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Abstract This study aimed to investigate the potential of
hyperspectral imaging technique in tandem with
chemometrics analysis for rapid and nondestructive determi-
nation of anthocyanin content within purple-fleshed sweet po-
tato (PFSP) during drying process. Hyperspectral images of
PFSP in the spectral range of 371–1023 nm were obtained
during contact ultrasound-assisted hot air drying (CUHAD)
process, and the reference anthocyanin contents of PFSP were
measured by a traditional method. Partial least square regres-
sion (PLSR) and least-square support vector machine (LS-
SVM) were applied to establish the calibration models based
on raw extracted spectrum and spectrum preprocessed by four
different methods. In order to simplify the calibration model,
three algorithms including PLSR, LS-SVM, and multiple lin-
ear regression (MLR) were used to build models based on ten
optimal wavelengths selected by regression coefficients (RC)
method. The results showed that the RC-MLR yielded best
results with the coefficient of determination for calibration

(R2
C ) of 0.868 and coefficient of determination for prediction

(R2
P ) of 0.866. Finally, distribution maps were developed

based on an image processing algorithm to visualize anthocy-
anin content of PFSP at different drying periods which cannot
be achieved by conventional methods. The overall results
demonstrated that hyperspectral imaging technique is a useful
tool for rapid and nondestructive determination of the antho-
cyanin content during drying process.
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Nondestructive analysis

Introduction

In recent years, increasing concern has been paid to the study
of purple-fleshed sweet potato (PFSP) which is an excellent
source of many nutrients such as dietary fiber, chlorogenic,
ferulic acid, flavonoid, carotenoid, and anthocyanin (Kotíková
et al. 2016; Cipriano et al. 2015). PFSP is widely cultivated in
China, Japan, Korea, and New Zealand and could be produced
as juice, powder, brewed drink, and dye (Steed and Truong
2008; Yoshimoto et al. 2005). However, fresh PFSP is easily
deteriorated due to its high moisture content; therefore, certain
technique such as drying is often used to remove the large
amount of water for restraining microbiological and physico-
chemical changes to extend the storage time and protect the
quality (Dincer et al. 2002; Akpinar et al. 2003; Liu et al.
2014). Nevertheless, there are several factors during drying
process including high temperature, long drying time, and
quick air velocity which would be relevant to the degradation
of quality, leading to undesired food flavor, effective com-
pound degradation, enzymatic browning, etc. Hence, quality
supervision of agri-food products including PFSP during dry-
ing process is very essential.

Anthocyanins, as a group of very important bioactive con-
stituents in PFSP, possess pharmacological properties such as
scavenging reactive oxygen species, decreasing capillary per-
meability and fragility, attenuating the proliferation of hepatic
stellate cells, resisting mutagenesis or carcinogenic activity,
and improving visual acuity (Li et al. 2013). What is more,
anthocyanins obtained from PFSP have shown stronger
radical-scavenging activity than anthocyanins from red
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cabbage, elderberry, grape skin, and purple corn (Kubow et al.
2016). High concentration anthocyanins in PFSP have led to
an interest in their applications as food colorants and dietary
antioxidants due to their health benefits (Li et al. 2013).
Therefore, the evaluation and monitor of anthocyanins are
very important for obtaining dried PFSP products with high
quality.

Several methods available for detecting anthocyanin
content are normally classical assays such as ultraviolet-
visible spectrophotometry and high-performance liquid
chromatography (HPLC) (Ruttarattanamongkol et al.
2016; Liang et al. 2008). These methods are precise, but
time-consuming, inefficient, destructive, and expensive
(Xiong et al. 2015a). They are not suitable for fast or
on- l ine de te rmina t ion of an thocyan in con ten t .
Consequently, rapid, accurate, and non-destructive tech-
nique should be applied to monitor the PFSP quality dur-
ing drying. Visible-near-infrared (Vis-NIR) spectroscopy
as one of the promising optical detection technique has
been proven to be able to fast and nondestructively mon-
itor food quality (Wu et al. 2012). Studies have been re-
ported on the ability of spectroscopy technology for eval-
uating the anthocyanin content of fruit and vegetables
such as berries (Ribera-Fonseca et al. 2016), sweet cherry
(Pappas et al. 2011), black Goji berry (Li et al. 2016a),
and flowering tea (Huang et al. 2014a). However, spec-
troscopy can only obtain the spectral information without
acquiring the spatial information (Wu et al. 2012).

