in plant samples is significant for
understanding of plant growth and physiological function.

At present, methods for detection of plant hormones are
high-performance liquid chromatography (HPLC) (Zhang
et al. 2017), high-performance liquid chromatography-mass
spectrometry (Wang et al. 2017a; Cui et al. 2015; Ding et al.
2013), surface-enhanced raman scattering (Wang et al.
2017b), flow injection analysis fluorimetry (Calatayud et al.
2006), visual colorimetry (Guo et al. 2010), capillary
electrophoresis-chemiluminescence (Yin et al. 2010), and mi-
cellar electrokinetic capillary chromatography (MEKC) (Sun
et al. 2014). Among them, MEKC is an ideal measurement of
micro analysis owing to the advantages of speed, efficiency,
cheapness, simplicity, high-resolving power, and less sample
consumption. However, due to the small size of the capillary
sampling and the short UV path, an on-line/off-line
preconcentration method has required to improve the sensitive
detection of MEKC-UV (Wu et al. 2009). Field-amplified
sample injection (FASI), a simple and convenient on-line tech-
nology based on the conductivity of sample solutions and
electrolyte solutions, has attracted our attentions (Lian et al.
2014). In FASI technology, low conductance sample is re-
quired. Therefore, prior to FASI, a sample pretreatment tech-
nique like solid-phase extraction is necessary, and adsorbents
such as silicon dioxide (Sheikhian and Bina 2016), polymeric
molecular materials (Campanella et al. 2016), magnetic nano-
particle (Chang et al. 2017), and multi-walled carbon
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nanotube (Wang et al. 2013) have been used to extract plant
hormones.

In this paper, activated carbon, a cheap and easy-to-obtain
adsorbent, was used to extract indole-3-acetic acid (IAA) and
indole-3-butyric acid (IBA) in bean sprout, tomato, potato,
cucumber, and wheat grain prior to FASI-MEKC analysis.
Parameters affecting FASI and solid-phase extraction (SPE)
were optimized in detail. A cheap, simple, and sensitive meth-
od combined activated carbon SPE with FASI-MEKC has
been successfully established to detect IAA and IBA from
bean sprout, tomato, potato, cucumber, and wheat grain.

Materials and Methods

Reagents and Solutions

One milligram per milliliter of stock standard solutions of IAA
and IBA (structure in Fig. 1) from Guaranteed grade, Aladdin
Reagent, Shanghai, China, was individually prepared with
methanol (HPLC gradient grade) and stored at 4 °C in the dark.
One hundred millimoles per liter of stock standard solutions of
sodium dodecyl sulfate (SDS) (Electrophoresis grade, Wuhan
Jiangbei chemical reagent factory packaging, Japan) was dis-
solved in double distilled water. Background electrolyte (BGE)
of 25 mmol L−1 borate buffer (pH 9.2) with 12% (v/v) ethanol
and 15 mmol L−1 SDS was prepared daily. A series of Britton-
Robinson buffer solutions containing H3PO4, CH3COOH, and
H3BO3 each with concentration at 40 mmol L−1 and double
distilled water were used in SPE. All other chemicals, such as
HCl, NaOH, trifluoroacetic acid (TFA), and other additives, are
of analytical grade. All solutions at a desired concentration
were prepared with double distilled water, stored at 4 °C in
the refrigerator, filtered through a 0.45-μm membrane and
degassed by ultrasonication for 15 min before use. Five grams
of activated carbon (Tianjin Chemical Reagent Co., Ltd.) was
immersed in 3.0 mol L−1 HCl and 3.0 mol L−1 NaOH, respec-
tively, washed to neutral with double distilled water, dried in a
vacuum, and stored to use.

Instrumentation

A Beckman P/ACE MDQ CE instrument (Fullerton, CA,
USA) equipped with an UV detector and uncoated fused-

silica capillary tubing of 51 cm (43 cm to the detector,
75 μm id × 375 μm od) with a polyimide outer coating
(Yongnian Optical Fiber, Hebei, China) was used to FASI-
MEKC experiments. In optimization of SPE conditions, de-
termination of IAA and IBA was conducted on an U-3010
spectrophotometer (Hitachi, Japan). The pH measurements
were performed by a PB-10 exact digital pH meter
(Sartorius, Germany). A SK2200H type ultrasonic cleaning
instrument (Shanghai Secco Ultrasonic Instrumental,
Shanghai, China) and an 80-1 type centrifuge (Changzou
Guohua, Jiangsu, China) were used to pretreat the real sample.