Hyperspectral imaging as one of the successfully used
spectral imaging techniques has the ability to acquire both
spatial information and spectral information simultaneous-
ly (Zhang et al. 2017). Recently, hyperspectral imaging
technique has been applied successfully to determine veg-
etable quality, and there were some researches about the
rapid detection of anthocyanin content in agricultural
food. Yang et al. (2015a) used hyperspectral imaging
technique coupled with model fusion to rapidly determine
the anthocyanin content in lychee pericarp during storage
and obtained the highest coefficients of determination (R2)
of 0.891 and 0.872 for the training sets and the testing
sets, respectively. Chen et al. (2015) investigated the ca-
pability of hyperspectral imaging technique for predicting
anthocyanin content of wine grapes during ripening,
yielding good prediction accuracy with coefficient of pre-
diction (R2

P
P ) of 0.9414, and root mean square error of

prediction (RMSEP) of 0.0046. Moreover, it was reported
that the anthocyanins in red grapes could be determined
by hyperspectal imaging and chemometrics with R2 of
0.72 and RMSE of 0.78 mg (Martínez-Sandoval et al.
2015). Anthocyanin content and other attributes such as
brix, pH, and extractable polyphenols (total phenolic and
flavanols) in whole port wine grape berries could also be
simultaneously inspected by hyperspctral imaging

(Fernandes et al. 2015; Gomes et al. 2017; Nogales-
Bueno et al. 2015). The above several studies show that
the application of hyperspectral imaging is possible for
predicting anthocyanin content of vegetables.

As for the potential of hyperspectral imaging for rapid
determination of the quality of agricultural food during
drying process, the moisture content changes of prawn,
beef, mango slice, and grass carp slice were investigated
(Wu et al. 2012, 2013; Pu and Sun 2015; Qu et al. 2017).
Huang et al. (2014b) also demonstrated that the
hyperspectral imaging had the capability for real-time de-
termination of moisture content and color for soybean at
different dehydrated levels. Although there were several
researches about the application of hyperspectral imaging
technique for nondestructive determination of moisture
content and color during drying process, to the best of
our knowledge, rare researches about the determination
of other food quality attributes during drying process by
hyperspectral imaging technique have been found. And
although it is very essential to detect the anthocyanin
content change of PFSP during drying process, the study
about the nondestructive and rapid estimation of anthocy-
anin content during drying has not been reported yet.
Therefore, this study concerned about the implementation
of hyperspectral imaging for anthocyanin content inspec-
tion of PFSP during drying process.

In our previous research, the drying characteristics of
contact ultrasound assisted hot air drying (CUHAD) for
PFSP have been studied and the CUHAD method
showed significant advantages to drying process compar-
ing with traditional hot air drying (Liu et al. 2017).
Therefore, the CUHAD technique is employed for the
dehydration of PFSP in this study. The aim of this study
was to invest igate the potent ia l appl icat ion of
hyperspectral imaging technique in visible and near in-
frared regions of 371–1023 nm for the anthocyanin con-
tent inspection of PFSP during CUHAD process. The
specific aims of this article were to (1) acquire
hyperspectral images of PFSP samples during CUHAD
in the spectral region of 371–1023 nm; (2) extract aver-
age spectral data from region of interests in samples im-
ages; (3) build calibration models based on full wave-
lengths information and compare the performance of di-
verse spectral preprocessing methods; (4) select optimal
wavelengths using regression coefficient algorithm and
establish three regression algorithms based on the opti-
mal wavelength information with the anthocyanin content
of FPSP determined by traditional conventional method
during different drying periods; and (5) develop image
processing algorithms for the visualization of anthocya-
nin content of PFSP in all pixels within an image to
form distribution maps of anthocyanin content of PFSP
during drying process.
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Materials and Methods