Experimental

Procedure for MEKC

MEKC conditions were based on literature (Chen et al. 2011)
with a slight modification. All new capillaries were rinsed
sequentially with ethanol, 1.0 mol L−1 HCl, 1.0 mol L−1

NaOH, and double distilled water for 10 min and then equil-
ibrated with BGE for 10 min. Before runs, the capillary was
swilled out with ethanol, double distilled water, and BGE for
1, 2, and 4 min in sequence. Hydrodynamic injection was
carried out at 0.5 psi for 15 s. All MEKC runs were imple-
mented at 25 kV and 214 nm. The procedure was controlled
by a Beckman 32 Karat 7.0 Software System.

Procedure for FASI-MEKC

Awater plug was introduced into the capillary with hydrody-
namic injection for 15 s at 0.5 psi. A high voltage (10 kV) was
then applied to electrokinetically introduce the sample into the
capillary for 70 s. When both electrode reservoirs were filled
with BGE, the separation of IAA and IBAwas performed by
supplying 25 kVacross the capillary.

Procedure for Activated Carbon SPE

Fifteen milligrams of activated carbon was added to 10 mL
sample solution at pH 3.5, mixed, ultrasonicated for 15 min,
and centrifuged at 3500 rpm for 10 min. Plant hormones
retained on activated carbon were eluted with 1.0 mL
methanol-acetonitrile mixture (v/v 10:1). Plant hormones in
eluent were collected and dried in the vacuum for 5 h at
30 °C, then dissolved in 10 μL methanol, and finally diluted
to 1.0 mLwith 0.1% (v/v) TFA prior to FASI-MEKC analysis.

Real Sample Preparation

Three grams of bean sprout, tomato, potato, cucumber, and
wheat grain was accurately weighed, cut into pieces, ground,
respectively, dissolved in 10 mL of 80% methanol,

ba 

Fig. 1 Chemical structure of a IAA and b IBA
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ultrasonicated for 15 min, and placed overnight in a refriger-
ator at 4 °C. Then, the mixture was filtrated through a 0.45-μm
membrane filter. The filtrate was collected, dried in a vacuum
overnight at 30 °C and dissolved in 1.0 mL methanol, and
stored for use

Results and Discussion

Optimization of FASI Conditions

To improve the detection sensitivity of MEKC, an on-line
preconcentration method, FASI, was tried. Since analytes,
which can be separated successfully by MEKC, are not always
suitable for FASI-MEKC, we should, in a univariate way, study
that IAA and IBA can both be detected by FASI-MEKC.
According to the principles of FASI, parameters affecting
FASI, such as samplematrix, concentration of NaCl, water plug
length, sample injection time, and voltage, were researched one
by one to get the best discrepancy of electrical resistivity be-
tween background electrolyte and sample solution.

Effect of TFA

Presence of acid in sample matrix can promote protonation of
IAA and IBA and hence improve the stacking efficiency of

FASI. Although TFA, formic acid, phosphoric acid, and acetic
acid were all used for FASI (He et al. 2013; Xu et al. 2006;
Bernad et al. 2011), TFA is the widest one due to the highest
proton-donating capability (TFA > phosphoric acid > formic
acid > acetic acid) (Sun and Wu 2013). Hence, TFAwas cho-
sen and investigated at a range of 0.1–0.5% (v/v). The results
in Fig. 2a show that the stacking efficiency increases with
TFA, but when its content is over 0.2% (v/v), the peak shape
became broader. It is an attribute to a higher TFA content
causing a lower pH and a bigger conductivity of the sample
solution, resulting in an insufficient stacking. Thus, 0.1% (v/v)
TFAwas selected.

Effect of Organic Solvent

To reduce the conductivity and enhance the stacking efficien-
cy, organic additives were usually added into the matrix (Yang
et al. 2006). Effects of common organic additives, such as
methanol, acetonitrile, cyclodextrin, 2-(2-[4-(1,1,3,3-
tetramethylbutyl) phenoxy]ethoxy)ethanol, and alkylphenol
ethoxylates, were investigated, respectively. The results
showed that both methanol and acetonitrile could not improve
the enrichment efficiency; however, cyclodextrin,
2-(2-[4-(1,1,3,3-tetramethylbutyl)phenoxy]ethoxy)ethanol
and alkylphenol ethoxylates decreased the separation efficien-
cy of IAA and IBA. Therefore, no organic additive is adopted.
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Fig. 2 Effects of TFA content in sample matrix (a), water plug length (b),
and sampling injection time (c) on detection sensitivity. Sample
conditions: 20.0 μg mL−1 IAA and IBA in 0.1% (v/v) TFA (for b and
c). MEKC conditions are listed in Table 1. FASI conditions: pressure

injection of water for 10 s for a and 15 s for c at 0.5 psi followed by
electrokinetic injection of sample for 40 s for a and 20 s for b both at
10 kV
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Fig. 3 Effect of pH on adsorption (a), effect of CH3OH-to-CH3CN ratio on desorption (b), and effect of eluent volume on recovery (c). Twenty
micrograms per milliliter of IAA and IBA for a, b, and c
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Effect of NaCl

Difference conductivity between the running buffer and sam-
ple solution is a key factor for FASI. The lower conductivity
the sample solution has, the higher sensitivity FASI-MEKC
will (Yan et al. 2009). Therefore, influence of NaCl (0–1.0%
(m/v)) on stacking efficiency was investigated. The results
revealed that the sensitivity decreased when the salt concen-
tration was greater than 0.8%. In this work, the salt level in
bean sprout and tomato after through sample pretreatment and
activated carbon SPE is lower than 0.8% (m/v).

Optimization of Water Plug Length

In FASI, it has been proved that preinjection of a short water
plug before sampling can improve the stacking efficiency
(Yang et al. 2006; Quirino and Terabe 2000). However, the
total amount of IAA and IBA introduced into the capillary by
FASI will become less with increasing length of water plug.

Hence, to achieve the best stacking efficiency, the length of
the water plug should be kept as short as possible. As illus-
trated in Fig. 2b, an optimal water plug length is 15 s (hydro-
dynamic injection of water at 0.5 psi).

Effect of Sampling Injection Voltage and Time

Influences of sampling injection voltage (2–11 kV) and time
(10, 30, 50, 60, 70, 90 s) on the stacking efficiency were
investigated, respectively. When the sampling voltage in-
creased from + 2 to + 10 kV, the migration time became short,
the peak area increased; however, when the voltage continued
to increase, the Joule heat and background noise also in-
creased. As a result, an injection voltage of + 10 kV, which
gave rise to an efficient sample stacking, was selected.
Figure 2c shows the effect of injection time. As seen, the peak
areas increase with the injection time from 10 to 70 s, but over
70 s, the overloaded samples lead to decrease of separation
efficiency. Therefore, 70 s was selected.

Table 1 Experimental optimized
parameters of SPE-FASI-MEKC MEKC conditions

Capillary characteristics 51 cm total length with effective length 43 cm (75 μm id × 375 μm od)

Running buffer 25 mmol L−1 borate buffer containing 15 mmol L−1 SDS and 12%
ethanol (v/v) at pH 9.2

Voltage + 25 kV

Injection Pressure injection for 15 s at 0.5 psi

Detection wavelength 214 nm

FASI conditions

Sample matrix 0.1% (v/v) TFA

Water plug length Pressure injection for 15 s at 0.5 psi

Sample injection time and voltage Electrokinetic injection for 70 s at + 10 kV

SPE conditions

Adsorption conditions 0.04 mol L−1 Britton-Robinson buffer at pH 3.5 for 15 min

Elution conditions 1.0 mL of 10:1 ratio of methanol to acetonitrile for 15 min

Sample volume 30 mL

Adsorption capacity 43.6 mg g−1 for IAA, 39.3 mg g−1 for IBA
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Fig. 4 Electropherograms of
10.0 μg mL−1 standard IAA and
IBA obtained by (a) direct
MEKC, (b) FASI-MEKC, and (c)
SPE-FASI-MEKC. The
conditions are as in Table 1
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Optimization of SPE Conditions

Effect of pH

To characterize the effect of pH on activated carbon retaining
IAA and IBA, pH 1.0–7.0 controlled with Britton-Robinson
buffer was tested and the experimental results are shown in
Fig. 3a. As seen, IAA can be quantitatively adsorbed at
pH 3.0–4.5, and both IAA and IBA can be quantitatively
extracted at pH 3.5.