Sample Preparation and Drying Procedure

Fresh PFSP materials were obtained from local Danis super-
market in Henan Province and were stored at 2 to 4 °C in a
refrigerator. A total of 15 fresh PFSP tubers were used in this
experiment. Prior to drying experiment, the PFSP materials
were washed, peeled, and cut into slices with 40 mm in diam-
eter and 5 mm in thickness using a stainless-steel food slicer.
The PFSP slices were dried by the CUHAD systemwhich was
elaborated in our previous study (Liu et al. 2017) and a similar
drying process was carried out. In this study, the power and
frequency of ultrasound were fixed at 60 W and 28 kHz, re-
spectively. And the drying temperature and air velocity were
set as 40 °C and 1 m/s, respectively. During drying process,
nine groups at different drying periods (0, 0.5, 1, 2, 3, 4, 5, 6,
and 7 h, respectively) were tested. In each group, 13∼15 PFSP
slices were removed from the drying system, consequently
obtaining a total of 132 PFSP slices. The numbers of PFSP
slices for each group are listed in Table 1. Then, the obtained
samples were scanned by a hyperspectral imaging system and
the anthocyanin contents were measured as described below.

Determination of Anthocyanin Content

In this study, anthocyanin contents in PFSP samples dried at
different drying times were measured based on the method
proposed by Yang et al. (2015a). The mass of each PFSP slice
was recorded for every sample. Each sample was firstly
crushed and then immersed in 1% HCl-methanol (50 mL)
for 20 min with supersonic condition. Afterward, the solution

was filtered while the filter residue was further added with 1%
HCl-methanol (50 mL). The procedure was repeated three
times. All the filtered solutions were collected together and
centrifuged at 10,000 rpm under 4 °C for 20 min in a cold
centrifuge (TGL-16, Xiangyi Centrifuge Instrument Co.,
Hunan, China). Finally, the absorbance of the supernatants
was measured at 530 nm and 600 nm, respectively, by
ultraviolet-visible spectrophotometer (T6, Beijing Purkinje
General Instrument Co., Beijing, China). The anthocyanin
content of the sample was expressed by cyaniding-3-
glucoside (CGE) and calculated by using the following equa-
tion:

Anthocyanin mg
.
g

� �
¼ A530nm−A600nmð Þ � V � n�MW

ε� m
ð1Þ

where A530nm and A600nm are the absorbance at 530 and
600 nm, respectively; V is the total volume of extract; n is
the dilution ratio (it is one in this study); MW is the relative
molecular weight of CGE (449.4); ε is the molar extinction
coefficient (29,600 M−1 cm−1); and m is the mass of the
sample.

Hyperspectral Imaging Acquisition and Calibration

PFSP samples dried at different drying times were taken out of
the CUHAD system for hyperspectral image scanning. The
slices were placed on the translation platform and then con-
veyed to the detector’s field of view for scanning line by line.
The speed of the translation platform was set as 1.1 mm/s and
the exposure time for each hyperspectral image was 90 ms.
The details of the hyperspectral imaging system can be found
elsewhere (Sun et al. 2017). Therefore, a total of 132 images

Table 1 Statistics for the anthocyanin content of PFSP during drying process

Different drying period (h) Calibration set Prediction set

Amount of sample Mina Maxb Meanc SDd SEe Amount of sample Min Max Mean SD SE

0 8 2.677 3.457 2.900 0.245 0.087 5 2.776 3.412 2.932 0.241 0.108

0.5 10 1.641 3.862 2.433 0.661 0.209 5 2.028 2.987 2.515 0.385 0.172

1 11 1.255 2.520 2.084 0.406 0.122 4 1.270 2.176 1.736 0.337 0.169

2 9 1.130 2.353 1.483 0.428 0.142 6 1.223 2.094 1.631 0.362 0.148

3 10 0.843 1.353 1.152 0.121 0.038 5 0.914 1.301 1.081 0.152 0.068

4 10 0.740 1.131 0.882 0.100 0.032 4 0.862 1.018 0.949 0.106 0.053

5 10 0.528 1.113 0.824 0.181 0.057 5 0.741 0.950 0.813 0.072 0.032

6 9 0.516 0.799 0.623 0.087 0.029 6 0.588 0.685 0.648 0.032 0.013

7 11 0.253 0.677 0.580 0.141 0.043 4 0.535 0.677 0.640 0.061 0.031

a Represents minimum value of anthocyanin content
b Represents maximum value of anthocyanin content
c Represents mean value of anthocyanin content
d Represents standard deviation
e Represents standard error
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were obtained and then stored in a raw format before being
processed. In order to minimize the influence of the dark cur-
rent from camera and eliminate the differences in physical
configuration of the imaging system, the original images were
calibrated with white and black reference images according to
a normal procedure (Xie et al. 2015).

After image acquisition and calibration, segmentation was
performed to isolate the sample from the background, and the
region of interest (ROI) should be recognized according to the
spectrum difference between sample and background. In this
study, the operation procedure was built as follows:
hyperspectral image should be first open in ENVI 5.1 software
(Research Systems Inc., Boulder, CO, USA) at the special
spectral where sample and background exist a distinct differ-
ence in reflectance, then the preliminary ROI should be select-
ed using the ‘ROI tool’, finally the ‘Grow’ function key
should be pressed down. By this means, the abnormal pixels
of the sample could be divided according to the deviation of
spectra (Yang et al. 2017). And the spectral data within each
ROI was extracted and calculated as the mean spectra of the
whole sample.

Spectral Preprocess

Before the multivariate modeling, all the PFSP samples at
different drying periods (0, 0.5, 1, 2, 3, 4, 5, 6, 7 h) were
divided into two groups including the calibration set and the
prediction set. Two thirds (n = 88) of the samples were allo-
cated for calibration set, and the remaining one third of the
samples were composed of the prediction set. As the large
amount of spectral data obtained from hyperspectral images
exist many different types of random noise, such as spectral
variations caused by physical characteristics of samples and
discrepancies in instrument response, spectral data often
should be preprocessed to improve the accuracy and robust-
ness of calibration models (Xiong et al. 2015b). Among var-
ious preprocessing methods, four different extensively used
techniques including moving average, Savitzky-Golay filter
(S_G filter), multiplicative scatter correction (MSC), and stan-
dard normal variate (SNV) were chosen for sample spectral
normalization.

Multivariate Data Analysis

A number of multivariate regression methods including linear
regression methods (such as principal component regression,
MLR, PLSR, etc) and non-linear regression methods (such as
genetic algorithms, support vector machines, etc) have been
performed for modeling (Qin et al. 2013). In this study, PLSR,
MLR, and LS-SVM were applied.

For modeling, the spectral data was used as independent
(X) variable whose columns represent the reflectance value
within each waveband and the rows represent the sample

number, and the anthocyanin content of PFSP was used as
dependent (Y) variable, respectively. PLSR, as an effective
and reliable algorithm, is particularly suitable when there is
multi-colinearity among X values (Wu et al. 2012). It projects
the original X variables onto a small number of latent vari-
ables (LVs) to simplify the relationship between the spectral
data and reference quality matrix (Dong and Guo 2015).
Leave-one-out cross-validation (LOOCV) was performed in
the calibration set to decrease the model over-fitting and to
confirm the proper number of LVs. And the robustness of the
model was evaluated by coefficients of determination (R2) and
root mean square error (RMSE).

MLR is another multivariate chemometrics approach
which is widely used to analyze the quantitative relationship
between the spectral data and the observed data by fitting a
linear equation (Cheng et al. 2015). However, it fails to run if
the number of independent variables in hyperspectral data is
more than the number of the samples, and it has the disadvan-
tage of easy affection by colinearity between variables
(Kamruzzaman et al. 2016). As the number of the samples is
much less than the number of spectral wavelengths, the opti-
mal wavelengths should firstly be selected to reduce the di-
mensionality, and then, the MLR could be performed to es-
tablish calibration model.

Support vector machine (SVM) is a supervised learning
method that could solve the problem of non-linear regression
and classification. LS-SVM is a modified algorithm of SVM.
The principle of LS-SVM is that it maps input variables into a
high-dimensional space and involves equality constraints in-
stead of inequality constraints, working with a least square
cost function (Yang et al. 2017). The transfer function of this
algorithm includes three commonly used types: linear kernel,
polynomial kernel, and radial basis function (RBF) (Yang
et al. 2015a). Comparing with linear kernel and polynomial
kernel functions, RBF function is capable of dealing with
nonlinear relationships between the spectra and target attri-
butes and reduces the computational complexity of training
procedure (Dong and Guo 2015). Therefore, RBF was select-
ed as the kernel function of LS-SVM. A grid search and leave-
one-out cross-validation were applied to choose the optimal
values of the important parameters for the model, including
the regularization parameter (γ) which determines the trade-
off between the training error minimization and smoothness of
the estimated function, and the kernel function parameter (σ2).
All the computation and modeling process were implemented
using LS-SVM toolbox (LSSVM v1.5, Suykens, Leuven,
Belgium) and Matlab R2013a software (The Math Works
Inc., USA).