Effect of Adsorption Time

Adsorptive time is a factor affecting analytical speed. Thus,
adsorptive time of IAA and IBA at 5, 10, 15, 20, and 25 min
was investigated, respectively. The results showed that quan-
titative adsorption rates of IAA and IBAwere obtained when
the adsorption time was more than 15 min. Therefore, an
optimum adsorption time of 15 min was selected.

Effect of Elution Conditions

With respect to stripping of IAA and IBA from activated car-
bon, effects of various eluents including methanol, acetoni-
trile, acetone, ethyl acetate, and mixture of methanol and

acetonitrile (v/v) were studied, respectively. The results
showed that IAA and IBA could be desorbed quantitatively
only by the mixture of methanol and acetonitrile (v/v). Thus,
the volume ratio of methanol to acetonitrile was further tested
and the results are displayed in Fig. 3b. As seen, quantitative
recoveries for IAA and IBA are reached at 10:1 ratio of meth-
anol to acetonitrile. Therefore, a 10:1 ratio of methanol to
acetonitrile was adopted.

Influence of elution time (10–30min) on recoveries of IAA
and IBA was investigated; the results showed that the recov-
eries of IAA and IBA could reach 90% at 15 min. Meanwhile,
the effect of elution volume (0.5–3.0 mL) was also optimized
and the experimental results are shown in Fig. 3c. It is clear
that both IAA and IBA can be recovered quantitatively when
the volume is over 1.0 mL. Therefore, 15 min and 1.0 mL
were chosen as the elution time and volume.

Effect of Sample Volume

In order to assess the possibility of enriching trace IAA and
IBA from a large volume, the effect of sample volume on IAA
and IBA recovery was studied. Hence, 10–35 mL of sample
solutions containing 0.1 mg IAA and IBA were respectively
carried out according to the recommended procedure. Up to a
sample volume of 30 mL, quantitative recovery (> 90%) was

Table 2 Figures of merit of SPE-FASI-MEKC

Analytes Regression equation Correlation coefficient Linear range (μg mL−1) RSD (%)a EFb Detection limits (μg mL−1)

IAA y = 1.49 × 104x + 15.3 0.9952 0.03~40 5.2 32.5 0.0041

IBA y = 1.21 × 104x + 29.1 0.9948 0.03~40 4.9 29.7 0.0053

aC = 0.03 μg mL−1 , n = 9
b Enhancement factor

Table 3 Comparison of the proposed method with reported methods

Sample Analytes Methods LODs (μg mL−1) EF Ref.

Arabidopsis, tomato, pear, cucumber, and ginger IAA dSPE-HPLC-UV 0.05 – Zhang et al. 2017
IBA 0.03

Pea plants IAA SPE-HPLC-UV 0.16 100 Sheikhian and Bina 2016
IBA 0.091 4000

Grapes IAA SPE-CE-UV 80.583 – Li et al. 2012
89.426

Wheat IAA SPE-FASS-CE-UV 0.008 – Yang et al. 2016
IBA 0.025

Bean sprout IAA dCPE-CE-ECL 0.438 40.5 Yin et al. 2010
IBA 0.569 43.4

Banana IAA ASEI-CE-UV 0.00067 36.2 Huang et al. 2014

Bean sprout, tomato, potato, cucumber, and wheat grain IAA SPE-FASI-CE-UV 0.0041 32.5 This work
IBA 0.0053 29.7

FASS field-amplified sample stacking, CPE cloud point extraction, ECL electrochemiluminescence, ASEI anion-selective exhaustive injection
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obtained, indicating activated carbon SPE has a good enrich-
ment ability.

Static Adsorptive Capacity

Using a pH 3.5 and a 15-min stirring time as the adsorptive
condition, a 15-mg portion of activated carbon was shaken
with 30.0 mL aqueous solution containing 0.01–
0.025 mg mL−1 of IAA and IBA. After the distribution equi-
librium was reached, the concentration of IAA and IBA in

solution was determined by UV-vis absorption spectra at
214 nm. The results showed that the static adsorptive capaci-
ties of activated carbon for IAA and IBA were 43.6 and
39.3 mg g−1, respectively.