Optimal Wavelength Selection

In this study, the spectral data acquired from hyperspectral
images of PFSP samples contain 1288 wavelength bands
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within the spectral range of 371–1023 nm. The extracted data
possesses the characteristics of high dimensionality with re-
dundancy and multicollinearity, which could slow down the
speed of computation (Wu et al. 2012). Therefore, the elimi-
nation of wavelengths containing irrelevant information and
the selection of optimal wavelengths carrying the most impor-
tant information may reduce the burden of data computation
and even improve the accuracy and robustness of models.

In this study, the regression coefficients (RC), also called
β-coefficients, were applied to select the most informative
optimal wavelengths corresponding to PLSR model with full
spectral variables. The wavelengths with the large weighted
regression coefficients (regardless of the sign) were consid-
ered as the optimal wavelengths for anthocyanin content pre-
diction (Cheng et al. 2015). Then, the new optimized PLSR,
MLR, and LS-SVM models were established and compared
on the basis of the selected optimal wavelengths. All the anal-
ysis procedures were operated with the aid of Matlab 2013a
software.

Model Assessment

There are several statistical criteria to assess the performance
of established multivariate analysis models, and it is necessary
to apply accurate, effective, and reliable methods. Coefficients
of determination and root mean square errors of calibration

(R2
C , RMSEC), cross-validation (R2

CV , RMSECV), and predic-

tion (R2
P, RMSEP) are commonly used evaluation indicators

(Cheng et al. 2013; Cheng and Sun 2014). What is more, the
residual predictive deviation (RPD) also shows the prediction
ability. In general, the values of R2 as close as one and the
RMSE as close as zero are considered as good predictive
capacity.

Visualization of Anthocyanin Content

In order to better understand and monitor the changes of an-
thocyanin content of PFSP during drying process, the distri-
bution map of anthocyanin content of PFSP was developed
using obtained prediction model. Based on the quantitative
relationship between spectral information in each pixel of a
hyperspectral image with physicochemical attributes of sam-
ples, the concentration of anthocyanin content in this study
can be calculated at each pixel in the sample, and therefore,
the spatial evolution of anthocyanin content during drying
process could be visualized in the distribution map. The cal-
culated distributionmaps were displayed with different colors,
in which high concentration of anthocyanin content was rep-
resented by red while low concentration of anthocyanin con-
tent was represented by blue. Thus, one can easily acquire the
interesting information about the distribution of anthocyanin
content of PFSP during drying process, which cannot be

accomplished by applying conventional UV spectrophotome-
try or HPLCmethods. All steps for visualization purpose were
carried out using Matlab R2013a.

Results and Discussion

Statistics of Reference Anthocyanin Content

The statistics of the reference anthocyanin content determined
by conventional ultraviolet-visible spectrophotometry method
are summarized in Table 1. The wide variation that ranged
from 0.253 to 3.862 (mg/g) was important to generate stable
and robust prediction model. Table 1 also shows that the mean
values of anthocyanin content decreased along with the in-
crease of drying time, and especially decreased rapidly during
the first several hours. These changes were consistent with the
fact that the anthocyanin degraded during drying process. As a
subgroup of polyphenolic flavonoids, anthocyanins are ex-
pected to be sensitive to temperature, light, oxygen, and other
exogenous parameters. CUHAD, as a kind of heat-providing
drying method, may cause anthocyanin oxidation and hydra-
tion reactions inside PFSP, leading to anthocyanin degradation
along thermal treatments and oxygen exposure during drying
process (Weber et al. 2017; Xu et al. 2014). What is more,
with the increase of drying time, the microenvironment of
PFSP samples changed and the freezable water content de-
creased which may slow down the mobility of macromole-
cules and then weaken the diffusion-controlled deteriorative
process, and the degradation speed of anthocyanin was there-
fore decreased (Xin et al. 2013; Dinani et al. 2015).