Analytical Performance

Under the optimal conditions (Table 1), Fig. 4 shows the elec-
tropherograms of IAA and IBA by direct MEKC, FASI-
MEKC, and SPE-FASI-MEKC. By comparing the peak inten-
sity of the three electropherograms, obvious enhancements in
sensitivity are observed, indicating SPE and FASI have re-
markable preconcentration ability. The enhancement factors
for IAA and IBA are 32.5 and 29.7 times, respectively, (en-
hancement factor (A/C)/(A0/C0) where A and A0 are the peak
areas of the analyte under SPE-FASI and normal conditions,
respectively; C and C0 are analyte concentrations under SPE-
FASI and normal conditions, respectively).

Analytical characteristic data of the developed SPE-FASI-
MEKCmethod are listed in Table 2. The calibration curves are
established using peak area versus concentration. The linear
ranges of IAA and IBA are 0.03–40 μg mL−1. LODs, calcu-
lated as the concentration of analytes that give rise to peak
areas with three times of signal-to-noise ratio (S/N), are 4.1
and 5.3 ng mL−1 for IAA and IBA, and RSD are 4.9 to 5.2%
(n = 9, C = 0.03 μg mL−1), respectively.

Table 3 compares the analytical characteristics of this meth-
od with the others. It is obvious that LODs of IAA and IBA in
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Fig. 5 SPE-FASI-MEKC analysis of IAA and IBA in mung bean sprout.
(a) Unspiked solution and (b) spiked solution. Conditions are as in
Table 1

Table 4 Analytical results of IAA and IBA in food samples

Sample Added (μg mL−1) IAA IBA

Measureda (μg mL−1) Recovery (%) Measureda (μg mL−1) Recovery (%)

Mung bean sprout 0 0.45 – 0.38 –

0.50 0.89 ± 0.06 88.2 0.80 ± 0.14 84.3

1.0 0.97 ± 0.13 104.3 1.35 ± 0.07 98.6

Tomato 0 0.37 – 0.29 –

0.50 0.78 ± 0.05 81.7 0.76 ± 0.11 93.5

1.0 1.29 ± 0.07 91.8 1.39 ± 0.08 110.3

Potato 0 ND – ND –

0.50 0.47 ± 0.02 94.0 0.48 ± 0.03 96

1.0 0.96 ± 0.11 95.8 0.98 ± 0.13 97.5

Cucumber 0 0.13 – 0.21 –

0.50 0.66 ± 0.05 106 0.71 ± 0.1 100

1.0 1.15 ± 0.09 102 1.12 ± 0.06 91.0

Wheat grain 0 ND – 1.27 –

0.50 0.45 ± 0.03 90.0 1.76 ± 0.12 98.0

1.0 0.92 ± 0.06 91.5 2.31 ± 0.09 104

ND not detected
a For three determinations
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this method are lower than those in studies by Zhang et al.
(2017), Sheikhian and Bina (2016), Li et al. (2012), Yang et al.
(2016), and Yin et al. (2010) and higher than those by Huang
et al. (2014). Meanwhile, FASI, just based on the discrepancy
of electrical resistivity between the sample solution and back-
ground electrolyte, is more convenient and simpler. As for
HPLC (Zhang et al. 2017; Sheikhian and Bina 2016), the
operation costs are much more expensive than FASI-MEKC-
UV. All of these indicate this work is a sensitive one besides
simplicity and low cost.

Analytical Application

The proposed method was applied to determination of IAA
and IBA in bean sprout, tomato, potato, cucumber, and wheat
grain under the optimum conditions. Real samples and their
spiked solutions were treated as in the “Real Sample
Preparation” section. Figure 5 shows the electropherogram
of IAA and IBA in bean sprout by SPE-FASI-MEKC. In
Fig. 5, (a) is an unspiked sample solution; (b) is a spiked
sample solution. The analytical results listed in Table 4 show
that the recoveries of IAA and IBA are 81.7–110%, indicating
the proposed method is suitable and acceptable.

Conclusion

A simple, sensitive, and low-cost method for determination of
IAA and IBA in bean sprout, tomato, potato, cucumber, and
wheat grain has been successfully established based on SPE
and FASI-MEKC. The strategy of coupling SPE with FASI
results in improving the sensitivity ofMEKC by 32.5 and 29.7
times in determination of IAA and IBA, respectively. Under
the optimum conditions, LODs of IAA and IBA are as low as
4.1 and 5.3 ng mL−1, respectively, which are comparable to or
better than those of methods (Table 3).
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