Spectral Features of PFSP Samples

Due to low signal-to-noise ratios at wavelength before 400 nm
and after 1000 nm, only the spectral wavelengths in the range
of 400 to 1000 nm were used for further analysis. Figure 1
shows the mean relative reflectance spectral curves in the ROI
of the samples at different drying periods. It could be seen that
the general trends of the whole spectra for examined samples
during drying were similar. The prominent valley at around
780 and 970 nm might be attributed to the O–H stretch third
and second overtone (water) band (He et al. 2013). What is
more, the low reflectance spectra in purple spectral region
might indicate the reason why PFSP usually looks dark purple
and blue (Wu et al. 2012). PFSP is an excellent source of
chemical components including moisture, sugar, chlorogenic,
ferulic acid, flavonoid, and anthocyanin. And the obtained
spectral reflectance values are the response of these biochem-
istry constituents. Since some of the compositions in PFSP
would change during drying process and the constituents were
very complicated, reflectance curves of the samples appeared
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to vary and overlap in Vis-NIR spectral region, leading to
complicated spectra (Yang et al. 2015b).

Modeling Based on Full Wavelengths

The selection of an optimal calibration model is very im-
portant for spectral analysis and makes great contribution
to the subsequent prediction of anthocyanin content. The
performance of diverse calibration models should be com-
pared to select the best one. PLSR and LS-SVM were de-
veloped to establish the relationship between the spectral
data extracted from the ROI of the samples and the corre-
sponding anthocyanin content analyzed by conventional
chemical method. Table 2 presents the performance of
PLSR and LS-SVM with and without spectral preprocess
for predicting anthocyanin content under full range spectra.
As shown in Table 2, it can be seen that PLSR based on the
original data obtained the accuracy with R2

C of 0.876, R2
P of

0.835, RMSEC of 0.296 mg/g, and RMSEP of 0.635 mg/g.
When LS-SVM was applied to establish the calibration

model, higher values of R2
C of 0.921,R2

P of 0.876,
RMSEC of 0.236 mg/g, and RMSEP of 0.291 mg/g were
acquired comparing to the results of PLSR, indicating that
LS-SVM exhibited better performance for predicting

anthocyanin content. What is more, the RPD value of LS-
SVM with 2.866 was higher than the RPD value of PLSR.
In order to further explore effective ways to improve the
ability of prediction model, several spectral pretreatments
were applied to correct spectral data, eliminate undesirable
random noise, and enhance the spectral resolution. From
the view of Table 2, it was obvious that all the pretreat-
ments were useful for the improvement of PLSR predictive
model comparing to the previous result without pretreat-
ment under the same model, and PLSR model of MSC

filtering yielded the best results in accuracy with R2
P of

0.857 and RMSEP of 0.632 mg/g. As for LS-SVM models
with diverse pretreatments, almost the whole methods led
to decreased accuracy except for MSC spectral pre-process
method with better ability of R2

C of 0.961, R2
P of 0.882,

RMSEC of 0.166 mg/g, and RMSEP of 0.275 mg/g. The
effectiveness of the other pretreatment methods decreased
possibly because of the loss of useful details and informa-
tion caused by spectral correction. The plots of measured
and predicted anthocyanin content of PFSP samples using
both PLSR and LS-SVM with MSC preprocess are shown
in Fig. 2. By contrasting the accuracy and robustness of the
two algorithms, the results indicated that LS-SVM was
more suitable for the estimation of anthocyanin content

Fig. 1 The mean spectra values
of PFSP samples in wavelength
range of 400–1000 nm

Table 2 Performance of PLSR and LS-SVM with and without preprocess under full range spectra

Pre-treatment methods PLSR LS-SVM

R2
C

RMSEC (mg/g)
R2
P

RMSEP (mg/g) RPD
R2
C

RMSEC (mg/g)
R2
P

RMSEP (mg/g) RPD

Original data 0.876 0.296 0.835 0.635 1.313 0.921 0.236 0.876 0.291 2.866

Moving average 0.875 0.298 0.839 0.631 1.322 0.887 0.283 0.834 0.335 2.490

S_G filter 0.884 0.288 0.841 0.654 1.275 0.910 0.254 0.867 0.301 2.771

MSC 0.882 0.290 0.857 0.632 1.320 0.961 0.166 0.882 0.275 3.033

SNV 0.889 0.281 0.836 0.652 1.279 0.918 0.241 0.874 0.293 2.846
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than PLSR. And according to the results of MSC prepro-
cess for both PLSR model and LS-SVM model, it is nec-
essary to use spectral pretreatment in terms of the current
research.

Modeling Based on Optimal Wavelengths

Hyperspectral data with hundreds and thousands of contiguous
wavelengths for each pixel of image is a great issue for data
processing. Such a large amount of data would cause the ne-
cessity of expensive instruments and complexity of on-line
application (Cheng et al. 2016). Therefore, the selection of
optimal wavelengths is very important for decreasing the bur-
den of computation and simplifying the prediction model. In
this study, RC method was applied to choose the key wave-
lengths containing the most valuable information related to the
desired attributes from the whole spectral range (Fig. 3). As a
result, ten optimal wavelengths including 637, 660, 666, 700,
729, 761, 801, 837, 892, and 957 nm were selected, and the
corresponding simplified calibration and prediction models
were established. In order to find a better simplified calibration
model using the identified optimal wavelengths, two linear re-
gression algorithms namely PLSR and MLR and a non-linear
regression algorithm namely LS-SVM were performed to ana-
lyze the relationship between the reference measured anthocya-
nin content of samples and the obtained reduced spectral data.

Table 3 presents the accuracy and robustness of models for
the prediction of anthocyanin content during drying process
based on PLSR, LS-SVM, and MLR. As shown in Table 3,
the simplified RC-PLSR model performed slightly declined

prediction accuracy with R2
C of 0.883, RMSEC of 0.288 mg/

g, R2
P of 0.830, and RMSEP of 0.350 mg/g comparing to the

prediction ability of PLSR model developed by using the
whole spectral data with MSC filtering. Although the elimina-
tion of variables was approximately 99.2%, the RC-PLSR
model behaved generally comparable to the PLSRmodel based
on full wavelengths. Thus, it could be demonstrated that RC
algorithm is useful and effective for the selection of key
wavelengths in predicting anthocyanin content during drying.
Pu and Sun (2015) also developed the successful estimation
models for moisture content of mango slices during dryingwith
RC and PLSR analysis. Furthermore, the prediction of

Fig. 2 Measured and predicted anthocyanin content for both PLSRmodel
(a) and LS-SVM model (b) with MSC filtering under full range spectra

Fig. 3 Selection of optimal
wavelengths based on regression
coefficients of PLSR calibration
model
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anthocyanin content throughout the ripening process of wine
grape and the determination of total pigments in red meat were
also reported by using RC method (Chen et al. 2015; Xiong
et al. 2015b). From the view of Table 3, it also illustrated the
accuracy of optimal RC-LS-SVM and RC-MLR model with
R2
C of 0.963, 0.868 and R2

P of 0.848, 0.866, respectively.
There were similar results between the LS-SVM algorithm

and the PLSR algorithm that R2
P of RC-LS-SVM reduced about

3.83% compared with the LS-SVM model built based on the
whole spectra with MSC filtering. The RC-MLR model be-
haved the most effective in estimating anthocyanin content
when it was compared to the performance of RC-PLSR and
RC-LS-SVM algorithms. In general, the prediction accuracy of
a regression model is regarded as good when its R2 value is
higher than 0.80 (Yang et al. 2017), and the RPD of the RC-
MLR was 2.763 which indicated that the model was adequate
for analytical purposes. As the characteristic of easier interpre-
tation and less colinearity than PLSR and LS-SVM, MLR is
confirmed as the most suitable model for the development of a
multispectral system for nondestructive measurement of antho-
cyanin content in PFSP slices during drying. The quantitative
function was acquired and described as follows:

Y anthocyanin ¼ 2:2304þ 13:4487X 637nm−55:7173X 660nm

þ 43:921X 666nm

þ 12:5494X 700nm−20:9731X 729nm

þ 5:6521X 761nm

þ 7:2235X 801nm−1:4655X 837nm

þ 5:4789X 892nm−9:8640X 957nm ð2Þ

where Xi nm is the reflectance spectral response at wavelength
of i nm and Yanthocyanin is the predicted anthocyanin content.

Visualization of Anthocyanin Content

The visualization of distribution maps of anthocyanin content
would be very useful for better understanding the change of
anthocyanin within PFSP during drying process. In this study,
the optimized RC-MLR model was applied to transfer the
spectrum of each pixel in hyperspectral image into the predict-
ed values, and therefore, the distribution map was formed.
Figure 4 shows the distribution maps for five samples at dif-
ferent drying periods (0, 1, 3, 5, and 7 h, respectively). From
Fig. 4, anthocyanin content within PFSP was significantly
different at diverse drying time especially at the first several
hours. The color in distribution map of sample dried at 0 h
exhibited yellow and even some pixels appeared to be red,
which indicated that there were large amounts of anthocyanin
within PFSP sample. As the increase of drying time, the den-
sity of yellow color became less and tended to green, and the
blue color appeared more, demonstrating the decline of antho-
cyanin content during drying process. Another phenomenon
worthy of attention in Fig. 4 was that the anthocyanin content
on the center of sample was relatively higher than that at the
edge of sample. This was more obvious in the first several
hours, when the blue regions started to expand to the center.
This phenomenon indicated that anthocyanin content degrad-
ed more on the edge of sample than inside, which might be
due to the fact that the heated condition of the edge of sample
is better than that inside sample during drying process (Li et al.
2016b). When PFSP was cut into slices, the mechanically
damaged tissue cells were more easily exposed to oxygen

Table 3 Performance of PLSR, MLR, and LS-SVM models for predicting anthocyanin content during drying based on optimal wavelengths

Model Calibration Cross-validation Prediction

R2
C

RMSEC (mg/g)
R2
CV

RMSECV (mg/g)
R2
P

RMSEP (mg/g) RPD

PLSR 0.883 0.288 0.874 0.296 0.830 0.350 2.382

MLR 0.868 0.300 0.859 0.315 0.866 0.302 2.763

LS-SVM 0.963 0.163 0.914 0.209 0.848 0.340 2.454

0h          1h            3h          5h           7h

Fig. 4 Distribution maps of
anthocyanin contents of PFSP at
different drying periods
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and released endoenzymes consequently, led to the occurrence
of biochemical reaction, and thus deteriorated the anthocyanin
(Fratianni et al. 2013; Liu et al. 2015). Moreover, more prob-
ability for microorganism was accessed to infect the micro-
structure of PFSP and therefore decompose anthocyanin (Lee
et al. 2011).

It is very important to generate the distribution map of
anthocyanin content of PFSP during drying based on the spa-
tial information that hyperspectral imaging provided. The dis-
tribution map is very helpful for real-time problem detection
and could improve the on-line monitor, e.g., adjusting the
parameters of drying equipment such as drying temperature
and ultrasonic power to shorten the drying time of the last half
drying period and to avoid serious anthocyanin degradation
according to the anthocyanin change regulation and degrada-
tion degree. The results indicated the advantages of
hyperspectral imaging technique that could not be realized
either by traditional chemical method or spectroscopy
technique.

Conclusions

In this paper, a Vis/NIR hyperspectral imaging system cover-
ing the range of 371–1023 nm was investigated for the esti-
mation of anthocyanin content in PFSP during drying process.
The results showed that both PLSR and LS-SVM models
based on full wavelengths with and without diverse spectral
preprocessing produced different results. PLSR models with
spectral pretreatments were all useful for the improvement of
PLSR predictive model especially for MSC filtering which

yielded best results in accuracy with R2
P of 0.857 and

RMSEP of 0.632 mg/g. As for LS-SVM models, almost the
whole pretreatment methods led to decreased accuracy except

for MSC spectral pre-process method with best ability of R2
P

of 0.882 and RMSEP of 0.275 mg/g. Then, RC was applied to
select optimal wavelengths, and ten key wavelengths (637,
660, 666, 700, 729, 761, 801, 837, 892, and 957 nm) were
chosen. Based on the optimal wavelengths, simplified RC-
PLSR, RC-LS-SVM, and RC-MLR models were established,

in which RC-MLR behaved the best performance with R2
P of

0.866 and RMSEP of 0.302 mg/g. Finally, the distribution
maps were created based on the optimized RC-MLR model
to visualize anthocyanin content change during drying pro-
cess. On the whole, the encouraging results of this study indi-
cated the potential application of hyperspectral imaging tech-
nique for fast, accurate, and non-destructive determination of
anthocyanin content within PFSP during drying process.
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